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COMPLEX SPRAYS AND COMPLEX

CURVES

Colum WATT

Abstract

After defining what is meant by a complex spray X on a com-
plex manifold M , we introduce the notion of a spray complex curve
associated to X. Several equivalent formulations are derived and
we give necessary and sufficient conditions for M to admit spray
complex curves for X through each point and in each direction.
Refinements of this result are then derived for some special cases,
for example when X is the horizontal radial vector field associated
to a complex Finsler metric.

1 Introduction

Let F be a complex Finsler metric on a complex manifold M . A promi-
nent rôle in the investigation of the complex geometry of F is played by
complex curves which are in some sense compatible with F . For exam-
ple, the complex geodesics of Vesentini [13] and the stationary discs of
Lempert [8, 9, 10] in the study of the Kobayashi and Carathéodory met-
rics of a domain M in Cn. Following Lempert’s results on the Kobayashi
metric for a strongly convex domain, a greater interest has been focused
on the differential-geometric aspects of such curves. Here we have the
totally geodesic curves of Royden [12], Faran [4] and later Pang [11],
and the geodesic complex curves of Abate and Patrizio [2]. The curves
used by the last three listed authors have been shown to be special cases
of the notion of a horizontal complex curve (or h.c.c.) for a complex
Finsler metric in [15]. Although h.c.c.’s appear in a disguised form in
Faran’s paper [4], he neither interprets them geometrically nor develops
their properties. The main existence theorem for the various complex
curves encountered in [11, 2, 15] features an integrability criterion which
involves the Lie bracket of a certain vector field X with its conjugate
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(Faran takes a dual approach involving differential forms). In the case of
[11], X is the geodesic spray of F and is a vector field on the cotangent
bundle: in [2] and [15], X is the horizontal radial vector field of F and
is a vector field on the holomorphic tangent bundle OM . Two features
common to [11, 2, 15] are

(a) the vector field X corresponds to a real spray on M which satisfies
a homogeneity condition with respect to complex multiplication in
the fibres of the bundle on which X is defined and

(b) if the projection to M of an integral path of X meets one of the
relevant complex curves tangentially then the projected path ac-
tually stays within that curve near the point of contact. (These
projected paths are the geodesics in [11, 2] and the horizontal paths
in [15].)

In this paper we take these two features as our starting point to
first define the notions of a complex spray and of a spray complex curve
(or s.c.c. for short). In deriving several equivalent characterisations of
s.c.c.’s we prove some of their elementary properties. Next we consider
the question of existence of spray complex curves. If for each (z, v) ∈
OM there exists a spray complex curve for X through z and tangent to v
then we call X integrable. Our main result (theorem 3.7) gives necessary
and sufficient conditions for a complex spray to be integrable. We also
show that under these conditions each z ∈M has a neighbourhood Uz for
which Uz\{z} is foliated by those spray complex curves that pass through
z. In the final section we specialise to metrical spray complex curves (in
which case the domain of the complex curve possesses a compatible
Hermitian metric) and then to horizontal complex curves (in which case
the spray X arises from a complex Finsler metric). Our main goal in
each case is the derivation of an appropriate existence theorem. The
resulting theorem 4.18 for horizontal complex curves was announced in
[15] (although it was not proven there in full generality).

2 Complex Sprays

In what follows, M denotes an n-dimensional complex manifold. Its
holomorphic tangent bundle OM is a 2n-dimensional complex manifold
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and the natural projection π : OM → M is a holomorphic submersion.
The bundle OM is naturally identified with the sub-bundle T 1,0M of
the complexified tangent bundle TM ≡ TRM ⊗C, where TRM denotes
the real tangent bundle of M and T 1,0M denotes the i-eigenspace of
the complex structure J in TM (i =

√
−1). If f : M → N is a smooth

map, then its tangent mapping f∗ : TM → TN is complex linear on
fibres and f∗ restricts to give the usual tangent mapping from TRM to
TRN . Moreover, f is holomorphic if and only if f∗(T 1,0M) ⊂ T 1,0N .
A reference for the basic theory (with a different notation) is [6]. We
use OMo to denote the complement of the zero section in OM . The
holomorphic vertical bundle VOM of M is the rank-n, holomorphic
sub-bundle of O(OM) given by

VOM = ker(π∗)

where π∗ : O(OM) → OM is the derivative of π. The Einstein summa-
tion convention (under which repeated indices are summed over their
common range) is to be understood unless stated otherwise.

The following definition is a natural complex version of the usual
notion of a spray.

Definition 2.1. A complex spray on a complex manifold M is a vector
field X of type (1, 0) on the holomorphic tangent bundle OM satisfying

(i) π∗(X(z,v)) = v for all (z, v) ∈ OM , where π : OM → M is the
natural projection, and

(ii) (µa)∗ (X(z,v)) = 1
aX(z,av) ∀a ∈ C \ {0}, where µa : OM → OM is

scalar multiplication by a in each fibre. That is µa(z, v) = (z, av).

If (zi) are local complex coordinates on M and (zi, vi) are the corre-
sponding coordinates induced on OM , then{

∂

∂v1
, · · · , ∂

∂vn

}
is a local basis for VOM and it is easy to verify that the coordinate
expression for a complex spray X is given by

X(z,v) = vj
∂

∂zj

∣∣∣∣
(z,v)

− bk(z, v)
∂

∂vk

∣∣∣∣
(z,v)
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where each function bk is homogeneous of degree (2, 0) with respect to
v i.e. bk(z, av) = a2bk(z, v) for all a ∈ C. Each function bk is as smooth
as is X.

Example 2.2. Let N be a complex homogeneous nonlinear connection
on M as defined in [15]. That is, N is a rank-n sub-bundle of O(OM)
such that

(a) O(z,v)(OM) = N(z,v) ⊕ V(z,v)OM for each (z, v) ∈ OM .

(b) N(z,0) = OzM for each z ∈M (where we identify M with the image
of the zero section of OM).

(c) (µa)∗ (N(z,v)) = N(z,av) for each (z, v) ∈ OM .

With respect to local coordinates (z1, . . . , zn, v1, . . . , vn) as above on
OM , N(z,v) has a basis of the form{

∂

∂zj

∣∣∣∣
(z,v)

−Nk
j (z, v)

∂

∂vk

∣∣∣∣
(z,v)

}n
j=1

The condition (c) ensures that the functions N i
j are homogeneous of

degree (1, 0) in the v variable. That is,

N i
j(z, av) = aN i

j(z, v) ∀a ∈ C.

The horizontal radial vector field X associated to N is the vector field
on OM which is given locally by

X(z,v) = vj

(
∂

∂zj

∣∣∣∣
(z,v)

−Nk
j (z, v)

∂

∂vk

∣∣∣∣
(z,v)

)
The vector field X is a complex spray on M .

In particular, a type (1,0) complex affine connection ∇ on M gives
rise to a homogeneous nonlinear connection N whose coefficients {N i

j}
are given by

N i
j(z, v) = Γikj(z)v

k

where Γijk(z) are the connection coefficients of ∇ with respect to (zi)
and are given by

∇ ∂

∂zk

(
∂

∂zj

)
= Γijk(z)

∂

∂zi

150 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 147-173



colum watt complex sprays and complex curves . . .

The corresponding complex spray on M then has the local form

X(z,v) = vj

(
∂

∂zj

∣∣∣∣
(z,v)

− Γkij(z)v
i ∂

∂vk

∣∣∣∣
(z,v)

)
.

Example 2.3. Let F be a strongly pseudoconvex complex Finsler met-
ric on M (see [2]). Then G = F 2 is a positive-valued function on OM
which is homogeneous of degree (1, 1) in the v variable and the Hermitian
matrix

[Gi̄(z, v)] =
[
∂2G

∂vi∂vj

]
is defined and positive definite (for each nonzero (z, v)). We then obtain
(see [2] for details) a homogeneous nonlinear connection N on M whose
coefficients N i

j are given by

N i
j(z, v) = Gik̄Gk̄;j

where [Gik̄] is the matrix inverse of [Gik̄(z, v)] and

Gk̄;j =
∂2G

∂v̄k∂zj

The corresponding complex spray X is called the horizontal radial vector
field associated to F .

Example 2.4. For a complex spray X on a 1-dimensional complex
manifold M we have

X(w,u) = u
∂

∂w

∣∣∣∣
(w,u)

− b(w, u)
∂

∂u

∣∣∣∣
(w,u)

where w is a local complex coordinate on M , (w, u) are the induced
coordinates on OM and where b(w, u) = u2b(w, 1). Therefore, setting
Γ(w) = b(w, 1) we have

X(w,u) = u
∂

∂w

∣∣∣∣
(w,u)

− u2Γ(w)
∂

∂u

∣∣∣∣
(w,u)

.
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Moreover, it is possible to define a type (1,0) complex affine connection
on M by piecing together the local formulae

∇ ∂
∂w

(
∂

∂w

)
= Γ(w)

∂

∂w
.

Thus each complex spray on a 1-dimensional complex manifold arises
from a type-(1, 0) complex affine connection.

Definition 2.5. Let X be a complex spray on M and β an integral path
of X in OM which starts at (z, v). Then the path γ = π ◦ β is called
a horizontal path (for X) in M . The path γ starts at z and has initial
velocity v.

Note 2.6. In terms of local coordinates (zj), one may verify that a
path γ is horizontal for a spray X = vi ∂

∂zi − bi(z, v) ∂
∂vi if and only if the

functions γi(t) = zi(γ(t)) are solutions to the system of equations

γ̈j(t) + bj(γi(t), γ̇i(t)) = 0 for j = 1, . . . , n.

Note 2.7. Local existence and uniqueness of integral paths for a C1

vector field ensures that if X is a C1 complex spray on M then for each
v ∈ OzM there exists a unique horizontal path for X starting at z with
velocity v.

Note 2.8. The horizontal paths for the horizontal radial vector field of a
complex Finsler metric F are called the horizontal paths of F . In general
they will differ from the geodesics of F . However, if F is weakly Kähler,
a generalisation of the usual Kähler condition for Hermitian metrics (see
[2]), then each horizontal path for F will be a geodesic. In particular,
if F 2 is a Hermitian metric, then its horizontal paths will coincide with
its geodesics if and only if F 2 is Kähler.

Terminology. For a real spray on a real manifold the paths corre-
sponding to our horizontal paths are often referred to as geodesics. We
prefer to reserve the term geodesic to denote those paths in M which are
extremal for the energy integral of a given complex Finsler metric. Our
use is consistent with the fact that the horizontal paths of a complex
Finsler metric do not always coincide with its geodesics.
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3 Spray Complex Curves

In what follows, we will denote the vertical radial vector field of M by
Y . With respect to induced local coordinates (zi, vi) the vector field Y
is given by

Y(z,v) = vi
∂

∂vi

∣∣∣∣
(z,v)

For a Riemann surface (≡ a connected, one-dimensional complex mani-
fold) we will use χ to denote complex sprays and η to denote the vertical
radial vector field.

We now introduce the notion of a spray complex curve associated to
a complex spray.

Definition 3.1. Let X be a complex spray on a complex manifold M
and let φ : W → M be a holomorphic mapping of a Riemann surface
W into M . Then φ is called a spray complex curve for X (abbreviated
s.c.c.) if

(i) φ is an immersion and

(ii) Xφ∗(w,u) ∈ φ∗∗(O(w,u)(OW )) for all (w, u) ∈ OW.

When X is understood, we simply say that φ is a spray complex curve.

Remark 3.2. If φ : W → M is an s.c.c. for X and if f : U → W is a
holomorphic immersion, then φ ◦ f is also an s.c.c. for X. In particular,
this holds if f : U → W is the universal covering space of W . Thus, if
desired, we may replace any spray complex curve forX by another whose
image is the same subset of M but whose domain is a simply-connected
Riemann surface.

The following proposition gives some equivalent formulations of the
notion of a spray complex curve for X.

Proposition 3.3. Let X be a complex spray on M and φ : W → M
a holomorphic immersion (W a Riemann surface). For each w ∈ W
let Uw be an open neighbourhood of w on which φ is a holomorphic
embedding. Then the following conditions are equivalent

(i) Xφ∗(w,u) ∈ φ∗∗(O(w,u)(OW )) ∀(w, u) ∈ OW
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(ii) For each w ∈W there exists u ∈ (OwW ) \ {0} such that
Xφ∗(w,u) ∈ φ∗∗(O(w,u)(OW ))

(iii) For each w ∈W there exists u ∈ (OwW ) \ {0} such that

φ∗∗(O(w,u)(OW )) = φ∗∗(V(w,u)(OW ))⊕ CXφ∗(w,u).

(iv) For each nonzero (w, u) ∈ OW ,

φ∗∗(O(w,u)(OW )) = φ∗∗(V(w,u)(OW ))⊕ CXφ∗(w,u).

(v) There exists a complex spray χ on W such that φ∗∗(χ(w,u)) = Xφ∗(w,u)

for all (w, u) ∈ OW .

(vi) Each horizontal path γ : (−ε, ε) → M through γ(0) = φ(w) which
is tangent to φ(Uw) at t = 0 remains in φ(Uw) for |t| sufficiently
small.

(vii) For each w ∈ W there exists a horizontal path γ : (−ε, ε) → M
such that γ is nonconstant, γ(0) = φ(w), and γ(t) ∈ φ(Uw) for |t|
sufficiently small.

Proof. Clearly (i) implies (ii).
(ii) ⇒ (iii). Assume that (ii) holds. Then for each w there exists
u ∈ (OwW ) \ {0} such that

Xφ∗(w,u) ∈ φ∗∗(O(w,u)(OW )).

Therefore

φ∗∗(V(w,u)OW )⊕ CXφ∗(w,u) ⊂ φ∗∗(O(w,u)(OW )).

But the left hand side is 2-dimensional over C (because φ∗∗(VOW ) is
nonzero and is contained in the vertical sub-bundle of OM which is ev-
erywhere linearly independent of X). Since the right side has dimension
at most 2, this inclusion must actually be an equality. Hence (iii) holds.

(iii) ⇒ (iv). Assume (iii) is true and choose a nonzero element (w, u)
of OW such that

CXφ∗(w,u) ⊕ φ∗∗(V(w,u)OW ) = φ∗∗(O(w,u)(OW )).
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Denote by µa the map of OM to itself given by multiplication in each
fibre by a ∈ C\{0}. Then, since 1

aXφ∗(w,au) = (µa)∗(Xφ∗(w,u)), it follows
that at φ∗(w, au) we have

CX ⊕ φ∗∗(V(w,au)OW ) = (µa)∗CXφ∗(w,u) ⊕ φ∗∗(µa)∗(V(w,u)OW )
= (µa)∗CXφ∗(w,u) ⊕ (µa)∗φ∗∗(V(w,u)OW )
= (µa)∗(φ∗∗(O(w,u)(OW ))) by hypothesis
= φ∗∗(µa)∗(O(w,u)(OW ))
= φ∗∗(O(w,au)(OW ))

where the second and fourth equalities both use the fact that φ∗ ◦ µa =
µa ◦ φ∗ (by holomorphy of φ). Hence

CXφ∗(w,u) ⊕ φ∗∗(V(w,u)OW ) = φ∗∗(O(w,u)(OW ))

for all nonzero (w, u), and we have shown that (iii) implies (iv).

(iv) ⇒ (i). Obvious.

Thus properties (i) through (iv) are equivalent.

(iv) ⇒ (v). Assume that

φ∗∗(O(w,u)OW ) = φ∗∗(V(w,u)OW )⊕ CXφ∗(w,u)

for all (w, u) ∈ OWo. Therefore there exists a unique vector χ(w,u) in
O(w,u)OW such that φ∗∗(χ(w,u)) = Xφ∗(w,u) for each nonzero (w, u). Set
χ(w,0) = 0. We need to verify that χ is a C1 complex spray. First,

φ∗π∗(χ(w,u)) = π∗φ∗∗(χ(w,u))
= π∗(Xφ∗(w,u)) by definition of χ
= φ∗(w, u) since X is a complex spray.

But by assumption, φ∗|OwW is injective. Therefore π∗(χ(w,u)) = u ∈
OwW .

That (µa)∗(χ(w,u)) = 1
aχ(w,au) for a ∈ C \ {0} and (w, u) ∈ OWo fol-

lows by applying φ∗∗ separately to each side of this desired equation and
using the homogeneity of X to show that the two resulting expressions
are equal. Then the desired equality follows by applying the definition
of χ. Finally, since X is C1 and both φ∗ and φ∗∗ are C∞ it follows from

χ(w,u) = (φ∗∗)−1(Xφ∗(w,u))
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that χ is also C1 for nonzero (w, u). Since χ is a complex spray on a
1-dimensional complex manifold, this is equivalent to χ being C1 every-
where. Thus (iv) implies (v).

(v) ⇒ (vi). Assume that (v) holds and fix u ∈ OwW \ {0}. Let σ be the
horizontal path for χ through w with initial velocity u and let γ be the
horizontal path for X in M with γ(0) = φ(w) and γ′(0) = φ∗(u). Since
σ′ is an integral path for χ and φ∗∗(χ) = X it follows that φ∗ ◦ (σ′) is
an integral path for X. Therefore π ◦ φ∗ ◦ (σ′) = φ ◦ σ is a horizontal
path for X through φ(w) with initial velocity φ∗(σ′(0)) = φ∗(u). The
uniqueness of horizontal paths for X implies that γ(t) = φ(σ(t)) for |t|
sufficiently small and hence γ(t) lies in φ(Uw) for |t| sufficiently small.
Since (w, u) ∈ OW is arbitrary, we see that property (vi) holds.

(vi) ⇒ (vii). Obvious.

(vii) ⇒ (ii). Assume that (vii) holds. Let γ : (−ε, ε) → M be a non-
constant horizontal path through φ(w) and contained in φ(Uw). Then
γ = φ◦σ for some path σ through w in W . Therefore γ′ = φ∗◦σ′ ∈ OγM
and γ′′ = (γ′)′ : (−ε, ε) → O(OM) is given by

γ′′ = φ∗∗ ◦ (σ′′).

Since γ′′ = Xγ′ (γ being a horizontal path for X) we obtain

Xγ′ ∈ φ∗∗(Oσ′(OW )).

Evaluating at t = 0 and observing that σ′(0) 6= 0 (because γ′(0) 6= 0)
we find that condition (ii) holds at the point σ′(0) ∈ OwW \ {0}.

It is now clear that all seven properties are equivalent. q.e.d.

Remark 3.4. If φ : W →M is a holomorphic immersion (W a Riemann
surface) and w ∈W has a neigbourhood Uw such that φ(Uw) is contained
in the union of the horizontal segments through φ(w) which are tangent
to φ(Uw) at w, then φ|Uw : Uw →M is an s.c.c. for X. This can be seen
by noting that our hypothesis implies that condition (vii) of proposition
3.3 is valid at each point of Uw.

We now turn our attention to existence conditions for spray complex
curves.
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Definition 3.5. A complex spray X on M is integrable if for each
(z, v) ∈ OMo there exists a spray complex curve φ : W →M (depending
on (z, v)) for X such that (z, v) ∈ φ∗(OW ).

Informally, X is integrable if for each (z, v) ∈ OM one can find an
s.c.c. for X which is tangent to v at z.

If φ : W →M is an s.c.c. for X, we saw in proposition 3.3 that there
exists a complex spray χ on W which is φ∗-related to X. Hence the
Lie bracket [χ, χ] is φ∗-related to [X,X]. But an easy calculation shows
that any C1 complex spray χ on W satisfies an equation of the form

[χ, χ] = αη − αη

for some continuous complex-valued function α (where η is the verti-
cal radial vector field of W , as usual). Applying φ∗∗ to both sides of
this equation and using the identity φ∗∗η = Yφ∗ which is true for any
holomorphic map φ, we obtain

[X,X]φ∗(w,u) = α(w, u)Yφ∗(w,u) − α(w, u)Y φ∗(w,u).

Thus we deduce that a necessary condition for X to be integrable is that

[X,X] = fY − fY

for some continuous complex-valued function f on OMo. The converse
to this is also true. Our proof relies on the following variant of Frobe-
nius’s theorem which characterises when a sub-bundle of the tangent
bundle TA (of a complex manifold A) arises from a foliation whose
leaves are complex submanifolds of A.

Frobenius’s Theorem. Let E be a Ck, rank r complex sub-bundle of
the tangent bundle TA of a complex manifold A. Assume that

(i) E = E

(ii) [Γk(E),Γk(E)] ⊂ Γk−1(E), where Γp(E) denotes the set of Cp sec-
tions of E

(iii) J(Re(E)) = Re(E) where Re(E) = {v ∈ E : v = v} = E ∩ TRA
and J : TA→ TA is the complex structure tensor of A.
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Then E is the tangent bundle of a Ck foliation of A by 2r-dimensional
manifolds. Moreover, each leaf of this foliation is actually a complex
r-dimensional submanifold of A.

Proof. The first assertion follows because conditions (i) and (ii) ensure
that the usual version of Frobenius’s theorem for real manifolds applies.
If L is a leaf of the resulting foliation then

J(TR
a L) = J(Re(Ea)) = Re(Ea) = TR

a L ∀a ∈ L

It is standard (see [5] for example) that this implies that L is a complex
submanifold of A. q.e.d.

The next proposition collects some identities which are valid for any
complex spray and which we use in proving the above-mentioned con-
verse.

Proposition 3.6. Let X be a C1 complex spray on M . Then

(a) [X,Y ] = −X

(b) [X,Y ] = 0

(c) [X,X] is a vertical vector field. That is, [X, X̄] ∈ VOM ⊕ VOM

Proof. With respect to local complex coordinates (zi) on M we may
write

X(z,v) = vi
∂

∂zi
− bi

∂

∂vi

where bi(z, v) is (2, 0)-homogeneous in v. Thus

[X,Y ] = [vj
∂

∂zj
− bj

∂

∂vj
, vk

∂

∂vk
]

= [vj
∂

∂zj
, vk

∂

∂vk
]− [bj

∂

∂vj
, vk

∂

∂vk
]

= −vj ∂

∂zj
− (bj

∂

∂vj
− vk

∂bj

∂vk
∂

∂vj
)

= −vj ∂

∂zj
− (bj

∂

∂vj
− 2bj

∂

∂vj
) by homogeneity of bj

= −(vj
∂

∂zj
− bj

∂

∂vj
)

= −X.
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For (b), we have

[X, Ȳ ] = [vj
∂

∂zj
, v̄k

∂

∂v̄k
]− [bj

∂

∂vj
, v̄k

∂

∂v̄k
]

= 0−
(
bj
∂v̄k

∂vj
∂

∂v̄k
− v̄k

∂bj

∂v̄k
∂

∂vj

)
= 0

because v̄k
∂bj

∂v̄k
= 0 by the (2, 0)-homogeneity of bj(z, v) in the variable v.

(c). From X = vj ∂
∂zj − bj ∂

∂vj we get

[X, X̄] = [vj
∂

∂zj
− bj

∂

∂vj
, v̄k

∂

∂z̄k
− b̄k

∂

∂v̄k
]

= 0− [bj
∂

∂vj
, v̄k

∂

∂z̄k
]− [vj

∂

∂zj
, b̄k

∂

∂v̄k
] + [bj

∂

∂vj
, b̄k

∂

∂v̄k
]

= v̄k
∂bj

∂z̄k
∂

∂vj
− vj

∂b̄k

∂zj
∂

∂v̄k
+ bj

∂b̄k

∂vj
∂

∂v̄k
− b̄k

∂bj

∂v̄k
∂

∂vj

= X̄(bj)
∂

∂vj
−X(b̄j)

∂

∂v̄j

which is clearly vertical. q.e.d.

For a complex manifold M , denote by PM the holomorphic fibre
bundle over M whose fibre over z ∈ M is the space of complex lines
in OzM . If (z, v) ∈ OM is nonzero we will denote the complex line
Cv ⊂ OzM by (z, [v]) ∈ PM . The map q : OMo → PM defined by

q(z, v) = (z, [v])

is a holomorphic submersion and the kernel of q∗ : T 1,0(OMo) → T 1,0(PM)
is spanned by Y . Let p : PM →M be the holomorphic projection given
by p(z, [v]) = z. Then

π = p ◦ q : OMo →M

where we recall that π : OMo →M is the natural projection.

Theorem 3.7. Let X be a C1 complex spray on the complex manifold
M . Assume that

[X,X] = fY − fY
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for some complex-valued continuous function f on OMo. Then X is
integrable. In addition, the spray complex curve φ : W → M through a
fixed point (z0, v0) ∈ OMo can be chosen to satisfy

(i) the induced map

Φ: W → PM

defined by

w 7→ q(φ(w), φ∗(OwW ))

is injective

(ii) φ is maximal in the sense that if ψ : U → M is another spray
complex curve for X with (z0, v0) ∈ ψ∗(OU) then

Ψ(U) ⊂ Φ(W )

where Ψ(u) = q(ψ(u), ψ∗(OuU)) for each u ∈ U . In particular,
ψ(U) is contained in φ(W ).

Moreover, if γ : (a, b) → M is any horizontal path for X, then γ((a, b))
is contained in the image of a spray complex curve for X.

Proof. The idea of the proof is to show that X determines a C1 foliation
of PM by Riemann surfaces and to show that the p-image of each such
surface is a spray complex curve.

Let E be the C1 sub-bundle of T (OMo) spanned by X, X, Y and Y
and let D be the sub-bundle of T (PM) given by

D(z,[v]) = span{q∗(X(z,v)), q∗(X(z,v))} = q∗(E(z,v)).

The homogeneity of X ensures that D(z,[v]) is well-defined. Moreover, if
s is a smooth local section of q : OMo → P then one may verify that

{q∗(Xs(z,[v])), q∗(Xs(z,[v]))}

is a local C1 frame for D and hence D is C1. The assumption that
[X,X] = fY − fY implies that E satisfies the hypotheses of theorem 3
and hence arises as the tangent bundle of a foliation F of OMo by 2-
dimensional complex submanifolds.
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We show that D arises from a C1 foliation F ′ of PM by Riemann
surfaces by exhibiting such a surface through an arbitrary point (z0, [v0])
whose tangent space coincides with D everywhere. Let A denote the leaf
of F through (z0, v0). For any (z, v) ∈ A, the tangent space T 1,0

(z,v)A is
spanned by X(z,v) and Y(z,v). Now q∗(Y ) ≡ 0. Since p∗(q∗(X(z,v))) =
π∗(X(z,v)) = v 6= 0, we must have q∗(X(z,v)) 6= 0. Thus the restriction
of q to A has complex rank 1 everywhere. It follows that (z0, v0) has
a connected neighbourhood U in A whose image q(U) is an embedded
1-dimensional complex submanifold of PM . As T 1,0

(z,v)q(U) is spanned by
q∗(X(z,v)) for each (z, v) ∈ U , the Riemann surface q(U) is everwhere
tangent to D, as desired.

Now fix (z0, [v0]) ∈ PM and let B be the maximal leaf of F ′ through
(z0, [v0]). So B is an injectively immersed Riemann surface in PM .
From p∗(q∗(X(z,v))) = v 6= 0 and the fact that T 1,0

(z,[v])B is spanned by
q∗(X(z,v)), it follows that the restriction

p|B : B →M

is a holomorphic immersion and that the holomorphic tangent space
of p(B) at z is spanned by v for each (z, [v]) ∈ B. Consider now the
maximal integral path β : (a, b) → OMo of X through (z, v) (where
(z, [v]) ∈ B). As (q ◦ β)′(t) = q∗(Xβ(t)) for all t, the path q ◦ β is
everywhere tangent to D. Hence q ◦ β lies in a single leaf of F ′ (by
connectedness) and this leaf must be B. Thus π ◦ β = p ◦ q ◦ β lies
in p(B). It follows that π ◦ β is a nonconstant horizontal path for X
which starts at z with velocity v and stays within p(B). Part (vii) of
proposition 3.3 now implies that

p|B : B →M

is a spray complex curve for X through z0 in the direction v0. As each
horizontal path for X arises by applying π to an integral path of X,
the above argument also shows that each horizontal path for X will be
contained in the image of some spray complex curve for X.

It remains to show the maximality of p(B). Let ψ : W → M be a
spray complex curve for X which is tangent to v0 at z0 and let χ be the
induced complex spray on W . The associated map Ψ: W → PM passes
through (z0, [v0]). If we show that Ψ satisfies

Ψ∗(TwW ) = DΨ(w) ∀w ∈W.
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then its image must be contained in a single leaf of F (by connectedness)
and, since it passes through (z0, [v0]), this leaf must be B.

Fix (w, u) ∈ OW and let σ : (−ε, ε) →W be a horizontal path for χ
with σ′(0) = (w, u). Since σ′(t) spans Oσ(t)W it follows that

Ψ(σ(t)) = q(ψ∗(σ′(t)))

But ψ∗ ◦ σ′ is an integral path for X (since ψ∗∗(χ) = X). Therefore

Ψ∗(σ′(t)) = q∗(Xψ∗(σ′(t))) ∀t

At t = 0 this yields Ψ∗(w, u) = q∗(Xψ∗(w,u)) from which Ψ∗(TwW ) =
Dψ∗(w,u) is immediate. q.e.d.

Remark 3.8. If X is a complex spray which is C2 on OMo, then each
point z ∈ M has a neighbourhood Uz with the property that any two
points of Uz may be joined by a unique horizontal path for X which is
contained in Uz. (Details of this are contained in [14]). We say that
Uz is simple and convex for X. The existence of simple convex neigh-
bourhoods for a complex spray generalises the corresponding existence
of such neighbourhods for an affine connection (see [7]).

Corollary 3.9. Assume that X is a C1 complex spray which is C2 on
OMo and which satisfies the condition

[X,X] = fY − fY on OMo

for some complex-valued function f . Then each point z ∈ M has a
neighbourhood Uz such that for any two points z1 and z2 in Uz there
exists a spray complex curve for X whose image contains both z1 and z2
and is itself contained in Uz .

Proof. Choose Uz to be a simple convex neighbourhood of z. Then
z1 and z2 may be joined by a horizontal path for X whose image is
contained in Uz. This path is then contained in the image of a spray
complex curve for X. Since the horizontal segment from z1 to z2 is
compact, we can truncate the domain of the spray complex curve to
ensure that the resulting image is contained in Uz. q.e.d.

The local flow α of a C1 complex spray X is a C1 map

α : A→ OM
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(where A is an open neighbourhood of OM ×{0} in OM ×R) such that

Xα(z,v,s) =
∂α(z, v, t)

∂t

∣∣∣∣
t=s

∀s.

The exponential map of X is the C1 map

exp: {(z, v) ∈ OM : (z, v, 1) ∈ A} →M

given by
exp(z, v) = π(α(z, v, 1)).

For any z ∈ M , the derivative at 0 of the restriction of exp to OzM is
the identity and hence exp maps some neighbourhood Vz of 0 ∈ OzM
C1-diffeomorphically onto an open neighbourhood Uz of z in M . If Vz
also satisfies

av ∈ Vz, ∀v ∈ Vz, a ∈ C with |a| ≤ 1

then we refer to both Vz and the corresponding Uz as normal neighbour-
hoods.

Teorem 3.10. Let X be an integrable C1 complex spray on M and let
Uz be a normal neighbourhood of z ∈ M . Then Uz \ {z} is foliated by
those spray complex curves for X which pass through z.

Proof. We use the same notation as above. Let Vz be the normal
neighbourhood of 0 in OzM which corresponds to Uz. The holomorphic
foliation

{Cv ∩ (Vz \ {0}) : v ∈ Vz \ {0}}

of Vz \ {0} yields the C1 foliation

{exp(Cv ∩ (Vz \ {0})) : v ∈ Vz \ {0}}

of Uz \{z} by 2-dimensional real submanifolds. We show that each such
leaf actually coincides with the image of some spray complex curve for
X.

Fix v ∈ ∂Vz and consider the continuous map g : Vz ∩ (Cv) → PM
given by

g(teiθv) = q

(
∂

∂t
(exp(teiθv))

)
for t ∈ (−1, 1) and θ ∈ [0, 2π]
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(This map is well-defined at 0 because q(eiθv) = q(v) for all θ.) Let F
denote the foliation of PM determined by X and let B ⊂ PM be the
maximal leaf through q(v). For each fixed θ the path

t 7→ exp(teiθv)

is horizontal for X (it is thus C2) and hence the path

t 7→ q

(
∂

∂t
(exp(teiθv))

)
is everywhere tangent to F . As this path passes through q(v) it must
be contained in the leaf B. It follows that g(Vz ∩ (Cv)) ⊂ B. Injectivity
of g implies that the set W = g(Vz ∩ (Cv)) is open in B (by invariance
of domain). Then

p|W : W →M

is a spray complex curve for X with

exp((Cv) ∩ Vz) = p(W )

and

exp((Cv) ∩ (Vz \ {0})) = p(W \ {q(v)})

q.e.d.

4 (h,X)-Horizontal Complex Curves

Next we examine holomorphic mappings from a Riemann surface W into
M which take geodesics for a fixed but arbitrary Hermitian metric h on
W into horizontal paths for a given complex spray X on M . These are a
restricted type of spray complex curve for X. If we assume that X arises
from a complex Finsler metric, then we recover the horizontal complex
curves of [15].

Definition 4.1. Let h be a Hermitian metric on W and let X be a C1

complex spray on M . A nonconstant holomorphic mapping φ : W →M
is called a (h,X)-spray complex curve if φ ◦ σ is a horizontal path for
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X whenever σ is a geodesic for h. When we wish to suppress mention
of the metric h we will call φ a metrical spray complex curve for X.

Remark 4.2. If φ is a (h,X)-spray complex curve then its nonconstancy
combines with its holomorphy to imply that φ is an immersion. For if
φ∗(OwW ) = {0} then φ would map each geodesic through w to the
constant path at φ(w) and hence φ would be constant (by the identity
theorem for holomorphic maps).

Remark 4.3. By condition (vi) of proposition 3.3, we see that a (h,X)-
spray complex curve is a spray complex curve forX in the sense of defini-
tion 3.1. Roughly speaking, the added condition is that each horizontal
path of X which is tangent to φ(W ) pulls back to give a h-geodesic in
W .

The following proposition gives some equivalent characterisations
of (h,X)-spray complex curves.

Proposition 4.4. Let X be a complex spray on a complex manifold M ,
h a Hermitian metric on a Riemann surface W and φ : W → M a
holomorphic immersion. Denote the horizontal radial vector field for h
by χ. Then the following conditions are equivalent

(i) φ is a (h,X)-spray complex curve.

(ii) The mapping φ satisfies

φ∗∗(χ(w,u)) = Xφ∗(w,u) ∀ (w, u) ∈ OW.

(iii) For each w ∈W there exists u ∈ OwW \ {0} such that

φ∗∗(χ(w,u)) = Xφ∗(w,u).

(iv) φ∗∗(ν(w,u)) = CXφ∗(w,u) ∀(w, u) ∈ OW , where ν denotes the non-
linear connection on W arising from h.

Proof. The proof of the equivalence of the first three is omitted, the
techniques used being very similar to some of those in the proof of propo-
sition 3.3. The equivalence of (ii) and (iv) follows because ν(w,u) is
spanned by χ(w,u). q.e.d.
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Remark 4.5. If φ : W → M is holomorphic and takes each h-geodesic
through a given point w ∈W into a horizontal path for X then one can
show that the restriction of φ to any normal neighbourhood of w in W
is a (h,X)-spray complex curve.

Next we wish to formulate and prove an analogue of theorem 3.7
for metrical spray complex curves. We saw in proposition 3.3 that for
each spray complex curve φ : W → M the complex spray X induces a
complex spray χ on W . Thus we would like to know when the complex
spray χ arises from a Hermitian metric. The following lemma answers
this in the case W = C or Dr, the disc of radius r > 0 and centre 0 in
C.

Lemma 4.6. A C1 complex spray χ on Dr (or C) arises from a Hermi-
tian metric if and only if

[χ, χ̄] = α(η − η̄)

for some continuous real-valued function α on ODr \ Dr (respectively
OC \ C). Moreover, this Hermitian metric (if it exists) is uniquely de-
termined up to a factor of a positive constant.

Proof. Write χ = u( ∂
∂w − ub(w) ∂

∂u). The proof of the first assertion
is in two steps. First we show that χ arises from a metric if and only
if ∂b

∂w̄ is real-valued everywhere. The second step (which we omit) is a
straightforward calculation to show that ∂b

∂w̄ is real valued if and only if
[χ, χ̄] = α(η − η̄) for some real valued function α.

Assume first that χ arises from the Hermitian metric h(w)dwdw̄.
Then b(w) = ∂ log h

∂w and therefore

∂b

∂w̄
=

1
4
∆(log h)

where ∆ denotes the standard Laplacian in C. The right hand side is
real-valued since h is real-valued.

Conversely, assume that ∂b
∂w̄ is real valued. We wish to find a strictly

positive function h on Dr (respectively C) such that b = ∂ log h
∂w . The

differential equation

∂ψ

∂w
= b
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on Dr (resp. C) always has a solution defined everywhere. One way to
see this is to note that by conjugating we get a ∂̄-equation. These can
always be solved on Dr (resp. C) and the conjugate of such a solution
is then a solution to our equation. If we can choose our solution ψ of
∂ψ
∂w = b so that it is real-valued, then h = eψ will provide us with the
desired metric. Let ψ be any solution of ∂ψ

∂w = b. Our hypothesis implies
that 4 ∂b

∂w̄ = ∆(ψ) is real-valued. Therefore

∆(ψ − ψ̄) = ∆(ψ)−∆(ψ) = 0

so that ψ − ψ̄ is harmonic and only takes values along the imaginary
axis. Thus we may write

ψ − ψ̄ = f − f̄

for some holomorphic function f on Dr (resp. C). Hence

ψ + f̄ = ψ̄ + f

so that ψ+ f̄ is real valued. Moreover, since ∂f̄
∂w = 0, the function ψ+ f̄

satisfies

∂

∂w

(
ψ + f̄

)
= b.

The uniqueness part follows from lemma 4.8 below whose proof is
omitted (see [15] for details). q.e.d.

Note 4.7. The existence part of the above proof breaks down (and the
lemma itself is untrue) if we try to replace Dr or C by a nonsimply-
connected domain W in C. For example, the complex spray χ on W =
Dr \ {0} or on W = C \ {0} given by

χ(w,u) = u
∂

∂w

∣∣∣∣
(w,u)

− iu2

2w
∂

∂u

∣∣∣∣
(w,u)

satisfies the hypothesis of the lemma. If χ were to arise from a Hermitian
metric h(w)dwdw̄ on W then we would have

∂ log(h)
∂w

=
i

2w
.
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With respect to polar coordinates (r, θ) on W this equation takes the
form

∂ log(h)
∂θ

= 1

from which it would follow that log(h) is a continuous (since h is contin-
uous) branch of the argument function θ defined on all of W . But this
is impossible.

Lemma 4.8. Let g and h be two C1 Hermitian metrics on Dr with χg
and χh their respective horizontal radial vector fields. Then the following
are equivalent

(i) g = ch for some constant c > 0.

(ii) χg = χh

(iii) χg(h) = 0.

Proposition 4.9. A C1 complex spray χ on a simply-connected Rie-
mann surface W arises from a Hermitian metric if and only if

[χ, χ̄] = α(η − η̄)

for some continuous real-valued function α on OW \W . Moreover, this
Hermitian metric (if it exists) is uniquely determined up to a factor of
a positive constant.

Proof. If χ arises from a Hermitian metric then [χ, χ̄] = α(η−η̄) follows
by a straightforward calculation.

For the converse we need only consider the case where W is the
Riemann sphere because, up to biholomorphism, the only other simply-
connected Riemann surfaces are D and C (to which lemma 4.6 applies).
However, lemma 4.6 implies that if

[χ, χ̄] = α(η − η̄)

then we can find Hermitian metrics h1 and h2 on W1 = W \{north-pole}
and on W2 = W \{south-pole} respectively which give rise to the sprays
obtained by restricting χ toW1 andW2. But on the intersectionW1∩W2,
each of h1 and h2 has χ as its horizontal radial vector field. It follows by
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lemma 4.8 that
h1

h2
is locally constant on W1∩W2 and hence is constant

everywhere (since W1 ∩W2 is connected). Let c > 0 be this constant
value. Then the metric h on W defined by

h =
{
h1 on W1

ch2 on W2

gives rise to χ.
Lemma 4.8 implies that any two metrics on W which give rise to χ

have a locally constant quotient. Connectedness of W implies that the
same constant works globally. q.e.d..

Proposition 4.10. Let φ : W → M be a (h,X)-spray complex curve.
Then

[X,X]φ∗(w,u) = α(w, u)(Yφ∗(w,u) − Y φ∗(w,u)) ∀(w, u) ∈ OW

where α is some real-valued function on OW .

Proof. Let χ be the spray on W corresponding to h. Then

[χ, χ̄] = α(η − η̄)

for some real-valued function α. Applying φ∗∗ to both sides of this
equation and using the facts that χ and X are φ∗-related vector fields
and that η and Y are also φ∗-related, yields

[X,X]φ∗ = α(Yφ∗ − Y φ∗)

q.e.d.

Corollary 4.11. If a C1 complex spray X admits metrical spray complex
curves for all initial conditions then there exists a continuous real-valued
function f on OMo such that

[X,X] = f(Y − Y ).

The converse to this corollary is also true.

Theorem 4.12. Let X be a C1 complex spray on the complex mani-
fold M . If

[X,X] = f(Y − Y ) on OMo for some real function f

then
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for each (z0, v0) ∈ OMo there exists a metrical spray complex
curve φ : W → M such that φ∗(w0, u0) = (z0, v0) for some
(w0, u0) in OWo.

Proof. Assume that [X,X] = f(Y − Y ). By theorem 3.7, there exists
a Riemann surface W and a spray complex curve φ : W → M for X
such that φ∗(w0, u0) = (z0, v0) for some (w0, u0) ∈ OW . By remark
3.2, we may assume that W is simply-connected. By (v) of proposition
3.3, φ and X induce a complex spray χ on W . Now [χ, χ̄] is a linear
combination of η and η̄. Since

φ∗∗([χ, χ̄]) = [X,X]φ∗ = f(Yφ∗ − Yφ∗)

and φ∗∗(η) = Yφ∗ , it follows that

[χ, χ̄] = (f ◦ φ∗)(η − η̄)

because φ∗∗ is injective on fibres of VOM ⊕VOM . Therefore by propo-
sition 4.9, χ arises from a Hermitian metric h (say) on W . Thus φ is a
(h,X)-spray complex curve. q.e.d.

4.1 Horizontal Complex Curves

We now consider spray complex curves for the horizontal radial vector
field of a strongly pseudoconvex complex Finsler metric F on M .

Definition 4.13. If X is the horizontal radial vector field of a strongly
pseudoconvex complex Finsler metric F , then a (h,X)-spray complex
curve φ will also be called a (h, F )-horizontal complex curve. When we
wish to suppress mention of h and F we will call φ a horizontal complex
curve.

The following proposition summarises the properties of horizontal
complex curves. The proof of these properties and further details on
horizontal complex curves may be found in [15].

Proposition 4.14. Let φ : W → M be a horizontal complex curve for
(h, F ). Then there exists a constant c > 0 such that

(i) φ∗(F 2) = ch, where φ∗(F 2) = F 2 ◦ φ∗ is the pull-back of F 2.

170 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 147-173



colum watt complex sprays and complex curves . . .

(ii) [X,X]φ∗ = K
2cφ

∗(F 2)(Yφ∗ − Y φ∗) where K(w) is the Gaussian cur-
vature of h at w ∈W .

(iii) The holomorphic curvature of F at φ∗(OwW ) is 1
cK(w) for each

w ∈W .

(iv) The image φ(W ) has a canonically defined holomorphic, normal
bundle in OM .

Remark 4.15. As h and ch have the same geodesics (c > 0 constant) we
see that any (h, F )-horizontal complex curve is also a (ch, F )-horizontal
complex curve for each constant c > 0. By part (i) of proposition 4.14
it follows that φ is a (φ∗(F 2), F )-horizontal complex curve. Then part
(ii) implies that

[X,X] = φ∗(F 2)
K

2
(Y − Y )

where K is the Gaussian curvature of φ∗(F 2). By part (iii) of the
proposition, K(w) equals the holomorphic curvature of F at φ∗(w, u)
for all (w, u) ∈ OWo. Conversely, it was demonstrated in [15] that if
φ : W → M is holomorphic and the Gaussian curvature of φ∗(F 2) at
w coincides with the holomorphic curvature of F at φ∗(w, u) for each
(w, u) ∈ OWo, then φ is a h.c.c. for (φ∗(F 2), F ).

Remark 4.16. The opening line of the first remark combines with part
(i) of proposition 4.14 to show that if φ is a horizontal complex curve
for (h, F ), then φ is a horizontal complex curve for (h′, F ) if and only if
the metric h′ is a constant multiple of h.

Remark 4.17. If X is the horizontal radial vector field of F , then
a spray complex curve φ : W → M for X is necessarily a horizontal
complex curve. This can be seen as follows. Let χ be the spray on W
induced by X. Then

χ(φ∗(F 2)) = φ∗∗(χ)(F 2)
= Xφ∗(F

2)
= 0 since X(F 2) ≡ 0.

Lemma 4.8 now implies that χ is the complex spray on W determined by
the Hermitian metric φ∗(F 2). It follows that φ is a horizontal complex
curve for (φ∗(F 2), F ).
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The existence theorem 4.12 for metrical spray complex curves com-
bined with remark 4.17 yields

Theorem 4.18. Let F be a strongly pseudoconvex complex Finsler met-
ric on the complex manifold M and let X be the associated horizontal
radial vector field. Then

[X,X] =
κ

2
F 2(Y − Y ) on OMo for some real-valued function κ

if and only if

for each (z0, v0) ∈ OMo there exists a horizontal complex
curve in M through z0 in the direction v0.

The function κ then coincides with the holomorphic curvature of F .

Remark 4.19. The assertion that κ is the holomorphic curvature of
F was demonstrated in [15]. The existence part of this result was also
stated there but the sketched proof required the added assumption

X(κ) = 0

which permitted a more geometric approach.
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