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Global controllability properties for the
semilinear heat equation with superlinear term.

AYY. KHAPALOV

Abstract

We discuss several global approximate controllability proper-
ties for the semilinear heat equation with superlinear reaction-
convection term, governed in a bounded domain by locally distrib-
uted controls. First, based on the asymptotic analysis in vanishing
time, we study the steering of the projections of its solution on
any finite dimensional space spanned by the eigenfunctions for the
truncated linear part. We show that, if the control-supporting area
is properly chosen, then they can approximately be controlled glob-
ally at any time in the topology induced by L?{(QQ). Then, based
on the L3*(Qr)-estimates as T — 0 for the control functions
solving the first problem, we prove that its global approximate
controllability from any ug € L%(Q) is also possible at any time
in certain topology, which is weaker than that of L2(Q). (It is
known that this result does not hold in L?(Q).) Finally, based on
Altman’s fixed point theorem and some of the above asymptotic-
type results, we show that if the nonlinearity is purely of reaction
type and is locally Lipschitz, then the giobal ezact controllability
it finite dimensions holds as well.

1 Introduction

1.1 Problem background

We consider the following homogeneous Dirichlet problem for the semi-
linear heat equation:
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du = Au—f{z,t,u, Vu)+u(z, ) xa.(z) in Qr = 2x(0,T), v € L*(Q7),

ot
(1.1)
=0 in p=00xT, u|==1u in .

Here € is a bounded domain of an n-dimensional Euclidean space
R™ with boundary 0%, fl, is a Lebesgue’s measurable subset of €2,
mes {0} > 0, and xq,(z) is the characteristic function of Q..

In this paper our goal is to study the approximate controllability
of (1.1} in the sense, which will be described precisely in the next two
subsections. In this subsection we would like to give a brief account of
some results available in this area. )

Let H be a Banach space, in which, as a phase-space, the boundary
problem (1.1) admits a continuous-in-time unique solution. Then, in the
classical sense, (1.1) is said to be globally approzimately controllable in
I at time T if for any given uy € H the range of its solution mapping
al time T, namely,

L*Qr)y3v - u(\TYEH

is dense in H (in the matching topology). One has the ezact controlla-
bility if this mapping is surjective.

For the case of globally Lipschitz nonlinearity and open w this prob-
lem was thoroughly studied in the series of works by C. Fabre, J.-P.
Puel, E. Zuazua, and L. A. Ferndndez [2], [4], [15]. The methods of
these works are based on the unique continuation property of solutions
to a linearized version of (1.1) from an open set, combined with the fixed
point argument and the variational approach to the issue of controlla-
bility due to J.-L. Lions {10].

For a class of semilinear parabolic equations with varying coefficients
and similar globally Lipschitz nonlinearity (but of reaction type only)
both the approximate and exact null-controllability (i.e., to an equilib-
rium) problems were studied by A. Fursikov and O. Imanuvilov {5]. The
method of {5] employs the technique of Carleman’s estimates to enhance
the above-mentioned unique continuation property.

The success of the above-cited works was essentially due to the possi-
bility to view a nonlinear globally Lipschitz term defined on the solutions
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to the pde at hand as a linear reaction term with uniformly bounded
coefficients. For example, if, say, f = f(u), f(0} = 0, then one can write

Jule) = a(eu(zd), @€ L@t alz)
= L2 afeen < Lo V(a0

where L is the Lipschitz constant, independent of =z and ¢t. This allows
one to “embed” the semilinear problem at hand into suitably uniformly
bounded infinite family of linear ones, thus providing the basis for the
fixed point argument. Unfortunately, the situation becomes qualita-
tively different if one deals with nonlinearity admitting the superlinear
growth at infinity, in which case, to our knowledge, fewer results are
available.

In the work (3], by E. Fernandez-Cara, both the boundary and inter-
nal exact null-controllability, understood in some generalized sense, were
shown with ug € L™ () for the reaction term satisfying the growth rate
limpjoye0 f(p)/(plog | p |) = 0. The method of [3] refines the technique
of Carleman’s estimates of the work [5] along the lines of the fixed point
argument.

In [6], by A. Khapalov, not assuming the uniqueness of a solution,
the global approximate controllability of (1.1), (1.2) was shown at any
time in L(£2) (in the sense described below in the subsections 1.2, 1.3},
provided the controls are static: v = v(z) and are supported from the
entire ). In the one dimensjonal case it was shown in [7} that, if
| F(2,t,0, V) < ¢(2,6) + (0) | fu(5,t,u, V) |, where ¢"(z,£) and
fe(z,t, u, Vu) satisfy the conditions (1.2) below (with f. in place of f)
and ¥(t) — 0 sufficiently fast as ¢ tends to zero, then {1.1) can be
made globally approximately controllable in L?(2) at any time even by
means of lumped controls, depending on time only. The method of [6]
and [7] does not use the fixed-point argument and is based on the idea
to suppress the effect of nonlinearity by using control actions only for
asymptotically short time. In (8] the exact null-controllability of (1.1},
(1.2) with f = f(u} was shown in L%(Q) at any positive time for a
class of mobile locally distributed controls, whose support can be made
arbitrarily small at every moment of time.

al3
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1.2 Problem formulation

In this article we are specifically interested in the study of global ap-
proximate controllability of {1.1) in the case when f can grow at a su-
perlinear rate at infinity.” More precisely, we assume that f(z,¢,u,p) is
Lebesgue’s measurable in z,¢,u,p, and continuous in u,p for almost
all (z,t) € Qr, and is such that

| e tup) | < @ (@) + Blul®/ + 8] plm'"

a.e. in Qr for ue R, p€ R", (1.2a)
/f(z,t,gb,Vé)qﬁdx Z (V—l)/li V(,b”?{n dx —
Q !
ﬁ(t)/(l + ¢N)dz, Yé € Hi(Q), {1.2b)
4]
where v > 0, () € LY(0,T), [ B(t)dt < B, ¢~ € LY (Qr), and:
- _ 4 o il }_ l —
0 < ¢ <g=2+_, ¢ —2—-n+4 (q+ 7 = 1),
0 <m™ <2, m"+q¢ #£0. (1.2¢)

Here and elsewhere we use the standard notations for Sobolev spaces
such as Hy®(Qr) = {6 | ¢,¢x, € L*(Q7), i =1,...,n, ¢ |z,.= 0}
and HI () ={¢| &, ¢, € LEQ), i=1,...,n, ¢ lan= 0}.

Conditions (1.2) ensure the existence of at least one generalized solu-
tion of (1.1) from C([0, T); LX) N Hy*(Q1), which also lies in L¥H{Q7)
([9], pp- 466-467). However its uniqueness is not guaranteed. On the
other hand, if one assumes in addition to (1.2) that f is locally Lipschitz,
say, as in {1.5) below, then it is possible to prove that (1.1} possesses a
unique solution.

Having this in mind, it seems natural at the first glance to select
H = L%*(2) as the space to study the controllability in. However, an
example due to A. Bamberger (see also [2], {5], p. 51) indicates that
when f(u) = x| w |, r > 0, which is a particular case of (1.2}, the
approximate controllability of (1.1) in any of LP(2), 1 < p < o is not
possible at any positive time.
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From this standpoint, it seems more relevant to ask: Can the global
approzimate controllability of (1.1), (1.2} be achieved in some weaker
than L*(S) topology? The next question arises due to the (rather nat-
ural) lack of uniqueness of solutions to (1.1), (1.2): Can we ensure the
well-posedness of steering of (1.1), (1.2) when multiple solutions are an
option? For example, can we use the same control to steer all the possi-
ble multiple solutions (corresponding via (1.1) to it) simultaneously and
uniformly to the target state? In this article we answer positively to
these questions as follows.

1.3 Main results

Denote by Ar, wi(z), k = 1,... the eigenvalues and the orthonor-
malized in L?*() eigenfunctions of the spectral problem: —Aw =
A, w € HJ(R). Let ¢y,...,Ck, .. be a monotone non-increasing se-
quence of positive numbers. Denote by W the Banach space of functions
{¢|¢(z ey kWi {2}, > oret a;‘:ck < oo}, endowed with the norm

6 llw= Zaqm

Note that, since L%(Q) is continuously embedded into W, then u €
([0, T); W).

Denote L} (Q) = {¢ | o(z) = SoF  cwwile), o € R}. Define a
monotone non-increasing sequence of non-negative numbers {yx}3%, as
follows:

[ #@da 2wl ol Vo€ Q).

Theorem 1.1: Approximate controllability in finite dimensions.
Let

wELE=1,... (1.3)
(this condition is discussed in the neaxt section). Given T > 0, for cvery
K =1,..., ug € L¥(Q),uy € L%(Q), € > 0 there are a control v €

L3Q7) and T™ € [0,T] such that for all the corresponding lo it (i.e.,
possibly multiple) solutions to (1.1), (1.2)

| Dpcu(-, T7) — w2y < &
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where [x stands for the operator of orthogonal projection in L*(Q) onto
Li(9).

Theorem 1.2: Approximate controllability property in W. Let
(1.8) hold. Take any monotone decreasing sequence of positive numbers
{ce}f2, such that

lim cpq1/ve =0 (1.4}
k— o0

and define the space W as in the above. Given T > 0, for every ug €
L} (Q),u; € W, € > 0 there are a control v € L*(Qr) and T* € [0,T)
such that for all the corresponding to it (i.e., possibly multiple ) solutions
to (1.1), (1.2)

(s T = s flw < .

In {15] E. Zuazua considered a semilinear heat equation with a su-
perlinear locally Lipschitz term, also assuming that f = f(u), f(0) = 0.
By using the linearization of (1.1} around the zero-state and the implicit
function theorem, he showed that the projections of its solutions on any
finite dimensional space of L%(2) can be steered to the zero-state (i.e.,
at an equilibrium) at any given in advance time, provided the initial da-
tum is accordingly small enough. This property is regarded as the finite
local ezact null-controllability. (The local exact controllability of (1.1)
with ug € WL (Q) and f = f(z,t,u) was also studied in [5].}) Our next
result: Th. 1.3, can be viewed as an extension of this property to the
global finite exact controllability, i.e., not necessarily at an equilibrium,
see though Remark 1.1.4 below. (We, actually, do not assume that (1.1)
has an equilibrium.) However, it should be noticed that Th. 1.3 deals
specifically with the projections of solutions to (1.1), (1.2), (1.5) on the
finite dimensional spaces spanned by the eigenfunctions wy’s only.

Theorem 1.3: Exact controllability in finite dimensions. Lei all
the conditions of Theorem 1.1 hold. In addition to that, assume that
fz,t,u,p) = f(z,t,u} and for some positive constant C,:

If(xat:ul)_f(xataui) [ S C*(l 3| IO"-’_lu2 Ia)lul _“sz

a.e. in Qr, Yuj,uy € R, (1.5)
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where o = (2 — ¢')/(2(¢' = 1)) = 2/n. Then, given T > 0, for every
K=1,..., uo € L¥(Q),u € L% () there is a controlv € L*(Qr) such
that for the corresponding unique solution to (1.1), (1.2), (1.5)

Oru(-,T) = uy. (L.6)

The result of Theorem 1.2 also holds at time T,

Remark 1.1: Discussion of main results.

e Due to the presence of multiple solutions, the classical definition
of approximate controllability becomes ill-defined and, hence, does
not apply to the boundary problem {1.1), (1.2). In that respect,
we can view the fact that in Theorems 1.1 and 1.2 the instant T,
when the desirable steering of (1.1) is achieved, is not necessarily
equal to T as a “payment” for the lack of uniqueness property.
However, this circumstance does not seem essential to us, because,
regardless of 1y and u, T is bounded by T'.

e Furthermore, in the case when (1.1) possesses a unique solution,
say, under the condition (1.5), the argument similar to that of
Th.1.3 yields that one can set 7* = T in Th. 1.1 and 1.2. In this
case the results of Th. 1.1 and 1.2 can, in fact, be viewed as the
classical approximate controllability accordingly in every (L% (Q})’
(if one regards L3.(Q) C L*(Q) = (L2(Q)) C (L% ()} and in W
but only from any ue € L%(€2). Accordingly, the result of Th. 1.3
can be interpreted as the classical exact controllability in every
H = (L% (9)) from an arbitrary up € L%(2).

e The strategy of the previous comment applies if one knows the
exact position of the system “shortly” before the time T, see also
the constructions of [6], p. 867. Unfortunately, if multiple solu-
tions are an option, one cannot determine the actual state of the
system merely from the knowledge of the initial state ug and the
control applied. Hence, the application of the above strategy in the
general case would require the introduction of so-called feedback
control (i.e., when v = v(z,t, u)).

o It might seem worthy of noting that we do not require w to be
open, see also Ex. 1 in the next section.

817
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¢ [t seems plausible that the assertions of Th. 1.1 and 1.3 on con-
trollability in finite dimensions can be extended to a wider class
of subspaces of L2(2), not necessarily finite dimensional, namely
those whose dual spaces in terms of the time-dependence satisfy
an a priori estimate of type (3.7). In particular, the partial global
approximate controllability to the subspace of L%(2) generated by
the functions vanishing on \w can be shown by using only the
static (i.e., time-independent} controls.

2 Discussion of condition (1.3)

This assumption is very realistic. For example, it obviously holds for
2. = Q with v = 1,k =1,.... Moreover, it was noticed in [11] that if
9 is of class € and ). is open, then (1.3) holds with v > e~V % k =
1,...

We shall now consider two other examples for which (1.3} can be
checked very easily.

Example 1. Let n = 1,2 = [0,1], Q. be any subset of [0,1] of
positive measure, which has a limit point zg such that the correspond-
ing sequences of points of £, converging to zo form a set of positive
measure in every neighborhood of zg. Note that Ay = (7k)?,wi(z) =
V2sinmkz, k=1....

We argue by contradiction. Let us assume that (1.3) does not hold,
i.e., some vk = 0. By the finite dimension of L% (), one can distinguish
a function ¢,(z) = ZkI\:l Brwi(z) such that:

i 6 llz2ey=1, / ¥ (z)dz = 0, (2.1)

[

Let z = z + iy be a complex variable. Since

iTkz _ e—iﬂkz

wi(z) = V2sinrkz = V2e o
i

is analytic for every k, the function ¢.(z) will also be analytic in the
domain D={z=e+iy|-1<y<1, zel[0,1]} Ourassumption
on Q. guarantees that if [ @Z(z)dz = 0, then ¢.(z) vanishes on some
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sequence of points having a limit point. The unique continuation prop-
erty of analytic functions from its zero’s, see, e.g., [14], p. 88, implies
that ¢.(2) vanishes in D, which contradicts the first equality in (2.1).
Hence, condition {1.3) holds.
Remark 2.1. Alternatively, we could take in the above any €. whose
limit points form a set of positive measure, e.g., the perfect set of positive
measure of Cantor type, constructed on some subinterval of [0,1].

This example can be extended to the case of rectangular-shaped €
in n dimensions.

Example 2: © strictly convex at the origin. Assume that A’s
are simple and wy’s are of class C! and have piecewise continuously
differentiable second derivatives. Let ). bé any open subset of €.
Assume that (1.3) does not hold, i.e., some yx = 0. As in Ex. 1,
due to the finite dimension of L%(S), one can distinguish a function
du(z) = Zle Brwi(z) such that (2.1) holds. Then,

K

(A) :Z( “A) [Brwr(2)) =0 in ., i=0,1,..., K —1-

k=1

This system of linear algebraic equations in {frwi(z)] admits the zero-
solution only. Hence,

Brwr(z) =0 in w, k=1,..., K.
If B # 0, then wi(z) =0 in Q. and since,
| Aok | < e lwe ] in 9,

Theorem 6 in [12], p. 99 implies that w vanishes in Q. Hence, ¢. =0
in Q, which contradicts to the first equality in (2.1).

"
3 Observability and controllability of the trun-
cated system

Introduce the following truncated linear system:

Uy = Aur, + ‘U(E,t)XQ_(.’E) in QT! (31)

519
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ug ler=0, ur(z,0)= uo,
where we used the subscript L to indicate that (3.1) is, in fact, the linear
trivial case of (1.1). Let
= Aw in @, (3.2)

wlg,=0, w(z,0)=1wy(z).

[t is well known that solutions to (3.1) and (3.2) admit the following
representations:

ur(z,t) Ze"\"'_/ug(r)wk(r)drwk@) (3.3)

+ Z/e_’\“(‘ f)(/v(‘r T)xq. (r) wi(r) dr)dr we(z),
0

k=1

Ze )“‘f'] Jwi(r)drwe(z), (3.4)

k=1 Q

where the series converge in the L#(Q)-norm uniformly over ¢t € [0, T).

For every wqg € L% (Q) such that || wg llz2(qy= 1 we have:

T .
K | _ e=(a+dm)T

2 .
//w (m t drdt = Z —)\g-{———:\m—mamﬁlm’ (3-3)

0 . m=1

where
Bim = /wr(:c)wm(:c)dz.
hl
Since
fim Lz e~ i
mm ——— =1
T—}'O -T(Aj"‘l'-)\m) 1 ITn’!
we obtain
1~ e-—(A1+/\m)T

i = T team(D), em(T) >0 asT 0.
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Let (1.3) hold. For every K and || wo || 2= 1 we can write:

T K
]fwz(:r,t)dzdt =T Z XmBim + Ter(T) =

0 0. f,m=1

wag(z)d:c -+ TEK(T) 2 T‘]’I\ ” g "iz(n) +TEh(T)
Q.

where e (T) = 0 as T — 0. Select a T'(K) such that
| EK (T) l< 7K/21 VT € (O!T(I()] (36)

Since we assumed in (3.5) and (3.6) that || wo ||f2(n)= 1, this gives

T
[ [v@ndea > T =TT g gy Voo € L),
0 Q. .

| wo lL2gy = 1, ¥T € (0, T(K)),

which, by linearity, is tantamount to the following.

Lemma 3.1: Exact observability in finite dimensions. Let (1.3)
hold. For every natural K there is a T(K) > 0,T(K) = 0 as K — o0,
such that

T
T
]/wz(x,t)d:rdt > 7RT [| 1o “iz(n), (3.7)
o .
Ywe € L% (Q), VT € (0,T(K)].

By the standard functional analysis duality argument (see, e.g., [1]),
we can establish the following.

Lemma 3.2: Exact controllability in finite dimensions. Lef (1.5)
hold. Given natural K, let T(K) be defined as in Lemma 3.1, see (5.6).
For every T € (0,T(K)], uo € L*(R),us € L%(Q) there is a control



522 AY. Khapalov

v € LYQT1) such that for the corresponding solution to (3.1) one has
Ngur(-,T) = 4, and

2
| vlicz@ry £ yf =5l w1 ll2ge) + 1l Hxuo [y} < (3.8)
v T

2
v/ -n(_T(” 1 |20y + 1l 2o lli2qy)-

Remark 3.1. The results on the exact controllability in finite dimen-
sions are, in fact, obvious for the linear systems. What is of our concern
here is the estimate (3.8), which is most crucial for our further study.

Proof. Fix up € L?(Q), K and select any u; € L3.(Q).
Recall now that the solutions of systems (3.1) with ug = 0 and (3.2}
satisfy the well known duality relation:

T
/wg(x)u[,(:c,T)dz = ffw(x,T—t)v(z,t)dwdt, Yug € LE((Q),
0 0N

(3.9)
which can be obtained by the multiplication of (3.1) with ug = 0 by
w(z, T —t) and further integration by parts over Q7.

On the other hand, since

7/102($,T— t)dzdt = 7/w2(:n,t)da:dt,

0 Q. 0 0,
(3.7) yields
9 T
| wo “%’(ﬂ) < ‘Y!\_T.[ Wz, T — t)dedt, Y, € L} (), VTe {0, T(K)).
0 5,

This inequality defines a linear bounded operator, say,

al al 2
Ri(T): VR(T) 3 xa,w(- T—) = wo € LE(Q), [[Ru(T) ]| < VT
K

VK(T) = {Xﬂ-w('iT - t‘)! te (O,T) I wp € L?\(Q)}U
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which maps the finite dimensional subspace Vi (T) of L2(Q7) onto L% ().
Then, by the duality pairing between Vi (T) and L} (),

/wg(z)uld:c = < Wy, U >L‘i\'(n} = < RK(T}XQ_W(',T—'),UI >L§\-(ﬂ) =
Q

<w(,T-),Rg(T)wr >12(q,x(0,1)) =

T
//w(m,T — )R} (T)urdzdt, Ywo € L (). (3.10)
0 Q-

Hence, if we set v =R} (T)u; € Vk(T) C L*(Qr), where

Ric(T): (@) = V(D). IR IS /=7 VT e @ T,
(3.11)
then the comparison of the identities (3.10) and (3.9} on L% () yields
that this control generates uy(-,7") such that llgup(-,T) = u and, in
view of (3.11}), the estimate (3.8) holds with ug = 0.
The general case follows from above from the presentation (3.3}
Indeed, if up # 0, then to steer (3.1) at time 7" to u; in the projection
space L7.(2) one needs to apply the control which steers (3.1) from

ug =0to uy — E;:‘:l e~ T S q to(r)we(r}drwi(z) in this space.

4 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Fix T > 0, K,ug € L*(Q), uy € L3 ().
Step 1. We will need the following estimates shown in [6], p. 865 that
for solutions of (1.1}, (1.2} and (3.1):

| ue — v lego, 72y £ c(T™) || ¢ e @pey + (4.1)

= - 1 _11 .rr
ofT")meas {Q} )75 | w5, +

+ (T )[meas {Q} T'];lr(ln%} } Ve IIF}',; ’

/q = ]
e VI € 00.7)
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and
T'

Il % lfoe@rany 1 % logorehiL2ay) + (ffl! Vu|ha dzde)'/? <

0 e
(4.2)

c(T7) (wo llpzqey + VT v lle2gpe) + 1), VT €[0,T],

where ¢(s},s > 0 is used to denote a generic positive non-decreasing
function.

Combining these two inequalities yields (as in Th. 3.2 from [6],
see also similar type of constructions in (5.13) below) that if for some
vrey € LHQr-)

(T*);—+ min{q%(l—g;)u‘mlr(l—m?)} ” v ”L’(Qrs) =0 ~as T 0, (4.3)
then for the corresponding solutions of (3.1) and (1.1), (1.2):

|| UL — U |IC([0,T‘];L2(Q)) = 0 asT* = 0. (4.4)

Step 2. Let the assumptions and notations of Lemma 3.1 hold. For
every T* € (0, T(K)] N[0, T], denote by v(r+) the control in (3.8), which
steers (3.1) at time T from the given ug to the state up (-, T~) whose
projection on L% () is u;. By (3.8),

2
o) ez e < 4/ ‘rh'T"(” ur [y + I uo llr2q)),s

VT* € (0, T(K)]{ Yo, ). (4.5)

Denote an arbitrary (if there are several of them) corresponding solution
to (1.1), (1.2) on [0,7*] by u(r+y. By ug(r.y denote the corresponding
solution of (3.1). Then, since (4.5) implies (4.3), the passage (4.4) holds
for these solutions, that is,

2Ly = wrey logorpiamy = 0 asT™ = 0.
In particular, since Ny ugire)(-, T*) = u, for all T* € (0, T(K)] N[0, T):

I n}{u(T‘)(',T‘) — U ”L?(Q) -+ 0 asT* =0, (4.6)
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which proves Th. 1.1. [ |
Proof of Theorem 1.2.

Step 1. Fix T > 0,up € L*(Q) and consider an arbitrary u; =
ELI arwg  lying in some L(Q), i.e., I < K. Let the notations of
the proof of Th. 1.1 hold.

Let now K — oco. Accordingly, T(K) — 0, see Lemma 3.1, so
without loss of generality we can assume that T(K) < T. In its turn,
from (4.6) it follows that for every I > [ there is a tx € (0, T(K)] such
that, say,

1
[l HKu(,_K)(-,tK)—ul ||L2(Q) < }?, K=§LI+1,... . (4.7)
Hence, u(,)(-,tx) admits the following presentation:
u(tk—)(‘:th') = u%) + ug\%), (4.8)

where ug‘l—) = g wuq,) (-, tk) converge strongly in LY Q) tou as K = o

and

uf) = u(zK)(‘1th’) - ug), uf,:—) A u_&?).

Step 2. It follows from (4.2) and (3.8)/(4.5) that
LK
| were) lleqoexnzae)y + (/f | Vg ke dedt)'/? <
o n

2
c(tx) (Il wollrzqey + 4/ :;';(H o |lL2eey + Il i llz2q)) + 1) <
M, K>
VYK -

where L(up,u;) is a positive number defined only by ug and u; (recall
that yx’s are non-increasing). Therefore,

L{ug, u1)
7’}’1(_'1

Combining (1.4) with (4.7)-(4.9) yields:

2 -
I “’Er\-') ||L2(n) < K>L (4.9)

” u(‘rc)('1tf\') — U ”W <
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Ve | ul) - w 2@y + verm Il ule) 2y 0 as K — oo.
Taking into account that the set of u; considered above is dense in
W, this yields the assertion of Theorem 1.2 with T* to be one of the
sufficiently small g ’s.

5 Proof of Theorem 1.3

First of all let us recall that the existence of a solution to (1.1), (1.2),
(1.5) from the space C([0,T); L*(Q) N Hy"(Q1) N LY (Q7) follows as in
the above from [9], pp. 466-467. Its uniqueness is implied by the local
Lipschitz property (1.5) (see, e.g., the estimate (5.9a) and Remark 5.2
below).

We will establish the following result first and then we will show that
Lemma 5.1 implies Th. 1.3.

Lemma 5.1. Let all the conditions of Theorem 1.3 hold. Then, given
T >0, for every K = 1,... , up € L¥*(Q),uy € LL(Q) there are o
control v € L*(Qr) and T* € [0,T) such that for the corresponding
unique solution to (1.1), (1.2), (1.5)

Mru(-,T*) = u. (1.6)
The result of Theorern 1.2 also holds.

Proof of Lemma 5.1.
Remark 5.1.

¢ Tosimplify the notations, in this section we (again) intensively use
the generic symbols “c” and “c{s),s > 0” to denote accordingly
any (i.e., possibly different) positive constant and positive non-
decreasing function. In each case, they can be evaluated precisely,
but their values do not affect our main result.

e In the proof of Lemma 5.1 below we will use slightly different
notations than in the above: we will assume that (1.1), (1.2) is
considered on a fixed interval [0,7] (in place of [0, T]), while T
will range over [0, 7). This change is to preserve the uniformity of
constraints (1.2), regardless of the duration of the actual control
time involved.
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Fix a natural number K and the target state uy € L%.(€), which,
without loss of generality, we further assume to be a non-zero state. To
simplify the calculations, first we will prove this lemma for up = 0 and
then in Step 7 we will demonstrate how it can be extended to the general
case.

Step 1. Denote by S(t) the semigroup associated with (3.1). Then we
can write

ur(-,t) = /S(t - 7jv(-, T)xn.dT. | (5.1)
0

Given K, T € [0,T]N(0, T(K)), recall from (3.11) that

Ry(T) : L (Q) 5y = v e Vk(T) C L*(Q1),

T
M [ S(T = YR (T))(-, T)xandr = v,
1]

N 2
[ Rx(T)y 2@ < po |y llr2a) - (5.2)
Step 2. For every T > 0, set from now on v = v* 4+ v,, where
v* =R (T)us € Vi(T), so that

Mg | ST -7y T)xa.dT = uy,

O —— ™

while v, ranges over Vi (T). {This presentation will be used below to
introduce the equation (5.10) to implement the fixed-point argument.)
Then we can write for ¢t € [0, T:

UL = ULut e, UL(: fS(t‘ (- 7)xe.dr, Mgup.(,T)=u,

u (- 1) = fS(t — 7)u{-, T)xn. 47 (5.3a)

0
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Denote z = 2 — uy,. Then
u:uL*—i-u*-[—z:uL*-!-u*-f-Q(y)a (5-3b)

where, given v* and K, we introduced the nonlinear operator @ : y — z
as follows:

QL) 3y—2z=0(y) =
4

- [ St =) u € O, T @),

where u is the solution to (1.1), (1.2), (1.5), generated by v* - v,, v, =
Ry (T)y. We also set :

Qr : LE () 3 y = z |e=1= QY) |i=1= Qr(y) =

T
—/sw~ﬂuuﬂmuﬂweﬁmy

0

Step 3. Given v*, let us show that these operators are continuous on
the following bounded subset of L3-(2):

={w|we L% (Q),||w 2y < 4}y d=[ Drura(, T) llp2@y=ll i {Ir2q),

provided T is small enough (I' = T(Uy)). It is sufficient to do this for
the operator Q only.

Indeed, take any y..,y. € Uy. Then denote by u,, and u. the solu-
tions to (3.1} (remind, with ug = 0), generated accordingly by

V=V = RE(T) sy v = v = RE(T )y,

in which case, in view of (5.2), Txtux(,T) = Yuu, Mgt (-, T) = y..
By employing the Lipschitz property (1.5}, from the classical energy
estimate [9], p. 139, we obtain:

| 2(ww) = Q-) lleqo, )Ly

c‘*—-\ﬁ

/ Szt u(u)) — flz, ¢, u(ud))? dedr)/? <
)
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T
C(T)C*(f f | () = w(w) |7 (] w(ta) = + | ulu.) |%)? dedr) /2
0 Q

where u(t..) and u{u,) are the solutions to {1.1), (1.2), {1.5) correspond-
ing to .. and u,. Applying (twice) Holder's inequality then yields:

| @(yex) = Qy) lleqo.myiL2(0 <
T

o(T) I w(uws) ~ w(u) Heqo, L2 (](/([ u(ta.) | +
0 Q

| u(u) [)57 da) 5 dr) /0 <

()T | uluan) = w(ue) logorpray ([ wlua) | +

& ——
:D\

!

| u{u.) |* )_L’dxdr)—+

(see Remark 5.1.1). From here, by using (twice) the inequality (a+5)7
C(a” +b"),Ya, b,y > 0 for some C = C(y) > 0, we derive:

I Q(y-s) = Qwa) lleqo, 200 <
()T || w(ua) ~ u(w) llogoryLaey) (Il (2 1% 200 +
L= (Q7)

| () [|* 2q ). (5.4)
JT(C?'I')

Since o = (2 - ¢')/2(¢' - 1),

and (5.4} becomes
| Q) = Q) llego Tz <

(T2 || wluen) — ulu.) ez (I () 1Zagp
+ 1l w(u.) Zeoq)- (5.5)
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On the other hand, it follows from (4.2) that
| w(wes) lzagery < S(T)(E+ T2 | 07 lpzry +T% 1 ves llz2¢01))s

I w(w) llzory < T+ TV 0" |lp2i@py +T7 1l ve llr2(or)-
y (5.2}/(3.8), this results in

Il w(ue) Zag@ry + Il (e [[Zoior) <
(T)

Mrup (4 T) Z200) + | M (5 T) 7200y +

| M wen(-, T) ”L?(Q)) (5.6)
(see Remark 5.1.1). Combining (5.6) and (5.5) gives

| (y..) — Q=) lleqo, Ly <

e(T)T/? N
e | wlwas) = w(us) ooz (14 Il Mecra (5 T) |72y +

K

| Mrwa (5 T) |22y + 1| DR wan (5 T) 172(0))- (5.7)
Assume now that, given Uy, T is such a small number that
c(T)T/2 .
a7 (U || Dwupa (T T2y + M T) 1320y +
Ti

| Mcue (-, T) HCI‘:Z(Q)) <

o(T)T2
af2
T
(Recall that Il g1, (-, T) = yuu, Iu. (-, T) = yi.) Then, since by (5.3b},
applied for y. and y..,

| ttan) ~ 2(2)

I} Qyee) ~ Qya) Hego,mL26)):
combining the latter and (5.7) yields

(1+3d%) < (5.8)

@) S e — s “C([O,T];L.?(ﬂ)) +

i
I Qyua) = L) lleqo 102000 < 3 | (e} = u(w) egoryay <
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1 1
g Il the =~ leqorizzay + 5 I Qvan) = 20v) lleo.m):22(0)
or
| Qyes) = Q) lleqo.ryizae) S Nl tee — e lloqo 2y (5:93)
and further, along with the standard energy estimate for the linear heat
equation,
| Q(yee) = Q) lleqo.micz)) < Nl tae = w loo,rriezn)) <

2T || van = v |lp2(gr) =

- 2
2T || R (T){(an — 3a) llziar) £ 24/ o H ¥ew — 4o, llz2(2y,  (5.9D)

implying the desirable continuity of Q@ and Qr on U;. Denote an arbi-
trary continuous extension of the operator Qr from Uy to L% (Q) by
Qra.

|
Remark 5.2. If one considers any two solutions u(;y and u(g) to (1.1},
{1.2), (1.5) (i.e., not necessarily as those in Step 3), then the estimate
(5.5) holds for them as well. It can be used to prove the uniqueness of

solutions to this system. Indeed, let u(y and u(3) be generated by the
same initial condition and control. Select T} such that

T 2 o o ]‘
C(T)T]U (ll U1y ||Lq(QT) + H (2) ”LQ(QT)) < 72

Then (5.5), applied for T = T, yields

1
ey = w2y lleqonnezan € 5 ey = i) leqona @y

which implies that u(;y = u(z) on [0, T1]. Since the norms on the right in
the above inequality can be evaluated solely in terms of the initial data
and control (see (4.2)), repeating this argument finitely many times gives

us uniqueness on [0, 7.

Step 4. Given v*, consider the following equation in L3-(€):

y+ Ny Qraly) = 0. (5.10)

531
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Since L? %.() is finite dimensional, the continuity of the operator [Tx Qrq :
Us = Lh (R2), established in Step 3 under condition (5.8), implies its
compactness as well. Assuming (5.8), i.e., that T is sufficiently small,
by Altman’s fixed point theorem, see [13), p. 97 this equation has a
solution if for some constant L(K,T) the following estimate holds:

I Ok Qra() + ¥ 72y 2 | Nk Ora(y) 32y — v Ii2y  (5:11)

Vy € L () : {| ¥ llreqy= L(K, T).

The L*(Q2)-norm of this solution does not exceed this L(K,T). It suf-
fices then to establish the existence of such an L(K,T), for which the
expression on the right in {5.11) is non-positive. To this end, set

LK, T)= L(K) = d =|| Ngur{", T) l|z2)=ll w1 o) - (5.12)

Then (4.1) and (4.2) with m* = 0, combined with (5.2), give for
|y lz2(y= d = L(K):

| (v = ur) l=rllz2() = || Cra(v) Iz =1l Q1) 2y <

DYl ¢" lpwgn +

T;‘,(ldql)(l 4 (|| Orure(-T) frae) + 1l v ”LQ(Q)W 22
T
2d
(Yl @™ [l (@) + 7wl L}(H‘( 72 —75)° Y, ¥T >0, (5.13)
TK

see Remark 5.1.1. Then (5.13) implies the existence of T', which satisfies
(5.8) with this d and, simultaneously,

I e Qraw) ey < I Oraw) llzzay = | Q7 (W) |y < d = LK),
(5.14)
Vy € L3 () : | y l2qey= d = L(K).

Therefore, (5.10) has a solution § € L2.(Q), whose norm does not exceed
d, which means that

¥ = -TigOQru(y) = ~TNx Or(). (5.15)
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Step 5. (5.15) means that there is a v, = R} (T}§ such that for the cor-
responding solution u. to (3.1} one has § = Mgu.(-,T) = =Tk Q7 (9).
Hence, by (5.3),

u( T) = vra( T) + § + Q7 (9),

which implies (1.6)’ in Lemma 5.1 with T* =T, provided T €
[0, ) N)(0, T(K)] is small enough to satisfy (5.8) and (5.13), (5.14). Since
uy was selected arbitrarily in L% (£2), this yields the exact controllability
of (1.1, (1.2), (1.5) in L% (8?) from ug = 0 as described in Lemma 5.1.

Step 6. Based on estimates (5.12) and (5.2), the argument of Th. 1.2
applies to the system (1.1), (1.2), (1.5), which yields the second part of
Lemma 5.1.

This completes the proof of Lemma 5.1 in the case when 1o = 0.

Step 7. All the above results hold true if in (1.1), (1.2), (1.5) and
(3.1) we set u |i=o= uL |t=0= uo,Vup € L?(0,1). Indeed, the most
essential correction to be made in this case in the above argument is the
replacement of up. in {5.3) by

ute(8) = S@ua + [ S, xaudr

This completes the proof of Lemma 5.1. [

Proof of Theorem 1.3. The idea of the proof of Lemma 5.1 is to apply
the actual control only on the time-interval [0, T*], when T* is sufficiently
small. On the other hand, due to the time-invariance of the systems
(3.1)/(3.2) providing the key estimates (3.7)/(3.8), only the length of
the time-interval really matters here. Hence, the same technique can
be applied for the intervals [7.,T] with T. — T, where T is given,
while treating u(-,7.) as a new initial datum. Accordingly, on [0,T.]
one can use, say, the zero-control, which insures by (4.2) the uniform
boundedness of these u(-,T,). This completes the proof of Theorem 1.3.
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Remark 5.3. Let us note that the major technical reason for the in-
troduction of the assumption (1.5) in Lemma 5.1/Theorem 1.3 is the
necessity to prove the continuity of the operator Qr in Step 3. (The
chain of inequalities (5.13) remain true under the conditions (1.2) even
if one uses the full versions of the a priori estimates (4.1) and (4.2), i.e.,
with convection). Therefore, it seems possible to extend Th. 1.3 to some
cases of semilinear reaction-convection terms, for which: a) (1.1) admits
a unique solutions, and &) the just-mentioned continuity takes place.
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