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Instability of radial standing waves of
Schrédinger equation on the exterior of a ball.

Orlando LOPES

Abstract

Under smoothness and growth assumptions on f we show that
a standing wave w(t, z) = e*’*¢(z) of the Schrédinger equation on
the exterior {! of a ball and Neumann boundary condition

5 :
we = i(Aw + f(lw]?)w) % =0 ondQ

where @ is real and ¢ is real and radially symmetric, is always
linearly unstable under perturbations in the space H!(Q} (it may
be stable under perturbations in H!_,(R2)).

The instability is independent of ¢ having a fixed sign and of
its Morse index.

The main tool is a theorem of linearized instability of M. Gril-
lakis.

1 Introduction and statement of the result

In this paper we consider the Schrodinger equation

dw
B =

In (1) f is real valued function, w(t,z) is a complex valued function
defined for ¢t € R and z € 2 where £ is the exterior of the ball centered
at the origin and with radius a > 0.

w, = i(Aw + f(|w[H)w) 0 on o0 (1)

A standing wave is a solution of (1) of the form
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w(t, z) = ’'¢(z) (2)

where 3 is real.

The stability and instability of waves have been studied by many
authors (see [1), (2], [3], [1]-and [5] among many others).

If we replace (2) in (1) we see that ¢(z) has to satisfy the elliptic
system

d
Ao+ (F16H) ~ B =0 55 =0 on 00 (3
If in (1) we replace w(t, z) by e *#*w(t, z} the new equation becomes
wy = i(Aw + (f(jw|?) — fw % =0 on dQ (4}

and ¢ s an equilibrium solution for (4) and then studying stability prop-
erties of ¢'?*¢(z) for (1) is equivalent to study stability of the equilibrium
@(z) for {4). So, if we let w = 1+ {v we are led to the real system
Ju
1, = —Av—(f(u?+v) ~c)Jv — =0 on 9
59" (5)
v, = Au+ (f(u?+v?) - )u 3, =0 on an
in (5) u(t,z) and v(t,z)} are defined for t € R and z € Q where Q2
is the exterior of the ball centered at the origin and with radius ¢ > 0
and the constant ¢ is introduced so that the normalization condition
f(0) = 0 is met. Our goal is to show that radially symmetric equilibria
of (5) are always linearly unstable.

Remark. The Cauchy problem for {1} (or (3)} is an open question but
it is believed that it is well posed under the samme assumptions on the
function f that guarantees that it is well posed when € is the entire
space Y. So, instability will be proved modulo this techunical point.
The same attitude is taken in [6].

Notice that if a radial complex function é(r) solves the equation

Ad+ f(l¢(r)P —e)p =0 '(a)=0 (6)

and we pretend that f{|¢(r)|* = ¢) is a known function of r, we sce that
the real and imaginary parts of ¢ solve the same ordinary differential
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equation and satisfy the same boundary condition at r = a. Hence they
are linearly dependent and using the gauge invariance of (5) we conclude
that #(r) can be taken real.

So our assumptions are the following:
Hi) f : R = Ris a C! function satisfying f(0}) = 0 and ¢ > 0 is a
constant;
H,) ¢ : [a,+00) =+ R, @ > 0, is a nonconstant function that converges
to zero exponentially as r goes to 400 and solves the problem

~¢) - T - (18P - Qe =0 F@=0. (@)

Assumption Hj says, in particular that (u,v) = (¢,0) is an equi-
librium for (5) and we are going to show that it is always unstable
for perturbation in H'(Q). Of course we cannot expect that such an
equilibrium is unstable with respect to radially symmetric perturbation
because if, for instance, such equilibrium is obtained through a mini-
mization process inside that class it will be stable in that class. The
fact that indicates the instability is that a radially symmetric function
cannot be a local minimizer of the functional

Viw) =1/2 /ﬂ |gradu(z)|? dz + [ﬂ F(u(z)) dz

subject to
/ Gu(z)) dz = A
2

for v € HY(S)) (see [7] and [8]). We believe that it is important to
emphasize that this break of symmetry is not, by itself, a proof of insta-
bility.

Together with system (5), we consider its linearization at (¢, 0):

w = —Av—(f(#*(r)) - cjv % =0 on a0 (8)

Juv

vy = Au+ (F(SHr) — c+ 282 (r) f(¢*(r))n 5, =0 on o5

z
If we define ¢(z) = “! then an elementary calculation shows that

the set of the elements (u(z),v(z)) of the form (u(z),v(z)) =

539
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(q1(z)U{r),q1(z)V(r)} is invariant under system (8), where, as indi-
cated, [/ and V are radially symmetric. Moreover, since (gradg,(z),z) =
0 because ¢{z) is constant on straight lines through the origin, the
boundary condition for U{r) and V{r) becomes U'(a) = 0 = V'{a). So
we are led to the system:

Ui =~V - SV + SV - () - )Y V') =0

V, = U"(r)+ N—:lU'(r) - N’; Lo+ (9)
(F($*(r)) — c+28*(r) f(* (MU V'(a) =0.

So, system (9) governs the linearized equation (8) in the "mode” z,/r.

As far the phase space is concerned, using the fact that a > 0,
an elementary calculation shows that v € L%(Q), H1(Q), H%(Q) if and
only if U € L%([e,+o0), HL([a, +00), H2([e, +00), respectively, where
L (fa,+o0), H)([a, +o0) and HE(fa,+c0) are the spaces whose norms
are defined by integrals with weight rV-1,

If we define the operator A(U,V) = (L(V),—M(U}) by the right
hand side of (9}, A : D{A) C L3([a, +o0) x L2([a, +o0) = L2([a, +o0) X
L2 ([a,+o00) where D(A) is the set of the elements (U, V) belonging to
H%([a,+00) x H}([a, +o0) such that U'(a) = 0 = V'(a) then our result
is the following:

Theorem 1. Under assumptions H, and H,, the spectrum of A has a
strictly positive real element.

Theorem I has been proved by M. Esteban and W. Strauss ([6])
assuming that f is a pure power and that ¢ is a ground stated. In
particular, in their result ¢ is positive and has Morse index ane in the
space H! ,(S2).

A-more difficult question is to know whether a wave that changes

sign may be stable in H}_,(Q) or not (see also remark at the top of page
760 of [10]).

2 Proof of the theorem I

We start by stating a very useful result on spectral theory of a second
order differential operator.
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We consider the differential operator

N-1
(To)(r) = —v"(r) = ==v'(r) + (p(r) + c)u(r) (10)
in the interval [a,+00),a > 0, where p : [a,400) = R is continuous
and tends to zero at infinity. Together with (10) we consider one of the
following boundary conditions:

e via)=0
e v'(a) =0.

We denote by LZ([a, 4+00)), H}([a, +00)) and H?([a, +00)) the Hilbert
spaces we get using norms with weight r¥~1, that is, [ rV=1p2(r) dr,
and so on. In other words, those three spaces are the corresponding
Sobolev spaces of the radially symmetric functions defined on the exte-
rior of the ball with radius @ > 0. We define T : D{T) C L?([a, +o0)) —=
Li([a,+00)) where D(T) is the set of the elements v € H2([a, +00))
such that v(r) satisfies the corresponding boundary conditions. Then
the following result holds:

Theorem II. _

1) T is a bounded below self-adjoint operator and the essential spectrum
of T is the interval [c, +00) ;

2) the rest of the spectrum a(T) consists of isolated simple eigenvalues
lying below ¢ ;

3) if o(r) is a nontrivial solution of T'(c(r)) = 0 satisfying the corre-
sponding boundary condition al r = a (this solution is determined up to
a constant multiple), then the number of strictly negative eigenvalues of
T is equal to the number of zeroes of o(r) in (a,+oc).

Thegrem II can be proved using the change of variables w(r) =
r'NT_l'v(r) and theorem 53, page 1479 and corollary 54, page 1480 of [9].

The following result due to M. Grillaikis {[10]) will be very important
for our argument. ' :

Theorem IIL. Let L and M be the self-adjoint operators- defined in
some Hilbert space X and suppose there is a strictly positive operator H
such that L — H and M — H are relatively compact perturbations of H.
LetY be the kernel of M and P the orthogonal projection of X onto Y.



542 . Orlando Lopes

If we denote by N (M) the number of strictly negative eigenvalues of M,
by No(PLP) the number of nonpositive eigenvalues of the operator PLP
and if N(M) > No(PLP), then the operator A(U, V) = (L(V),-M(U))
has a strictly positive real eigenvalue.

Before passing to the proof of theorem [, we state a few lemmata
about elementary properties of ¢(r). Let us recall that ¢(r}) is a non-
constant solution of the problem

N-1
r

~¢"(r} - ¢(r) ~ (f($(r)?) —)g(r)=0 #la)=0.  (11)

and ¢(r) tends to zero at infinity.

Lemma 1. If for some point r; we have ¢'(r1} = 0 then ¢"(r)) # 0.

Proof. In fact, otherwise, from (11) we see that (f(#{r1)?) — ¢)é(r1)
would be zero and then the constant function equal to ¢(r;) would be a
solution of the ordinary differential equation (11) and this is a contra-
diction because ¢(r) would have the same initial data at » = r; as the
constant function and the lemma is proved.

Lemma 2. If for some point ry we have ¢(ry) = 0 then ¢'(r1) # 0.
Proof. Follows immediately from the fact the the function identically
zero solves (11) and the uniqueness of the Cauchy problem.

Lemma 3. If for some point r| we have ¢'(r)) = 0 then we cannot have
d{ry) = ¢(ry) for some ry > ry.

Proof. If we denote by F a primitive of f and we define G(s) = F(s)+cs

from (11) we see that

d_ L N-1
Z(FH) + G ) = -

and then for r; < ro we have

¢ (r)

¢ (r2) + G(#2(r2) < % (r1) + G (o ()
But this las inequality shows that we cannot have ¢'(r1} = 0 and ¢(r) =
¢{(r2) and this proves the lemma.

Lemma 4. The number of zeroes of ¢'(r) on (a,+00) is equal to the
number of zeroes of ¢(r) on (e, +00).
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Proof. It follows imediately from Lemmata 1,2 and 3 and the fact that
¢(r) tends to zero at infinity.

Proof of theorem I. We start by defining the operators

Lo(V) = —V"(r) = 2V(r) = (S(8*(r)) — V()

and

Mo(U) = ~U"(r) - 2— ,‘.IU’(r) ~ (F(@*(r)) — e+ 262 (r) f (S (r))U (r)

and the domain of both is the set of the elements of H#([a, +00}} whose
derivative vanish at r = a. So we can write

N-1

r

L(V) = Lo(V} + v

and

N -
)
where, as before, L and M are defined by the right hand side of (9).
First of all if we denote by m the number of zeroes of ¢ in (e, +0o0),
we notice that (7) says that Lo(¢) = 0 and ¢/(e) = 0 and then from
Theorem I we conclude that 0 is an eigenvalue of Ly and the number of
strictly negative eigenvalues of Lg is m. Moreover, due to the minimax
%aralcteriza,tion of the eigenvalues, we see that the addition of the term
2
spectrum of L has at most m nonpositive eigenvalues.
Now we pass to M. First we claim that 0 is not an eigenvalue of M.
In fact, if we define ¢ = ¢’ and we differentiate (7) with respect to r we
see that

M{U) = Mo(U) +2 1.

V to Lo moves its eigenvalues strictly to the right. Hence, the

o N-1, N —
(1) - ()

~(f($* (") — e+ 28 (r) f($*(MNY(r} =0 Hla)=0. (12)

1

Now suppose 0 is an eigenvalue of M. Then there is an element 7 €
H%([a, +00)) such that
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woo N=1, N-1
—(r) = == () + —5—
—(f(¢*(r)) — e+ 28 () f(*(r))mr) =0 7'{a) =0. (13)

But the second order differential equation (13) has a saddle struc-
ture at the origin because ¢ > 0. Actually, due to the presence of the

nonintegrable term in front of %/, (13) has two linearly indepen-

dent solutions whose asymptotic behavior is P etVe and r i eV
Anyway, the set of the solution of the linear equation (13) that tend to
zero at infinity has dimension one. Hence % and 7 are linearly dependent
and then 1/ is a constant times 7. So ¥’(¢) = 0 and then, by uniqueness,
1 is identically zero, a contradiction. This shows that M is invertible
and then the orthogonal projection P appearing in the statement of
Theorem IV is the identity.

Moreover, (12) shows that if we consider the operator M with Dirich-
let boundary condition at r = a then it has zero as an eigenvalue and,
according to theorem II and lemma 4, the number of strictly negative
eigenvalues is exactly m. But when we pass from Dirichlet boundary
condition to Newmann, we move the eigenvalues strictly to the right
and so the operator M with Newmann boundary condition has at least
m + 1 strictly negative eigenvalues. Then N(M) > No(PLP) and, in
view of Theorem {II, Theorem I is proved.
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