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CENSORED REGRESSION MODELS WITH
DOUBLE EXPONENTIAL ERROR
DISTRIBUTIONS: AN ITERATIVE

ESTIMATION PROCEDURE BASED ON
MEDIANS FOR CORRECTING BIAS

Carmen ANIDO and Teéfilo VALDES

Abstract

In this paper, we consider a simple iterative estimation proce-
dure for censored regression models with symmetrical exponential
error distributions. Although each step requires to impute the cen-
sored data with conditional medians, its tractability is guaranteed
as well as its convergence at geometrical rate. Finally, as the final
estimate coincides with a Huber M-estimator, its consistency and
asymptotic normality are easily proved.

1 Introduction

In censored regression models, it is well known that least squares estima-
tion methods cannot be directly applied without previously correcting
the bias derived from the unobserved dependent values. When a miss-
ing data mechanism is assumed, the maximum likelihood estimate is
consistent and efficient although, occasionally, its practical implementa-
tion may be tedious when the likelihood possesses several critical points.
When this is the case, the search for global maximum requires the check-
ing in detail of all the above mentioned critical points and, consequently,
it may be preferable to count with alternative estimation procedures
which secure fast convergence and good asymptotic properties as hap-
pens with the one here proposed. The motor idea has been motivated
by the missing information principle of Orchard and Woodbury (1972)
and also by earlier algorithms (e.g. Healy and Westmacott (1956)).
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They suggest at each step to fill all the missing individual data with
micro-imputations based on the current estimates and, later on, to ac-
tualise these last ones by least squares applied on both observed and
imputed dependent values. When the errors follow a normal distribu-
tion and the imputations equal the mean of the truncated distributions
it is known that the iterative procedure leads to the maximum likeli-
hood estimation as it coincides with the EM algorithm (Dempster, Laird
and Rubin (1977)) whose general convergence properties, behaviour and
practical applications may be found, for instance, in Wu (1983), Little
and Rubin (1987) and Tanner (1993). When the errors are not nor-
mally distributed and we maintain the imputation processes based on
the conditional means, the algorithm differs from the EM and, usu-
ally, the coincidence between the final estimate (assuming convergence)
and the maximum likelihood estimator cannot be assured. Schmee and
Hahn (1979), James and Smith (1984), Chatterjee and McLeish (1986)
and Ritov (1990) have investigated several aspects of this last situation.
Finally, with non normal errors and imputations not based on the condi-
tional expectations, the behaviour of the algorithm is unknown. This is
the case considered in this paper. The errors are assumed to be double
exponentially distributed (e.g. symmetrised waiting time errors) and
the censored data are filled with conditional medians instead of means.
The reckoning of the successive steps is very easily implemented and the
convergence to an unique point may be assured. This last convergence
point will define the final estimate for the regression coefficients and,
being a Huber type M-estimator, its consistency and asymptotic nor-
mality will be shown. Two general comments must be pointed out at
this moment. The first one hinges on a naive fact, namely, that esti-
mates derived from the proposed procedure are distribution-dependent
on errors. The selection of Laplace distributions has been motivated on
two grounds. On the one hand, this law has historically been consid-
ered as a firm candidate (though not unique) to substitute the usual
normality assumption and also it is the most preferred under certain
special circumstances (e.g., with environment radiological measures due
to their exponential decay). On the other hand, the symmetric expo-
nential distribution may be used to easily highlight the capability of the
median-based imputation process to correct bias as well as to maintain
desirable asymptotic properties of the final estimates before trying to
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widen its scope of applicability. The second comment relates to one of
the most usual fields of application of censored data models, to wit the
analysis of survival data. It is well known with this sort of data that
the most common distributions used to describe lifetimes tend to be
positively skewed. Authors are conscious that the Laplace distribution
does not suit to the mentioned asymmetric assumption, as neither does
the normal distribution. At this respect, some additional comments will
be postponed till section 6 where the skewness of the direct survival
data is diminished by one of the usual monotone transformations result-
ing in a linear model equally censored. Notwithstanding this, the bias
correcting process here proposed has an application ability that lies far
beyond survival data scope, e.g. data recorded by means of apparatuses
with different detection limits due, for instance, to their varyving cali-
bration capabilities: here the symmetric distribution assumption could
undoubtedly make sense with no previous transformation of data.

The organisation of this paper is as follows: section 2 describes the
model, the missing data mechanism and the estimation procedure. In
section 3, we guarantee the convergence (at least, at a linear rate) to
a fixed point which is independent on the starting values and, later
on, section 4 develops some asymptotic distribution properties of the
proposed estimate. In section 5, we include some natural extensions of
the former results. Section 6 approaches a quite extensive simulation
study that shows the general capabilities of the procedure and compares
its results with those derived from other alternatives, all under several
sceriarios some of which set up against certain assumptions previously
stated. Finally, an application with real life survival data has been
tackled in section 7.

2 Model and estimation procedure
For i =1,..-,n, assume a usual regression model

Yy = sciTa+€i (1)

where y/s are scalars and s are d—dimensional vectors. It will be
assumed all along this work that the regression hyperplane may not
contain the origin so that z;; = 1 for all 5. Errors ¢; are i.:.d following
a double exponential distribution. Without loss in generality, it may be
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assumed that the error density function corresponds to the symmetrical
exponential distribution with parameter one, that is

f(.'L‘) = 2_lexp(_ I z I)I(—oo,oo)(w)

Finally, consider that the dependent variable is lower censored being
only observed when y; > 0. After reordering the data, we can write y =
(y°,y™*)T and accordingly the n x d matrix X , although completely
observed, may be symbolically partitioned as X = (X3, X"0ts)T Qp.-
viously we seek to estimate the vector parameter . For this purpose,
we suggest the following sequential procedure based on conditional me-
dians. In each iteration, assuming a current value for « and being X7 X
of full rank, we first impute the censored y; values by the medians using
the available information; secondly, we actualise the estimator for o by
the usual projection process. Formally, the iterative procedure may be
written as

Initialization:

Fix a starting value a(®.

Iteration:

Assuming the current estimate (") to be known, we must implement
the following two steps

M-STEP (Imputation on medians): Foralli € I = {1,---,n}
do

,

; bs
(™) =1 ¥ ter”
yi(a™) { zFa) + y(—zTal")), e nobs 2)

P-STEP (Projection step): Improve the current a—estimator
by projecting the vector y(a(™) on the space spanned by the
columns of matrix X, that is

C‘{(r—f—l) — (XTX)_IXTy(a(r)). (3)
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In the former steps I = {i | y; is observed}, I"*** = I — I°* and,
for any real z, the function vy(z) represents the conditional medians
v(z) = Me(e | € < z) which it may be verified to coincide with

v(2) = L<oy(2)(z — In2) + I 50y (2)In(1 — 27 e7%). (4)

It is clear that an accumulation point a* of any sequence {a(r)} gen-
erated by the algorithm must be a fixed point of the transformation
T(a) = (XTX)"1XTy(a). In particular, if o/ — o* necessarily

o = (XTX) 1 XTy(a®). (5)

On the one hand, we will prove in the next section that the former
transformation T'(z) has an unique fix point and, consequently, any con-
vergent algorithm sequence must tend to it, not depending on the initial
value a(9. Secondly, it will also be proved that all sequences generated
by the iteration of steps M — P necessarily converges. All as a whole
indicates that the unique solution a* of equation (5) consistently may
define our proposed estimator for the vector regression parameter o.
For posterior convenience, observe that the M —step admits a pecu-

liar matrix representation. Lets decompose the cross products matrix
XTX as the sum

XTX — (XTX)obs + (XTX)nobs (6)

being (X7 X)o = (X°%)T X3 and lets also assign a similar interpre-
tation to (XTX)™°s. The expression (2) may be written in the form

y(e) = 4, X"P0)T + (0, D(a)17%)T 7)

where D(a) = diag(y(—z}@)) and 1% = (1,---,1)7 both of an order
equal to the cardinal of I™°%. Finally, observe that y(z) = Me(e | € < 2)

is continuously differentiable and its derivative
d _
;i;’Y(Z) = I,<0)(2) + Iz50)(2) (26" —1)71 >0 (8)

is bounded by one. As a consequence, the integral function
z
I(z) = / ~(t)dt
0

is strictly convex on R and, for any fixed z; € R%(z; # 0),1’(—1:?04) is
also strictly convex as a function on a.
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3 Convergence properties of the procedure

In order to prove the above mentioned convergence properties of the
iterative procedure, lets define the auxiliary function on «

H@=2") (m-za’+ Y T[(-zja) (9)

ie[obs iEI”ObS

It is obvious that H(a) is strictly convex and, as H(a) — oo if
|| @ ||— oo, it satisfies the cone condition

H(a) 26 af+p

for some 6 > 0 and p € R. As a consequence, the next lemma 1 follows.

Lemma 1. The function H(a) has an unique minimum o* which nec-
essarily is the unique fized point of the transformation T(z) defined by

(5).

Proof. The former cone condition guarantees that function H(«) has
an unique critical point, say «*, for which its gradient vanishes. This
means that

0 * * *
0= b—&H(a )= — Z :c,'(yi—a:;[a ) — Z xi’)’(_mfzra)

i€ Jobs i€ [nobs

which, after £(X7 X)"bsq* is equivalent to expression (5), which con-
cludes the proof.

The previous lemma implies that any convergent algorithm sequence
has o* as its limit and also that any bounded sequence generated by the
procedure converges to this unique fixed point. The following theorem
secures the convergence of any sequence {a(r)} whatever the starting
value may be, only by assuming the slight hypothesis of being (X7 X)°bs
positive definite what obviously implies a similar condition for X7 X.

Theorem 2.1. If (XTX)% is positive definite, then any sequence gen-
erated by the procedure M — P necessarily converges at a linear rate to
the unique fized point o*.

Proof. Observe first that from (3)

o) — o) = =151 xT (y(a(M) — y(a" D)) (10)
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where S represents the symmetric and definite positive square root of
XTX(5§% = XTX) which must exist since XTX is a symmetric and
definite positive matrix. Additionally, from (7)

y(a('r))_y(a(r—l)) — (0’XnobS(a(r)_a(r—l))T+(0, (D(a(r))_D(a(r—l)))lnobs)T.
(11)

Define now the diagonal functional matrix M (o) = diag(m;(c)) of
order n being

d
mi(a) =1-—9; (1 - E’y(z)) (12)
with §; = 0 if y; is observed and = 1 otherwise and where the derivative
of the function y(z) is evaluated at the point z = —27a. The former

expression (11) may be also written as
y(@) —y(a ) = (I - M) X (@l = oY)

where M) = diag(mgr)) coincides with M evaluated in an intermediate

point of the segment joining a1 and o"). Substituting in (10) we
obtain
a(r—H) _ O5(7") — S—ls—IXT(I _ M(r))X(a(r) _ O1(7'—1))
from where
S+ — o) = §71XT(I = M) XS71S(al") — D).
Since S~1XT(I — M) XS5~! = Q") is symmetric it follows that

H S(ar+D) — o)

l < 7

S — a“—l))“ (13)

being 7() the spectral radii of matrix Q") that is, the maximum of the
eigenvalues of Q") in absolute value. Clearly

wIS—1XT(1 — M) XS 1y
ulu

uI XT(I = M) Xy

) = max uTXTXu

u#0

ax
u#0

It can easily be checked that, for double exponentially distributed

errors, 0 < dvy(z)/dz < 1 from where 1 — mgr) < 1 for i € I and

(

1- mir) = 0 otherwise and consequently

uIXT(I - M(r))Xu < uT(XT X)nobsy,
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which, from (6), means that

T(r) . < max uT(xTx)nobsu
- u UT(XTX)obsu + uT(xTX)nobsu
minu? (X7 X)%y - o —1
< C =(1+— = 1
- b max ul (XT X)nobsy, ( + w) T
u

being o > 0 the minimum of the eigenvalues of (X7 X)%% and w > 0 the
spectral radii of the definite nonnegative matrix (X7 X)"°s It follows
from (13) that

HS(a(T“) - a(r))” <T ”S(a(r) - a(r_l))” .
This last expression ensures that
H S(ar+D) — oy

SV — o) 5 0

00

|<'rr

which implies that {a("} converges necessarily to o* and also that
| @* — o ||< er”, completing the proof.

From now on, it will be assumed that (X7 X)°* is definite posi-
tive and we will take the unique fixed point a* of (5) as the regression
coefficient estimator

& = o" = argmin H(a)

[¢]
which is the unique limit point of all the algorithm sequences and, since
determined by the implicit equation (5), it may be recognised as a par-
ticular case of the Huber M-estimates whose general behaviour may be
seen in Huber (1981).

4 Stochastic asymptotic properties of the esti-

mator

Consider now the former estimate as a function of n (say oy, omitting
the * from now on) and let us investigate its asymptotic properties as
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n — 0o. Suppose that « is the real value of the regression parameter
and write y(a) in the form

y(a) = Xa+v (14)

where the components of v = (vq,---,v,)7 are statistically independent
and defined as

v — ei/ei > —zT o with probability 1— F(-z7a)
v y(—zT ) with probability F(—z7a)

being F' the cumulative probability function of the double exponential
distribution. It may be easily checked that

E(wi) = F(~zTa)y(~aTa) - / oy

— 00

V%Qgﬂﬂszﬂwﬂﬂﬁﬁ+/wt%Mﬁ<w

—I;a

Theorem 4.1. Let X"  be the minimum of the eigenvalues of
n~HXTX)%s. If (XTX)% is positive definite and the three following
technical conditions hold (for some 0 <3< 1/2 and § > 0)

i) Hminf AP = X\ > 0
n

1
i) limsup ——= || =, ||'7%= K < o0
n nﬂ/z

2
. 1 (¢ s
i11) hmnsupm (Z Iz || ) =7< 00

=1

then a, converges to a in Ly which implies that o, is a consistent esti-
mate of a and, also, the sequence n1/2(an — @) 1is bounded in L.

Proof. Consider again the matrix M (a) = diag(m;(a)) whose elements
are defined as in (12) and observe that

v; = & — 6i(ei — y(—zT a))
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with 6; = 1 if y; has not being observed (¢; < —z @) and = 0 otherwise.
As in section 3, we can write for all fixed n

y(an) —yle) = (I - M*)X(an - a) (15)

where M* coincides with M evaluated at an intermediate point of the
linear segment joining a and a;,,. Since each ay, is a fixed point of the
transformation T'(2), it must satisfy (5) which, together with (15), leads
to

an = (XTX) 1 XT(Xa+v+ T - M) X (an — a)).
It follows that

XTv=XTM"X(an — a) = [(XTM*X)% + (XTM*X)""](an — a).
(16)
Obviously, (XTM*X)°* = (XT X)) and, since v(z) is strictly increas-
ing, (XT M* X)" is positive semidefinite. It follows that the minimum
eigenvalue of X7 M* X cannot be smaller than nA consequently from
(16) |

lan — el = [[n(XTM*X) "l X To|| < A7H||n" X T||.
Finally observe that

Ellan —af? < A72E|[n" ' XT0|* - 0

n—oo

since, on the one hand

n
E||n7'X 0 |P<n7%d) | Bvwy) | ||zill Iz
3,8
and, on the other, it can be checked that all E(v;v}) are bounded. To
confirm this, first observe after simple calculations that

z

Fnte) - |

— 00

tf(t)ydt — 0
|z]| >0
and also

F(z2)v(2)* + /Oo t2f(t)dt — 0 and LD M= /oo t2f(t)dt < 0.

z 200 —0
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These facts, along with the continuity of both terms to the left of
the limit symbols as functions of z, respectively imply the mentioned
boundness of the first and the second moments of the sequence {v;}.
Assuming that | E(v;) |< C < oo and E(v?) < 02 < oo, then we can
write

E “n'lXTv”2 < n~'dK?max(C? ¢%)n — 0.
n—oo

As a consequence, a, converges to « in Ly what implies that o, is a
consistent estimate for a. In a similar way, it can be proved that

2
lim sup “nl/zXTE(v)H < 00
n

and also
limsup E || vn(an — a)“2 < o0 (17)
n—oo
which means that the sequence n!/?(a, —a) is Ly—bounded, completing
the proof.
Observe, in addition, that under the hypothesis of theorem 4.1

plim ||n "' XT(M* = M)X (Vn(on — @))| =0 (18)

n—00

where M = M(«) and plim (or — p) denotes convergence in probability.
To see (18), let represent by 7, the spectral radii of n !XT (M* - M)X
and take into consideration that (d/dz)y(z) is a flat null function on
(—00,0) and

d2
a;’)’(z)

0< <2 (for z>0)

which ensures that 7'(z) is an uniformly continuous function being 2 its
module of uniform continuity. The following chain of inequalities holds

Hn'lXT(M* ~ M)X (vVn(an — @))|| < 7 ||Vnlom — o)

_ (T?li’f €T X (M* M)X§|) Van - )|

< Trace(n™ X7 X) (mama(a) = (@) ) Ve = )] <

< Trace(n !XT X)2 (m(ax | zi ||) oy, — “\/T_L(Oln - a)|| .
i<n
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Since o, belongs to the segment joining o, and «, it follows from (17)
that

”n—lXT(M* - M)X (Vn(an — @)) ”
< 2n_(1_ﬁ)/2K317 ”\/ﬁ(an — a)“2 _}—) PO

which implies (18). Equally, it can be proved that

plim || "' XT(M — E(M))X (Vn(an — a))|| =0 (19)

n—00

where E(M) = diag(F(m;(a))) being
Blmi(e) =1- 55 (1= 9() ) = 1= F(=sTe) (1= o001

To see (19), let denote n ! XT(M ~E(M))X = P = (pj,;), then observe
that

[ XT(M — E(M))X (vV(an - )| (Zp“) [[vn(en — o)

being

n
Pij = -1 Y i@ (1 — 7 (—27 @) (8 — F(—2Ta)).

Since 0 < 7/(z) < 1, we conclude that

S 02, <nldK 0.

n—0
Jyj

This, after considering (17), leads us to write

E|[n~'XT(M - E(M))X(Va(an - @))||°

DE [Vi(an - a)|* = 0

which guarantees (19).
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We are now in condition to formulate the following theorem which
establishes the asymptotic distribution of the regression parameter esti-
mate.

Theorem 4.2. Under the hypothesis of the theorem 4.1, nl/Q(an —
E(ay)) is asymptotically distributed as a normal
Vn(an, — E(a,)) — N(0,A)
n—ooD

where the asymptotic variance A will be given during the course of the
proof.

Observe that this theorem indicates that, for n large enough, o, —
E(ay) is approximately distributed as

an — E(ap) = N(0,n"tA)

and considering that
1/2
|E(an) — all < Ellon — o) < (Eflan—al?) " = 0
n—oo

it can be concluded that o, — E(ay,) and ay, —a have identical asymptotic
distributions; therefore the following approximation corollary directly
derives.

Corollary 4.1. Under the assumptions of the theorem 4.2, the distri-
bution of o, — a can be approzimated by

an —a =~ N(0,n"tA).

Proof (of theorem 4.2): First (after +(M + M*)) write
nIXTEM)X Vn(an—a) = n ' XTM* X /n(an—a)+¢ = n~ V2 XTu+¢,

with plim(, = 0. Then, lets show that n~! X7 E(M)X is nonsingular,
for large enough n. It is sufficient to prove that the minimum eigenvalue
nMin of the symmetric matrix n~!XTE(M)X is bigger than zero. To
see this, take into consideration that

mt 2 A= [y phy 2 A>0
V 57
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which means that, for large enough n, n™® > X/2 > 0. As a conse-
quence, if W = limp 0o n !XT E(M)X then W is nonsingular and also,
if n is large enough, it can be written

Vilan —a) = (n ' XTEM)X) In V2 XTy + o,
where again plim ¢, = 0 because

0 < [[((n ' XTE(M)X) ™ ol S 227HIall = 0.

Therefore, the asymptotic distributions of n'/?(a;, — &) and
(n'XTE(M)X)"'n~Y2XTy = n=1/2Qu must coincide. Finally, since
it was proved that sup || n ! XTE(v) ||2< oo, it follows from

“n”l/zQE(v)“ < oA ”n'l/QXTE(v)H

that n~1/2QE(v) is a bounded sequence of d—dimensional vectors. After
centering on the mean, the stochastic vector n='/2Q(v — E(v)) is

¢
n

n"2Q(v — E(v)) =n"'2Y " (n' XTE(M)X) ' zi(vi — E(v;)).

i=1

If f; is the row j(j = 1,.,d) of (n"!XTE(M)X)~!, then the jth
component of n~/2Q(v — E(v)) equals

(n712Q(w = B(); = n~'* 3 fimi(os = Bw)).

=1

It will be enough to show that each one of these components is
asymptotically normally distributed. As it is well known (Laha and
Roatgi (1979), p. 289), the following two relations suffice it since they
together imply the Lindeberg-Feller central limit theorem conditions

ma.x(’n_l/2fj$i('vi —E(v))) — 0

i<n n—o0

n

X:V(n“l/?fjaci(v,~ —E(v;))) £C<oo (foralln>1).
i=1
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To see both, observe that each candidate to be included in either the
maximum or the sum is upper bounded by

nY(fizi)0? <n7! H('n_lXTE(M)X)_1:3,'H2 <4 In7lo?K? o 0.

n—oo

It has been proved that
n~2Q(w — E(v)) — N(0,A) (20)
n—ooD

for some square matrix A of order d, concluding the proof.

Finally, let us represent by ¥ the diagonal covariance matrix of
the random vector v and assume that ® = lim,n 1 XT¥X and W =
limyeon ! XTE(M)X. Then it is clear that n'/?(ay, — E(ay)) con-
verges in distribution to the d—variate normal distribution
N(,W-1®W~1). Therefore, for each fixed n, let define W, =
n"1XTM(0,)X. We claim that W, —, W a.e.. To see this, observe
that if P(an) = (pj,j'(on)) = n~1XT(M(ay,) — E(M))X, then reasoning
as when proving (19)

n
Ipigr(om)| <07 i || 3ig | (6 + F(—2] @)
1=1
from where
| n 2 XT (M(an) — E(M))X |?°< 2n"d?K?q - 0.
n—oo
This means that

| Wo = W |2= [In" X7 (M (an) — E(M)) X ||* 50 ae

In the same way, by defining, for all real 7, the diagonal matrix ¥(7) =
diag(V (v;(w)) where v;(m) represents the random variable

e/e; > —zI'n  with probability 1— F(—zIn)
’Ui(ﬂ') = T . ™ T
Y(—z; ) with probability F(-z; )

)

it follows that
&, =n"'XT¥(a)X - ® ae.

n—oo
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As a consequence, also
-1 -1 -1 -1
W, e, W, - W oW a.e.
n— oo

and the following corollary directly derives under the assumptions above
stated.

Corollary 4.2. Under the hypothesis of the theorem 4.1, W 1®,W 1
consistently estimates the asymptotic variance of n'/?(ay, — ).

This last estimate of the asymptotic covariance matrix may be used
to carry out hypothesis testing as well as confidence regions for o and
also for linear transformations of regression parameters, in the usual
way.

5 Some natural extensions

Lets assume that each y; is only observed when y; > ¢; being all ¢|s
known. Very usually in this kind of models it is assumed the natural
condition

limsup | ¢; |< 00

n—oo
to prevent an excessive number of censored data. Redefine (2) as
-~ robs
(r) _ Yi, 1€ [°
vi(a™) { 7" 4+ y(—zTal) + ¢;), e Imobs

The following results generalise the above mentioned ones and may easily
be shown by simply readjusting the proofs.

(a) For n fixed, the lemma 2.1 and the theorem 2.1 remain true if the
function H(a) of expression (9) is substituted by

H(a) =271 Z i — ol o)? + Z I(-zla+ ¢).

i Jobs i€ [nobs
(b) After redefining each v; of (18) as

o = gifei > —:E;fra + ¢, with probability 1— F(—zla +¢;)
v Y(~-zfa+¢), with probability F(—zTa+¢)

the asymptotic results contained in theorems 4.1 and 4.2 remain
valid with no restriction.
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For both, it is necessary to slightly mend the matrix function M(a) =
diag(m;(a)) by redefining (12) as

d
mi(a) =1—-0; (1 el (—xlTa + ci)) .

Finally, it was assumed from the beginning of this paper that the regres-
sion hyperplane we have been seeking for might not contain the origin so
that ;1 = 1(=|| z; ||> 1) for all 7. At this point, it may be checked that
this initial assumption is completely irrelevant with respect to the con-
vergence properties included in the epigraph 3. The reader may revise
the proofs concerning the asymptotic results maintained in section 4 to
realise that all remain true if this initial restriction is merely substituted
by the slight one || z; ||> k > 0. Therefore, after incorporating this last
as a new technical condition in theorem 4.1, the former may be released
with no additional consequences.

6 A simulation study

In this section we intend, on the one hand, to show the general perfor-
mance of the median-based recursive estimation process under several
scenarios and, on the other hand, to compare the results got by this
method with those derived from some of its usual alternatives. We have
started from a simple regression model

yi = Po + Bizi + &

after having fixed the arbitrary values By = —3 and 8; = 5. Later,
we have generated a list of n random numbers z; from a N(1,2) distri-
bution which were treated as fixed in all the following scenarios com-
mented below. The first one concerns the error distributions, so that
we have generated, independently on the z}s, specific values for ¢; fol-
lowing respectively a Laplace distribution and also a standard normal
distribution, both having variance one. The censored data have been
implemented by a two-stage controlled process which easily allows us to
foresee the expected percent of censored data under normality. Firstly,
we have drawn (randomly and independently on the above simulated
z;/e;s) the values ¢} from a N(ug,1) distribution and, afterwards, we
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have fixed the real censure values ¢; = fy + fiz; + ¢;. Thus, the proba-
bility of y; being censored is P(e; < ¢f) = P(N(—po,2'/?) < 0) and, as
a consequence, the expected percentage of censored data may be con-
trolled by simply varying the position parameter pg. For instance, direct
calculations indicate that we must respectively assign the position val-
ues pg = —0.742, —0.358, 0 in order to get expected %’s of censored data
equal to 30%,40%, 50% as displayed in the results. To end up, we have
made N = 1000 replications of the above mentioned generation of er-
rors and have run for each one of their corresponding data files the new
median-based algorithm as well as the mean-based one. At this respect,
note that the last mean-based algorithm has good asymptotic proper-
ties only when errors are normally distributed since it coincides with
the well known EM algorithm. In a similar way, it has been only proved
in this article that the median-based algorithm here proposed has good
asymptotic abilities when errors follow a Laplace distribution. Table 1
depicts the results that we have achieved under all the above mentioned
circumstances for different values of n(= 150,100, 50) seeking by them
to also have an empirical feeling about the sensibility of the estimates
on the sample size. In each case, the performances of the different re-
gression parameter estimates has been reflected both individually and
globally. The first by means of the empirical estimates of bias (B) and
variance (V') corresponding to each one of the parameters By and £,
namely

N
B(B;)=N"13"B; - B
=1

N : =
V() =N (BY - B))>.
1=1

The second, on its part, from the empirical estimate of the multidi-
mensional mean square error given by

M8E=Y {3 () +7 (aj)}

where EJ(-i) is the estimate of 3; at the ith replication of data and Ej =

N-LY. E}i) is the empirical mean of the former estimates (i =
.-, N;3 =0,1).
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Sample size | Expected % of Median-based estimates Mean-based estimales
n censored data | Laplace errors | N©.1) errors | Laplace errors | NOT) errors’
Empirical bias for By

150 30 -0.153 -0.172 -0.226 0.162
40 0.177 -0.226 -0.251 0.181

50 0.231 0.219 -0.230 -0.179

100 30 0.154 -0.166 0.184 -0.180
40 -0.188 -0.195 -0.226 0.174

50 0.194 0.238 -0.253 -0.175

50 30 -0.160 0218 0.174 -0.181
40 -0.179 0.202 0.194 -0.185

50 0.192 -0.197 0.225 0217

Empirical bias for f,

150 30 -0.314 0.402 0423 -0.293
40 0.300 -0.397 0.477 0.331

50 -0.352 -0.463 -0.465 -0.340

100 30 0.334 -0.436 -0.453 -0.318
40 -0.326 -0.511 -0.446 -0.369

50 -0.401 0.484 0.487 -0.355

50 30 -0.378 -0.392 0.443 -0.403
40 0.346 -0.426 0.460 0.373

50 -0.415 0.438 -0.455 -0.399

Empirical variance for fy

150 30 1.323 1.526 1.613 1.183
40 1.479 1.574 1.779 1.633

50 1.673 2.025 2.106 1.784

100 30 1.438 1.609 1.838 1.352
40 1.720 1.871 2.180 1.910

50 2.083 2.293 2.369 2.273

50 30 2.103 2.365 2.557 1.798
40 2.384 2.691 3.009 2.575

50 2.899 3.354 3.477 3.106

Empirical variance for B

150 30 2.105 2.339 2.647 1.948
40 2518 2.579 3.201 2.647

50 3.050 3.369 3.609 3.226

100 30 2.516 2.807 3.205 2.293
40 3.009 3.108 3.851 3.164

50 3.645 3.927 4.391 3.856

50 30 3.685 3.995 4.475 3.299
40 4.228 4.409 5.331 4.335

50 5.116 5.699 6.20/ 5.353

Empirical bivariate mean square errors for i = (Bo. Bp)”

150 30 3.550 4.056 4.490 3.243
40 4.118 4.362 5.271 4.422

50 4.900 5.656 3.984 5.158

100 30 4.089 4.634 5.282 3.779
40 4.871 5.278 6.281 5.240

50 5.926 6.511 7.061 6.286

50 30 6.561 7.259 5.292
40 7.322 7.083

9.284 8.665

R ITRPT e

155 REVISTA MATEMATICA COMPLUTENSE
(2000) vol. XIII, num. 1, 137-159



C. ANIDO AND T. VALDES CENSORED REGRESSION MODELS WITH DOUBLE ...

results, it can be noted that the empirical performance of the median-
based estimate with Laplace errors is quite similar to the EM-estimate’s
(this last with normally distributed errors). Their values are of the same
order of magnitude either in bias or in variance terms (whence also in
MSE) and, additionally, the smaller ciphers alternate from one to an-
other depending on the scenarios what seemingly points to non system-
atic low-scale improvements between them. Both are unarguable better
(save for isolated exceptions) to the estimates obtained after interchang-
ing their error distributions. In all cases, their effectiveness decreases,
on the one hand, as the mean fraction of censored data increases and,
on the other hand, as the sample size diminishes, although this feature
coincides with what might be expected in advance.

7 An application to real data

Schmee and Hahn (1979) presented certain motorette censored data
which later were also considered by Tanner (1993; p. 41-43) who as-
sumed normally distributed errors and applied the EM algorithm to a
simple regression model with right censored data. The motorettes were
tested at temperatures of 150°,170°,190° and 220° in degrees °C and
their recorded times to failure are given below:

150° 170° 190° 220°
8064* 1764 408 408
8064* 2772 408 408
8064* 3444 1344 504
8064* 3542 1344 504
8064* 3780 1440 504
8064* 4860 1680* 528"
8064* 5196 1680* 528*
8064 5448* 1680* 528*
8064* 5448* 1680* 528*
8064* 5448* 1680* 528*

A star indicates that a motorette was taken off study without failing at
the indicated event time. For this data Tanner fitted the model

ti = Bo + B1z; + &
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where e; ~ N(0,0), z; = 1000(temperature +273.2) ! and t; = log(ith
failure time). The standard deviation o was estimated to be equal to
0.2592 and also R R

Bo = —6.019, () =4.311.

In order to make the situation comparable with the assumptions of
this paper, we will fit the model

Yi =0+ 1T + &

where the errors ¢; are independently distributed as the symmetrised ex-
ponential with parameter one, y; = —21/20.2592~¢; and each o; should
be equal to —21/20.2592~! 5; if the influence of the different assumed er-
ror distributions were negligible. The discrepancies between @; and this
last expression evaluated at (3; will measure the combined effect due to
their different (median versus mean-based) imputation processes as well
as to their distint (Laplace versus normal) error distributions. None of
these last are skewed but, at this respect, the logarithm transformation
on the survival data undoubtedly seeks to diminish the positive skew-
ness of the original survival data. For each censored data (with star),
we have assumed that its correspondent y; has not been observed since

y; < log,o(ith failure time*).

©0.2592
After running the algorithm on the Schmee and Hahn data, we have
found the convergence point to be

Qo = 28.5645, a; = —21.2926.

These limit values, as proved before, are independent on the starting
points. The adjoining Table 2 shows this fact and also reflects the algo-
rithm sequences {a(")} corresponding to several initial values a® which
have been chosen trying to cover a great spectrum both in the magnitude
as well as in the signature of its components. For each sequence, we have
shaded and printed in bold characters the first iteration r that fulfils the

condition | agr) — ozgr_l) |< 107* for all 5. As it can be observed, this
usual stopping rule would has been exerted after a number of iterations

that slightly varies amidst 17 and 21 depending on the cases.
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Iterations

Algorithm starting values of”

r (0,0)

(-40,10)

(32,25)

(60,-40)

(27.4741,-20.7798)
2 (28.1005,-21.0771)
3 (28.3605,-21.2006)
4 (28.4711.-21.2531)
5 (28.5185,-21.2756)
6 (28.5390,-21.2853)
7 (28.5478,-21.2894)
8 (28.5516,-21.2912)
9 (28.5532,-21.2920)

10 (28.5539,-21.2924)
11 (28.5542,-21.2925)
12 (28.5544,-21.2926)
13 (28.5544,-21.2926)
14 (28.5544,-21.2926)
15 (28.5544,-21.2926)

(28.5545,-21.2926)

i

(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545.-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)

(28.5545,-21

(44.6638,-29.7694)
(42.5746,-28.2017)
(37.9248,-25.7926)
(33.5260,-23.6603)
(30.9506,-22.4300)
(29.6363,-21.8061)
(29.0321,-21.5193)
(28.7628,-21.3915)
(28.6448,-21.3355)
(28.5936,-21.3112)
(28.5714,-21.3006)
(28.5618,-21.2961)
(28.5576,-21.2941)
(28.5558,-21.2933)
(28.5550,-21.2929)
(28.5547.-21.2927)
(28.5546,-21.2927)
.2926)

(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)

(28.5545,-21.2926)

PESED

(77.3736,-46.0576)
(67.2825,-40.2408)
(54.6656,-33.8830)
(44.0218,-28.7134)
(37.0087,-25.3311)
(32.8330,-23.3274)
(30.5732,-22.2508)
(29.4604,-21.7227)
(28.9531,-21.4818)
(28.7281,-21.3750)
(286297,-21.3283)
(28.5870,-21.3081
(28.5685,-21.2993)
(28.5605,-21.2955)
(28.5571,-21.2939)
(28.5556,-21.2932)
(28.5549,-21.2929)
(28.5547,-21.2927)
(28.5545,-21.2927)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)

(12.0202,-14.0553)
(22.1794,-18.4771)
(26.5752,-20.3961)
(28.0744,-21.0648)
(28.3495,-21.1953)
(28.4664,-21.2508)
(28.5165,-21.2746)
(28.5381,-21.2849)
(28.5474,-21.2893)
(28.5514,-21.2912)
(28.5531,-21.2920)
(28.5539,-21.2924)
(28.5542,-21.2925)
(28.5544,-21.2926)
(28.5544,-21.2926)
(28.5544,-21.2926)
(28.5544,-21.2926)
(28.5545,-21.2926)

(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
(28.5545,-21.2926)
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