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Coalescence of measures and f-rearrangements
of a function.

Lucio R. BERRONE

Abstract

This paper addresses the question of characterizing optimum
values in the problem

sup{v(E) : u(E) < C}, (1)

where g and v are measures defined on a o-finite measurable space
X. With this purpose, the f-rearrangement of a function g is
introduced so as to formalize the idea of rearranging the level sets
of the function g according to how these sets are arranged in a
given function f. A characterization of optima of problem (1)
is then obtained in terms of dv/dp-rearrangements, dr/dyu being
the Radon-Nikodym derivative of the measure v with respect to g.
When X is a topological space and pu, v are Borel measures, we say
that v is coalescent with respect to v when, for every C > 0, there
exist connected optima solving problem (1). A general criterion
for coalescence is given and some simple examples are discussed.

1 Introduction and preliminaries

As a motivation to grasp the problems this paper is concerned with, we
first consider a series of simple examples. Let f be a non-negative real
function such that f € CO(R)N L= (R) and E = U?_, (ak, bx) be a finite
union of mutually disjoint open intervals. Given a real constant C > 0,
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we are interested in finding the maximum of the area under the graph
of f xg when the measure of F is kept constant and equal to C; that is,
we look for max [ f(z) dz subjected to the restriction |E| = C. This
optimization problem can be posed as a standard one in Mathematical
Programming. In fact, we can write it as

max Y p_; [7* f(z) do

subjected to )
2::1 (bk - ak) =C
ay < <a<b < Lag <by

Now consider a plane curve <+ parametrized by () =
p(8) (cosf,sinf), 0 < # < 2w, being p > 0 a smooth function. An
observer O placed at the origin of coordinates see the arc {y(8) : o <
6 < B} of v under an angle of measure § — . More generally, the
sum @(E) = 3_7_,(Br — ox) must be taken as the total visual angle
under which the finite union of arcs £ = Up_{v(f) : ax < § < B}
of + is observed by O. The problem then consists of determining the
“configurations” F on v which realize 2 maximum in the visual angle
O(E) provided that the length of these configurations is maintained
equal to a constant C' > 0. Since the length of E = U}_,{7(8) : ax <
0 < Br}is Ypoy ff: ds, where ds = /p*(#) + [p'(8)]?d# denotes the
differential of arc on 7, the following standard form can be given to our
problem:

max 3 iy (B — a)

subjected to )
S SR VPO F O =C '
aEhfarlf<---<o, < B,

Indeed, the positive constant € has to be taken lesser than

foz"' p2(6) +Wd3, the length of v, in order to obtain a nontrivial

problem.

A remarkable case of the last problem occurs when v is the real axis
and the observer is placed at the point (zg, yu), yo > 0, on the upper hali-
plane. For convenience, here we choose a slightly different description
of the problem. The measure of the visual angle © corresponding to a
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segment (e, b) is given (see Figure 1) by

Tg — b o—a
— arctan
Yo Yo

© = arctan

and so, a finite family of segments E' = U}_, (ax, bi) on the z axis is seen
by the observer under a total angle with measure ©(FE) expressed by

YobF-———— ——— a

/

a b

e — e ——

Figure 1:

O(F) = Z (arctan Zo ~ b ~ arctan 22 = ak) . (4)

k=1 Yo Yo

Taking into account that

To — by To—a b
arctan ——— _ arctan ——-% — / —2-—-y0—2d3:,
y() y(] Qg yo + (IO - I)
expression (4) for ©(F} may be rewritten as follows

n by
Yo
oE) =) jf — s,
k=1 Y %k Ifg + (IU - I)2

and then, our optimization problem becomes the instance of problem (2)
corresponding to the function f(z) = yo/(y& + (zo — z)?). Furthermore,
if we take, instead of f(z), the function

P(zo,y0; 7} = %f(ﬂﬁ) = %yz—_}_"(yg‘—)g: (5)
0 g — 2
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another interpretation of the problem is feasible. In fact, the function
P(z0, yo; ) given by (5) is recognized to be the Poisson kernel for the
half-plane, so that {cf. {1}, Example 3-1, pg. 38) the objective of the
optimization problem becomes [ g(z) dz = w((z0, %0),R%, E), the har-
monic measure of £ at the point (Zo,yo) with respect to the upper
half-plane R2. In this way, the initial problem of maximizing the total
angle under which F is seen from the point O = (zg, %) provided that
|El= C, turns out to be equivalent to that of maximizing the harmonic
measure w{(zo, ¥0),R2, E) of E at the point (zo,yo) under the same
restriction |E| = C.

On an intuitive basis we expect the total visual angle to be a max-
imum for an open interval (a,b) of length C centered at zo. An appli-
cation of the Karush-Kuhn-Tucker necessary conditions of optimality to
problem (2}, which is made below, do confirm our intuition. In this way,
the objective is maximized by a connected open set F of length C.

At this point, we feel ourselves inclined to relax the restriction im-
posed on the set E and to formulate an optimization problem like the
following

sup w((ﬂﬁg,yo),Ri,E), (6)
|E|l=C

in which a Lebesgue measurable set F is now taken as the variable of
the objective, being a measure the objective itself. Condition |E| = C
plays the role of a restriction for the optimization problem. Since no
description of a general Lebesgue measurable set £ exists involving only
a finite number of parameters, problem (6) can not be considered as one
in Mathematical Programming.

Both the structure and main characteristics of an optimization prob-
lem like (6) can be suitably generalized. To this end, we consider a topo-
logical space X and two Borel measures pr, v on X. We assume that, for
a given 0 < C < p(X), the family of measurable sets E with prescribed
measure p{£} = C is not void and therefore, it make sense to pose the
problem

sup v(E). (7)
w(E}=C

We say that the measure v is coalescent with respect to g if, for every
0 < C < pu(X), there exists a connected Borel set E* C X with p(F*) =
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C such that
sup v(E)=v(E").
#E)=C

In this paper, we often refer to a measurable set £ C X as a configu-
ration and an optimal set E* for problem (7) is said to be an optimal
configuration. Thus, the measure v is coalescent with respect to g when
connected optimal configurations can be found of any measure C. The
term “coalescence” we use to indicate this eventual behavior of the solu-
tions to (7) arise from the following observation: if a descent algorithm
were implemented to solve problem (7), we would see to evolve a not
connected initial configuration towards other configurations in which the
separation between components is more and more small; in a posterior

stage, these components would begin to coalesce one each other.

We have anticipated the fact that, when restricted to open sets E
with a finite number of components and measure C, the harmonic mea-
sure with respect to the half-plane w((zo, y0), R2, E) attains its maxi-
mum for a connected set of length C. Let us now prove a property of
problem (2) that implies this claim. With this purpose, we first write
the Lagrangian function corresponding to (2) as follows

E(alabl:a21b21'":an:bn;AGyAl:'"1AnsA’])"'v Zk lfbkfl')dm

A6 [C = 3k (b — arl] + Yooy Ak (B — @) + 300201 Af (k41 — be) -
(8)
For this Lagrangian function, the Karush-Kuhn-Tucker necessary con-
ditions of optimality ([3], Theorem 9.11, pg. 50) reads

2]
[n)

a _f(a’k)+A0_Ak+A;C._1=0,k:1,2,...,n
Dby =flbe) — Ao+ A —AL=0,k=1,2,...,n

2ok (b —ar) =C , 9
013515325525"‘3‘1115{)?1

A 20, Ap(bp—ar) =0, k=1,2,...,n

AL>0, AL(bgyr1 —ax) =0, k=1,2,...,n -1

o
*

lm

where, for the sake of symmetry, we have put Ay = A/ = 0. Last
condition on multipliers A} shows that A}, = 0 whenever (ag, b;) and
(@41, br4+1) are consecutive components of the optimal set E. Hence,
from the first and second conditions we deduce that f{a;) = Ay =
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f{bx), k = 1,2,...,n; in other words, at the end points of the com-
ponents of the optimal set E, the function f assumes the same value
Ag. Now suppose that, for a given y, the equation f(z} = y admits
two solutions at most. In this case, we must conclude that an optimal
set F possesses only one component and therefore, it is connected. An
example of this behavior is provided by the Poisson kernel (5), which
prove our claim. That the optimal interval is symmetric with respect to
zg it is easily deduced from the corresponding symmetry of the Poisson
kernel.

Indeed, the harmonic measure w((zo,yo), R3,-) is coalescent with
respect to the Lebesgue measure in the general sense above defined.
The proof of this assertion involves a standard property of the Lebesgue
measure. Let C be a positive constant and. £ be a Borel subset of R
with |E| = C. For every n € N, there exists an open set I, C R with a
finite number of components such that |[F A E,| < 1/n (cf. [7], pg. 62).
Since the harmonic measure w((zo, yo), R%,-) is absolutely continuous

with respect to the Lebesgue measure and limp4too |[Enl = |E] = C, we
have
w((mﬂyyO):RimE) - n!ri?ww((szyD):R?{-a En) (10)

But, as we know,
w((l?a,yo),Ri, Eﬂ) SW((SCD,yO);Ri, E:':)a (11)

where EX = (zg — |Ey| /2, 20+ | En| /2) so that, by taking limits in (11)
and using (10), we deduce

w((a:(}a yﬂ):Ria E) S nl‘;iﬂloow((xoz y0)1 Ri—: E:L) = w((:l:(]-. yU)!R?}-a E*):
(12)
where E* = (zg - C/2,20 + C/2). Inequality  {12) shows
that sup|E|zcw((zo, v),R%,F) is realized by the connected
set (zg — C/2, g+ C/2); then the harmonic measure w({zg, yo), R%, <) is
coalescent with respect to the Lebesgue measure, as we claimed. Note
that the crucial step to establish the coalescence of w((zo, yo), R}, ) was
the proof of inequality (11}. This proof was based on a particular prop-
erty of the Poisson kernel (5), which is the Radon-Nikodym derivative
of w{(zo, yo), R%, ) with respect to the Lebesgue measure.
This paper is concerned with a study of problem (7) in the case in
which p is a g-finite measure and » is an absolutely continuous measure
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with respect to g. In this case, there exists a Radon-Nikodym deriva-
tive dv/du and the relevant characteristics of optimal configurations are
shown to depend almost exclusively on the properties of this derivative.
The plan of the paper is the following: the concept and basic properties
of the f-rearrangement of sets and functions are first introduced in sec-
tion 2. From an informal viewpoint, the classical rearrangements of a
function g have to do with special redistributions of the ‘mass under the
graph of g’. Given a function f, we roughly define the f-rearrangement
of g as a new function obtained by redistributing the mass under the
graph of g in the same way as the mass under the graph of f is distrib-
uted. For the sake of clearness, the material of section 2 is split in five
subsections: the introduction of f-rearrangements is performed in the
second and third of them, while basic material on the distribution func-
tions is presented in the first subsection. The two remaining subsections
are respectively devoted to study f-rearrangements of simple functions
and to extend the Hardy-Littlewood inequality to f -rearrangements.
The tools developed in section 2 are employed in section 3 to derive
a general characterization (Theorem 11) of optimal configurations for
problem (7). From this characterization, a criterion for coalescence of
measures finally emerges (Theorem 12}.

2 f-rearrangement of sets and functions

Throughout this section, (X, A, s} will denote a measure space and f :
X — R will indicate a function defined on X and taking its values in
the set of extended real numbers R. The subset of X where f assumes
finite values will be denoted by F(f); i.e.,, F(f) = f~{R}. The set
{r € X : f(z) # 0} (or, when defined, its closure) is usually called
the support of the function f. For functions taking values in R, we
find useful to exclude from the support that points where f = too.
Accordingly, we define supp f = {z € §(f) : f(z)} # 0}. As usually, the
Lebesgue measure on a subset X C R™ will be indicated by [-.

2.1 The distribution graph

For every A € R, the level set F;' of the function f is defined as

Ff={zeX:f(z)> A},

483
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while the strict level set F” of f is
Fo={ze X: flz}> A}

To distinguish among level and strict level set of a function f turns
out to be irrelevant in many situations. In these cases, we will write F
to denote F;' or £y indistinctly. Note that the inclusion

FrCFt (13)

holds for every A € R. In what follows, the difference FY\F; = {z €
X : f(z) > A} is denoted by N). The families {F}} : A € R} and
{Fy : A € R} are decreasing in the sense that

Pf D Ff and Fy D F;, (14)

when A; < Az. Conversely, given a decreasing family {G(A): A € R} of
subsets of X, a function g : X — R can be defined by

g(z)=sup{AeR:z e G(A)}, (15)

with the convention of setting g(z) = +oo when {A € R:z € G(\)} = 0.
This construction allows us to recover a function f from its level sets.
For instance, if the family {F,} of strict level sets of f is known, we
have

sup{A€ER:2 € F[} =sup{A€R: f(z) > A} = f(z) (16)
and, since
sup{AeR:z € F]} =sup{A e R: f(2) > A} = f(=), (17)

the same is true for the family {F}}.
The following equalities related to union and intersections of level
sets are immediate

() Ff=Ff, U FE=rF5. (18)
A<hp A>Ag

In view of the inclusions (14), these equalities can be respectively written
in the form

F¥ /2 FE when At X, Ff N\, F when A Ag. (19)
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If f is a measurable function, then Fy and F; become measurable
subsets of X and a pair of functions 5}', 6}' can be correspondingly
defined as the measure of each of these sets; namely, for A € R, we
define

5EON) = (BF), 5700 =n(FF).

Both functions 5}” and 51' are commonly called distribution function of
f, but 6; is to be named strict distribution function of f when it be-
comes useful to distinguish among them. In other cases, this distinction
is not significative and we write d; to denote 5}' or 6;, indistinctly.

It may well occurs 6}" = é; = oo, as the trivial example X =
R, f(z) = z, shows. Excepting this case, we have 6;?(+oo) =
lim\ttco 6).*()\) = (. Of course, 6}" < +oo for any measurable function
f when p(X) < +oo but, at all events, (5}" is finite on the eventually
empty interval (infa;,(,\)(er A, +o0); i.e.

Ty = inf A, Fo0). 20
B = (, it At (20)

Analogously, we can write

By =1, inf  A+oo). (21)
§1{M)<too

As for the supports of 5}' and 6;, we have

(i“faj(,\)<+oo A essupf} C suppé}*‘ C (i“fsjr(,\)<+oo Ay essupf],
(22)
suppé; = [infé?(/\).:*‘m A, essupf),

where essupf denotes the essential supremum of f.

We remark that other notions of distribution function appear in the
literature which turn out to be better adapted to specific purposes (see,
for instance, [8], pg. 4, [9] and [10]).

Next lemma states some elementary properties of distribution func-
tions.

Lemma 1. Let f: X —= R be a measurable function. The distribution
functions 6}" and 5}' satisfy the following properties.
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B 5 < 5t
i) é; <é7.

ii) 5}' and 6}' are decreasing (and therefore measurable) functions. More-
aver, 6}' and 5}' are strictly decreasing on their respective supports

if and only if, for every Ay, Mg € suppé}t such that Ay < A, the
condition

(FENFE) >0 | (23)

is satisfied by the corresponding level sets of the function f.

ii1) 5}‘ is left-continuous while 87 is right-continuous. Moreover,

5+(/\+) = llm 5+(A = sup (5+(/\) = (5}'(/\0) (24)
A>Ag”
and
— '_ -+
51. (/\0) _)l«lTTg(Sf (A)_‘\T{oé (z\)—éJr (Ao)- (25)

In a point A € 3(5}*), 6}' and 5; are continuous if and only if
u(Ns) = W(EA\FT) = 0. (26)

iv) If fe LV(X, A, p), then 5}*‘(A) < 400 for every A > 0. Furthermore,

if f > 0; then
f f(z) du(z) = frm 5E(X) dA. (27)
X 0 /

Proof. Properties i)-iv) of distribution functions are rather standard
{cf. pg. 76 of [11] for example), and a proof of them is included here only
for the sake of completeness. The inequality 8y < 5"‘ follows from the

inclusion (13) just as the monotonicity of 6"’ and &7 fo]]c)WS from (14).
The distribution function 6i is strictly decreasmg on the interval suppoi

given by (22) if and only if 0 > 5%()\1) - 5?(/\2) =pu (F/\i]) - (Fi) =
7 (Ffl\Fi) for every A, Aq € suppéjf such that A; < Ag. This com-

pletes the proof of 1) and ii}. Lateral continuity of 67 and oy is a
consequence of (19) and of a well-known result on the measure of lim-
its of monotone sequences of measurable sets (cf. [11], Theorem 10.11,
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pg. 166). Lateral limits given by (24) and (25) can be analogously
established. From these expression of lateral limits we deduce that
6*(/\"') 6*(,\“) if and only if 87 (X) = §F(A); therefore, condition

(26) is necessary and sufficient in order that 51 to be continuous in a

point A such that 5‘}”( ) < 4co. As for property iv), for an integrable
function f and for A > 0, we have

M) = [ Adute [ J(@) du(z) < NIfll < +oo
by

hence 6}" (A) < +oo. If, apart from the integrability of f we assume that
f > 0, then we can write

[ @ = [ ([ xosendr) duto
- [ "~ (/. Xosendu(a)) dx, (28)

where the last equality is justified by the Fubini—Tonelli Theorem. By
observing that [y x(o,s(z) dr(z) = fF+ du(z) = 6+(/\) we obtain the
identity (27) for 6"' The correspondlng 1dentlty for &7 can be derived,
for example, by taklng X[o./(z)) instead of x[o,s(z)] In {28)

Assume for a moment that X is a topological space and that A is
the Borel o-algebra on X. Moreover, suppose that there exist no -
negligible open subsets of X i.e., that u{U) > 0 for every open set U.
Then condition (23} is satlsﬁed by continuous functions and therefore, 5}*
is a strictly decreasing function on its support (cf {5], pg. 27). Indeed,
theset U = {z € X : Ay < f(z) < A} C F,\ \F+ is open for every
A, A2 € suppé"' such that Ay < Ag; therefore, p(F"’ \F"’) > pu{U) > 0.

Other propertles of distribution functions are put together in the
following result, whose immediate proof will be omitted.

Lemma 2.
i) If f <g, then 67 < 8%

ii) For every real constant c, 5_%+c(,\) = 5?()\ -c), AER.
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iii) Ift >0, then 65()) = 67(A/t), A€ R.

Now we consider the set valued map Ay obtained by “filling the
gaps” of the distributions functions; that is, we define Ay : R — 2R by
means of

A(A) = 57 (), 65(V)], A€ R. (29)

Note that Ag(A) = {400} whenever 67 (A) = +co. From now on,
the map Ay will be called the distribution graph of f. After Lemma
1- ii) and iii), we can also write Ay(A) = [sup,s 6}'(0{),67(/\)] =
[67 (M), infacx 67 ()] = [sUPqsa 67 (@), infacy 87 ()] From the last equal-
ity we see that the inverse map A}", defined for A > 0 by

AeATHy) e yen ),
can be expressed in the form

ATV =[ sup o, inf o], 30
r W [Jf(a)p>y Syle)<y ] (30)

where we agree in defining infga = +oo so that AII(O) =
[SUP5;(G)>9' o, +00). In fact, the inclusion A € A;‘(y) holds if and only if

SUPgs 6}'(0:) < A < infacn 8; (@) or, equivalently, SUPs+ (a)>y @ <A<
i“f.s;(a)-:y a. By realizing that
sup a= sup « and inf a= inf @, (31)

Sf@)>y 7 (a)>y Sf(e)<y  &f(a)<y

expression (30) for A}"(y) is obtained.

In addition, if we coincide in defining supy = —oo, then expression
(30) for /_\;l(y) provides the values of A that solve the inclusion y €
Ay(A) for a given 0 < y < +oo. By observing that A;l = {+o0} if and
only if §; = 400, we conclude that the inclusion y € A/(A) has a real
solution unless §; = +o0.

2.2 f-rearrangement of sets

Loosely speaking, given a measurable function f : X — R and a measur-
able set F C X, we say that a level set F\ of f is the f-rearrangement
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of E when p(F\) = p(E), so that the equation
67(A) = u(E) (32)

is satisfied. This ingenuous idea can not be plainly taken as a definition
since, on one hand, equation (32) is not generally solvable and on the
other hand, if a solution exists at all, this may be not unique. Indeed,
the last problem is not a serious one: whenever equation (32) admits two
different solutions A; and Ag, both level sets F), and F), have a common
measure p{E). If p(E) < 400 then u(Fy \F\,} = 0, so that F}, differs
from F, only in a null set and a theory is constructed by taking any level
set F with X solving (32) as the f-rearrangement of the set E. This
theory will enjoy of the usual “resolution power” of Measure Theory:
two sets A, B are considered identical when A C B and p(B\ A) = 0.
Neither can two sets A, B such that A C B and p{A) = +oc = pu{B) be
substantially distinguished by mean of measure-theoretical arguments,
so that there is no problem in defining the f-rearrangement of a set E
with u(E) = 400 to be any level set Fy with u(F\) = +oo.

In order to overcome the first difficulty, we replace equation (32} by
the inclusion

ME) € Ag(A). (33)

As we have said at the end of previous subsection, unless §; = +o0,

the inclusion (33) admits real solutions. In fact, with the aid of (30) the
set of their solutions is expressed by

A7 () =1 )

sup «, inf «
§p(a)>u(E)  Sr(a)<u(E)

so that we recognize in the level sets Fi with sups ()5, m)@ < A<
infgf(o,)<#(5') o the natural objects to be considered as f-rearrangements
of the set E. Concretely, given a measurable set E C X and a measur-
able function f: X — R such that d; is not identically 400, we define
the superior f-rearrangement E*/ of E to be the level set
f _ m+

E - Fsup3!(0)>”(g) o (34)

while the level set

E.g= (35)

inf&,[a)(p(E) o

489
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is defined to be the inferior f-rearrangement of E.
Recalling that SUP§, (a)>y @ < inf,sf(a)q. @, ¥ > 0, we have

E.=F Ft =B, (36)

infs (o) <u(E) & c SUPS (2} >u(E)

Moreover, in view of 6}" is a left continuous and decreasing function, we
can write

E'fy = 4% sup e | = iof éF(a)> u(E 37)
.U‘( ) / (6,«(0:))#(E) ) Sy (a}>u(E) f( )_.U‘( ) (

and, in a similar way,
E, =6'( inf a): su 87 (o) < ulE). 33
ME) =67t o) = s G@<uE). @)

If u(E) = 400, then u(E*) = +oo = u(E) by (37 ). Analogously, if
p(E) =0, then u(E.s) =0 = p(E) by (38). However, simple examples
show that inequalities (37) and (38) are generally strict. Sufficient con-
ditions in order that these inequalities become equalities are provided
by the following:

Lemma 3. Let E be a measurable set with 0 < p(E) < +oo; then
1) p(E*)) = p(E) if 6; is continuous at the point A = SUDs (o) > u(E) O

i) p(E.s) = pu(E) if 85 is continuous at the point X = infs, (a)<u(E) @

Proof. To prove i), assume that A = SUP§, (a)>p(E) @ 1S @ point of
continuity of é;; then

w(E) = 5}" ( sup a) =6 ( sup r_‘r) .
dp{a)>u(E) §y{a)>p(E)

Taking into account that SUD§ () >u(E) @ = INfg, (a)<pu(E) %, We have

87 sup o« :(5‘( inf a) = sup &7 (a) < p(E)
f (5f(cl)>tt(E} ) J 8 {2)<u(E) 5 () <s(E) f( ) <
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and therefore u{E*f) < pu(E), which, together with (37), gives p(E*/) =

u(E).
The proof of i) is similar. [ ]
From the example in which X = R and f = x(o,1) we see that

sufficient conditions furnished by Lemma 3 are not necessary. In effect,
the distribution function 6}' is here given by

+o0, ALO
§F (N =1, 0<A<l,
0, A>1

and for any measurable set E C R with 0 < |E| < 1 we have E*/ = F}'
and IE|
F7, E|l=0
= +o0?
2% F7, O0<[E|<1”

whence [E*/| =1 and |E,| = 0.

We will say that a measurable function f is a regular function when
67 is a not identically +oo strictly decreasing and continuous function
on suppd;. Lemma 1- ii),iil) gives necessary and sufficient conditions
in order that a function f to be regular. For a regular function f,
the inverse 5)7‘ of the distribution function is defined on the interval

[0,5; (infgf(a)<+m a)] and it is a strictly decreasing and continuous
function there. Hence, for every measurable set £ with 0 <
W(E) < & (mfmmm a), we have

sup = sup = 6;1 (H'(E))
84(a)>u(E) a<87 (ulE))

a[ld infaf(a)<u(g) o = infa)&?'(,u(E)) o = 5:{_] (#(E)), 50 that

«f _ p+ =t
EY = SUPS (a)>u{E) & F6,"(u(3))

and

By = Finfa,(amp(a)a - Fé,"(n(E))'

Thus, p(E*\E.;) = ;L(le;-n(u(E))) = 0 and we have proved the

following theorem.
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Theorem 4. Let f be a reqular function; then, for every measurable set
E C X such that 0 < u(E) < 4, (inf‘;,(a,ﬁm a), the equality

EY = E,;
holds up to a p-negligible set.
Proof. See the previous discussion.
|

In our next result, the main properties of f-rearrangement of sets
are collected.

Theorem 5. Lef f: X — R be a measurable function such that &y 1is
not identically +occ, and E| Ey E, be measurable subset of X. Then, the
following statements hold for superior f-rearrangements:

i) If El g Eg, then (E])*I g (Eg)*f.
ll) (E1 N Eg}*f - (El)‘f n (Eg)‘f and (EI U EQ) o

2
i) p((E1) U (B2)*) = max {u ((E)*) 1 ((E2)*)
w (B n(E)) = min {g ((E1)*7) , 1 ( Eg)‘f

iv) E*U+d) = p=/ ¢ eR.

E)*f U (Ey)*f
} and
)

}

v) EXtN = g+ 150,

Statements 1)-v) hold for inferior f-rearrangements as well. Moreover,
the following properties relate superior rearrangements to inferior re-
arrangements:

vi) If E = FE is a level set corresponding to f; then E*~f = F} and
E*f = F;.

vil) (B*y = E*, (E.j)ey = Eup, (B*)ay = Evj and (B.p)*/ = B/,
Proof. We will prove asserts i}-v) only for superior f-rearrangements.

If By C Eg, then p(E)) < u(E,) and so the inclusion (Ey)*/ C (Ey)*f
is immediate from the inequalities SUPS (a)>u(Ey) ¥ 2 SUPS(a)> u(By) &
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and infs (o) <pu(Ey) @ 2 Inf5 (o)< Er) @ This proves 1}. Assert ii) follows
from i) by simply observing that Ey N E; C E; and £y U E; D E;,
i =1,2. iii) is clear from the fact that (E;)*/ and (E;)*/ are level set
of the function f. Statements iv} and v) are simple consequence of the
properties of the distribution function which were established in Lemma

2-i1),iii). To prove vi), we simply note that (FF)*/ = f Ja o a=
s5(2)>5F ()

F} and that (FE)Y = F 4. o = Fy. Finally, property vii)
dp(x)<EF(N)

follows from vi) by taking into account that £*/ and E.; are levelsets
of f.

2.3 f-rearrangement of functions

We are now ready to introduce f-rearrangements of a function g by
rearranging its level sets. Let us begin by considering two measurable
functions f,¢ : X — R such that §; is not identically 4+occ. The families
{{G)* : X € R} and {(G1).y : A € R} are decreasing by Theorem
5 -1} and so, using expression (15), certain functions can be recovered
from them; namely, the superior f-rearrangement g*/ and the inferior
f-rearrangement g.y of a function g are respectively defined, for every
z € X, by

g (z) =sup{A e R:z € (G))"} (39)

and
ges(z) =sup{A ER : 3 € (Gp)us}- (40)

The fact that rearranging strict level sets G| amounts the same of rear-
ranging level sets Gj’ is emphasized by definitions (39) and (40). Take
for instance superior f-rearrangements. In this case, the inclusions

Fz)={ eR:z2e (G} C{AeR:z2€ (G} =T"(2),z € X.
(41)
show that

sup{A€R:z € (G;)"‘f} <sup{A€éR:z € (Gf\‘)"f}, e X, (42)

From applying the definition of superior f-rearrangement, we sec that
z € (Gy)*f il and only if f(z) > SUP5, (a) 565 (1) & and that z € (G1)*/
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if and only if f(z) > SUP§  (a)>43 (1) & If we recall that 5;'()\) may differ
from JJ,_()\) in a numerable set of values of A at most, we conclude that,
for every z € X, the set 't (z)\['~(z) is at most numerable, so that
inequality (42) is really an equality. A similar argument shows that
definition (40} of inferior f-rearrangement does not depend on what
type of level sets are taken for function g.

In the light of previous discussion, we can write

gf(z)=sup{AeR: f(z) > sup o}, zeX,  (43)
§p(ar)>Eg(N)
and
) =sup{reR: f(z) > inf a}, z€ X. 44
gus(x) = sup{ fl@) >, il a} (44)

It follows from inclusion (36) that (G\)*/ C (G\).s, A € R; whence
the following inequality

g.s(z) < g™/ (x) (45)

holds for every z € X and somewhat justifies the terminology we employ
for f-rearrangements.

Given two functions g, and g, we set g1 V g2 = max{g;, g2} and
g1 A g2 = min{gy, g2}. In the following result, whose simple proof we
omit, the most elementary properties of f-rearrangements of functions
are established.

Theorem 6. Let f be a measurable function such that &; is not identi-
cally +c0. If g, g, and g, are measurable functions, the following prop-
erties of superior f -rearrangements hold.

i) If g1 < g2, then g;f < 9;'{-

i) (914 g2)" < g}’ A Q';f and (g1 V g2)*/ > g7/ v g’ .
i) g*U+) = g/ ceR.

iv) g*t/) = gt/ ¢ > 0.

Properties 1)-iv) also hold for inferior f-rearrangements. Furthermore,
f-rearrangements enjoy the following additional properties:
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V) f*f-—"f*f:f-
vi) (0°1) = g™, (s = 9ugs (9" ) ey = 9oy and (g} = g*/.

As it is stated by the following theorem, superior and inferior f -
rearrangements coincide in the case in which f is a regular function.

Theorem 7. If f is a reqular function, then
9/ (z) =sup{A € R: (650 f)(2) < §(N)} = gus(z), z€ X.  (46)
Furthermore, if g is a regular function too, then

g*/(z) = (671 0 87 0 f)(2) = gus(z), z € X. (47)

Proof. By assuming that f is a regular function, for every z € X we
can write

g/(z) = sup{AeR:f(g)> sup a}
dp{a)>bg{A)
sup{A € R: f(z) > (67" 0 §,)(N)}
sup{A € R: (7 0 f)(z) < &4(A)}
sup{A € R: (§;0 f)(z) < §;(A)}
sup{A ER: f(z) > (67 0 45)(A)}

= AER: f
PR ERTEN> ™

I

= g.s(z).

This proves equality (46). Now, if function g is also regular, then from
(46) we deduce

7 (z) sup{A € R: (60 f)(z) < §(A)}
sup{A € R: (6,  0bs0 f)(z) > A}

= (6;' 080 f)(z), z € X,

which completes the proof.
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Classical symmetrizations of sets and functions (see [4], [6], (2],
[5]) can be viewed as f-rearrangements for particular regular functions
f :R™ =+ R. Consider, for instance, a continuous function f : R* 2 R
such that f(z) = ¢(|z]), = € R", for a certain continuous and strictly
decreasing function ¢ : Rg’ — R. Functions like f are known as radi-
ally decreasing (continuous) functions. Level sets of such functions are
spheres centered at the origin given by F) = By-1(,)(0), so that

§r(N) =wa 671 N]", AR, (48)

where w,, denotes the volume of the unitary n-sphere. Since f is a regular
function, expression (46) for the f-rearrangement of a function g holds
and in this way, f-rearrangements depend only on the composition §s¢ f.
Using (48), we obtain

(670 )(z) = wn [¢7 (¢(2]))])" = wa 2|, = €R™,

whence we see that f-rearrangements with f a radially symmetric func-
tion do not depend on the particular choice of f and they are conse-
quently expressed by

g/ (2) = sup{A € R :wa |2 < &4(N)} = gs(a). (49)

Rearrangements given by (49) are recognized to be the Schwarz sym-
metrization of function g ([2], [5]), so that we can say that Schwarz
symmetrization corresponds to f-rearrangements for X = R™ and any
radially decreasing continuous function f.

2.4 Simple functions

In this subsection we are concerned with the f-rearrangement of a simple
function; i.e., a measurable function which assumes only a finite number
of values. To begin with, we study f-rearrangements of the characteristic
function xg of a measurable set £ C X. We will show that

(&)’ = xges (50)

and
(XE)es = XE.,- (51)



Coalescence of measures and f-rearrangements. ..

Take for instance the equality {50}. Since, for every z € X,
(xg)*(z) = sup{A € R: z € [(Ep)\]™)
and
xg-r{z) =sup{A €R:z € (Eg)a},
in order to establish equality (50) it is sufficient to prove that

[(Er)a]Y = Eges)a

for every A € R, which we make by means of a sequence of simple
transformations:

Egerdr = {2 € X :xpe(s) 2 A}

{zeX:x (z) > A}

+
F'“p‘;(&)>#(51

= {22 EX: X{yEX:f(y)Zsup,f(a)>F(E) a}(z) > A}

X, A< 0
= | {z € X:f(z) 2 sups(ayspupy @ty 0<ALI
0, A>1

= {z€X:f(x)> sup a
Sp{e)>83 (N
- -+
P p(a>ad o @

= [Epnl.

The proof of equality (51) is similar.

Let g be a simple function and a; < @z < -+ < @, be the non-
zero values that g assumes. In terms of the characteristic functions
corresponding to the sets Ny = {z € X : g(z) = ar}, k = 1,2,...,n,
function g can be expressed in the form

T
9= arxw,- (52)
k=1

Characterization (52) of a simple function g is known as canonical rep-
resentation of g (cf. [7], pg. 75).

In general, the distribution function 4, of a simple function g, when
restricted to §(4,), is again a simple function. After Lemma 2 -ii}, we

497
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may confine ourselves tocompute &, for non-negative simple functions,
so that we suppose g is given by (52) with ¢; > 0. A routine application
of definitions give us in this case §(é}) = (0,+oc), §(4;) = [0, +o0)
and

5;[{0,4-00) = ;p’(Nk)X(O,ak]: (53)
5 ooy = ;”(Nk)xlo,ak)- (54)

It should be noted that these representations of the distribution funec-
tions 6;‘ and 4, are not canonical whereas their canonical representa-
tions are respectively given by

5+ 0«1-00) ZJ-I-(G*)X(% 1.08k) (55)
and
-9_|[D,+oo) = Z 5;- (k) Xfax1,a1)- (56)
k=1

In (55) and (56) we have put ag = 0.
To represent a simple function f in a way different from (52) turns
out to be useful in connection with rearrangements. Setting o, =

ay, g =Qaz — ap,..., ¢y = Qp, — Ay, We can write
n
9=  %XGy, (57)
k=1

where Gy = {z € X : G(z) > a1} = an k=1,2,...,n, (cf. {4], pg.
279, [5], pg. 24). In view of xg, > x@, = -+ 2 xG,, we say t]la.t (37) is
the monotone representation of the simple function g. For example, the
second member of

67 |ps = D 1NE X (03]
=1

corresponds to the monotone representation of 6;|R+.
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Roughly speaking, next theorem says that the f-rearrangement op-
erates in a linear way on the terms of a simple function g provided that
g is given by its monotone representation.

Theorem 8. Let f be a measurable function with §; non identically
+oo. If 32—y ®kXG., 18 the monotone representation of a non-negative
simple function g, then

g = Z @k (XGa, )Y, {58)
k=1
and
s = 3 0k(XCay)es- (59)
k=1

In view of (50) and (51), we can equivalently write

gtf = ZakX(Gak).;, (60)
k=1
and
Guf =Y CEX(Gay)us- (61)
k=1

Proof. Let } }., @rXg,, be the monotone representation of a non-
negative simple function g. We will prove that expression (60) holds for
the superior f-rearrangement of g. From expression (43) for superior f-
rearrangements we see that the computation of g*/ is reduced to compute
the quantity SUP§, (a)>8,(A) @ 35 2 function of A. To this end, we set
ap = 0 and q; = Ef:l a;, k=1,2,...,n, and we consider the canonical
representation (55) for 6}. Thus, we obtain

sup

0 = | SUPsasay @ ASDO
55(a)>5,(3)

SUP‘SJ‘(Q)>5;(GJ¢) o, ap_1 < A< ag

—00, A<0
SUPS ()65 (ar) & -1 < A< ag

499
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whence, for the wvalues of z such that Supﬁf(a)>5;'(ak)a§f(x)<
SUD (a)5 84 (ax_,)r Ve deduce

g () = a. (62)
This can be compactly rewritten in the form

n
g*f = z CRX ot
k=1

suPJf(a)>6;' () a

which is seen to coincide with (60) as soon as we realize that (G4, )" =
+
SuPJf(tx)>6;(ak) o

2.5 The Hardy-Littlewood inequality for f-rearrangements

Integral inequalities for classical rearrangements can be extended to
[ -rearrangements, the Hardy-Littlewood inequality for functions in
LY(X, A p) (cf. [4], pg. 278, [5], pg. 23 and the appendix in [9])
being a good example of this fact. Let us now prove this extension.

Theorem 9. Let f be a measurable function such that d; is not identi-
cally +oc. Then the inequality

[ arduto) < [ gt duce) (63)
X . X

holds for any two non-negative functions g, h € LAHX, A p).

Proof. The idea of the proof used by Hardy and Littlewood (cf. [4] and
also [5]) to prove inequality (63) for classical rearrangements also works
here. In the first place, we show that (63) holds when g = g, and h =
XE,, being Ey, Fy C X two measurable sets with 1(Ey), p(Ey) < +oc.
In this case we have

[ XB 8. dp(2) = (B2 0 ) < min{ B (),
but, using inequality (37) and Theorem 5-ii), we can write
min{u(E1), n(B2)} < min{u(B}), u(F;"))

= H(E;J’nE;f):jXXE;IXE;f dp(z)
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and from (50), Xg:! = (xg,)* and Xt = (xE,)*!, so that

— =f xf
[ Xerxey dute) = [ 0w Oem) duto)
We then conclude that
[ xexe dute) < [ (xm )Y e ) dute) (64)

Now, we extend inequality {64) to the product of non-negative sim-
ple functions g and h such that g,h € L*(X,A,u). To this end, let
us consider their monotone representations ¢ = > 7_, arXxg, and h =
Srey BrxH,. In view of inequality (64) and Theorem 8, we have

n,m

Lghdu(z) = Za’iﬁj/ Xe; XH; dp(z)

ij=1 X
n,m

> il /X(XG.-)“f (xa,)"! du(z)

i,=1

= A Y eilxca ) D Bl ) | due)
=1 i=1

= /g*ffz"fdu(z).
X

IA

Finally, let be given two non-negative functions g,h € L*(X,A,p).
There exist two sequences {g,} and {fh,} of non-negative simple func-
tions such that g, T ¢ and h, T h when n T 400. For these sequences
we have just proved that

[ antn duta) < [ ain dute) < [ a/W du@), me N (69
X X X

In the last inequality we have applied, Theorem 6 -i} and the monotonic-
ity of the integral. The conclusion follows by making n 1 +oo in (65)
and applying the monotone convergence theorem.
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We remark that inequalities like (63) or its converse are not generally
valid when superior f-rearrangements are replaced by inferior ones. In
fact, suppose that &; has a point of discontinuity at least. Assume
further that a measurable subset £ C X can be chosen so that u(F) is
any point in a gap of ;. In this way, the equation §7(A) = u(F) is not
solvable and therefore p(E) > p(F.y). Then, by taking ¢ = h = xg, we
have

[ondute) = [ xwdutz)=p(B) > w(E.p
X A
= /(XE)af dp(z) = / e phg dis(z).
X JX

On the other hand, if we choose an E such that the equation §;(A) =
#{E) admits a unique solution Ag, then inferior f-rearrangement of g
and h coincide with the corresponding superior f-rearrangements g/
and A*/. Theorem 9 shows that

fyhdu(r)sfg*fh*fdu(w)
X X :

in this case.
In the next section, a version of Theorem 9 for functions in L' (X, A, 1)
is to be useful.

Theorem 10. Let f be a measurable function such that &; is not iden-
tically +o00. Then the inequality

Joanduta) < [ o0 duta) (66)
X JX

holds for any two non-negative functions g, h € LY(X, A, p).

The meaning of inequality (G6) is the following: if the integral of the
second member is finite, then so it is that appearing in the first member
and the inequality holds.

Proof.
The proof does not practically differ from the proof of Theorem 9.
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3 Coalescence of measures

Let (X, A, 1) be a o-finite measure space and consider another measure
v on X which is absolutely continuous with respect to p. The Radon-
Nikodym Theorem enable us to write

WEF{Lf&MMﬂ,EEA (67)

where f = dv/dy, the so called Radon-Nikodym derivative of the mea-
sure v with respect to y, is a g-unique non-negative measurable func-
tion defined on X. We define the range of the measure p to be the
set pu(A) C [0,p(X)] so that, for any C that belongs to the range
of 1o there exists a measurable set £ such that p(E) = C. Sets in
{E € A:u(E)=C} are to be named admissible configurations in what
follows. For a C belonging to the range of p such that 0 < C' < pu{X),
we pose the optimization problem

sup{v(E): E € A u(F)=C}. (68)

Extremum values C' = 0 and C = p(X) are excluded in order to avoid
trivial situations. Next theorem furnishes a characterization of optimal
configurations corresponding to the optimization problem (68).

Theorem 11. Assume that the distribution function é; corresponding
to f = dv/du is not identically +oo and that SUP; (a)>C @ 18 @ poini
of continuity of §;. Then, the set B*/ with E € A and p(E} = C is
an optimal configuration corresponding to problem (68). Furthermore, if
Sup,g)=c V(E)} < +oo, then the optimal configuration E* is p-unique;
i.e., any other optimal configuration A differs from E*/ only in a p-null
set.

Proof. Let 0 < C < p(X) belongs to the range of p. In view of (67},
for every E € A with p(F) = C we can write

W@zﬂﬂﬂww=ﬁﬂﬂmm¢ML (69)

where f = dv/dp > 0 is measurable. Since we have supposed that 4y is
not identically +o0, superior f-rearrangements can be taken and then,
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an application of Theorem 10 produces
| @@ < [ e @) due)

- /X F(@)xer (=) dpe(z)
= v(E*). (70)

To get (70), both Theorem 6-v) and identity (50) have been used. From
(69) and (70) we obtain

sup v(E) < v(E*)
p(Ey=C

and, taking into account that

EY = F} (71)

supaf(,_.‘)>c [= 4

and that sup; (4)sc @ is a continuity point of 47, Lemma 3 -i) shows that
p(E*fy = p(E) = C. This proves that E*/ is an optimal configuration
for problem (68).

Let us now suppose that sup,g)—¢ ¥(E) < +co. To prove that Bl
Is p-unique, we observe that, for every A € A, we can write

v(A) :u((A\E*f)U(AﬂE*f)) :/A\E.f f(z) o:i,u(:a:)—}-/AnE”r f(z)d,u(z)
(72}

and

WEN) =B\ Auane ) = [
E*f\a

f@duta)+ [ s dute)

ANE*S
Now we realize that

flz) < sup a, z€ A\NE™, fle)> sup o, z€ EF\ A (74)
Spla)>C Sp{e)>C

and
0< sup o< 4o, (75)
§;(a)>C
In fact, inequalities (74) casily follows from expression (71} for E*f.
In respect to (75), we see that the non-negativity of f implies that
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() = p(X) > C for a < 0. The inequality sup;,(q)>c @ 2 0 follows
from this observation. If sups (4)>c @ = 400, then &;(a) > C for every
a and therefore, 0 = é;(400) > C, which is contrary to the assumption
C > 0.

So we have proved that 0 < SUPs,(a)>c @ < +o00. Furthermore,
we have sup; (q)5c @ 7 0 because if, on the contrary, it would be
SUPs(a)>c @ = 0, then &;(@) < C for a > 0 and thus 67(0%) < C.
In view of SUPs,(a)>C & IS supposed to be a point of continuity of &;,
we deduce that the inequality u(X) = é;{07) = 4,(0*) < C holds, so
violating again the assumption C' < p{X). Note that the possibility
f = 0 is excluded by the hypotheses: if f = (, then SUP5, (a)>C & = 0
for every 0 < C < p(X) and A = 0 is not a point of continuity of 4;.

If A is an optimal configuration for problem (68), then v(A) =
v(E*f) and equalities (72) and (73) imply that

[ @) = / f(z) dp(a). (76)
A\E*!

E*f\A

Therefore, if we suppose that p(A\E*/) > 0, from (76) and (74) together
we obtain

w(B\A) sup a
§,(a)>C

IA
~—
""’1
L]

a.
=
E

or, taking into account (75),
#(A) ~ (AN ET) = p(A\ E¥) < p(E*\ A) = W(B™') - (AN EY),

which is in contradiction with the equality u(A) = p{E*/) = C. Hence
we conclude that u(A\ E*/} = 0 and therefore, we can write

~ [ t@ )= [ o [ ) 2 (BTN A) sup o

61(0))0

which implies that g(E*/ \ A) = 0 as well. Thus we have shown that
i(A & E*)y = 0 so finishing the proof.
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We remark that some pathologies arise in the characterization of op-
timal configurations as level sets of dv/dy when hypotheses of Theorem
11 fail. A few examples are now given attempting to clear this point.
Beyond of the technical impossibility of defining f-rearrangements when
§; is identically 400, the assumption §(d;) # @ is needed in order that
level sets might be admissible configurations for problem (68}. Consider,
for instance, the case X = (0,4+00), p(-) = || and f{z} = z. Since the
measure of level sets is infinite, the optimum sup,g)—c ¥(E) = +oo
is realized by no one of them because they simply are not admissible
configurations. Note, however, that v(E") = [, zdz = +oo holds for
certain not bounded measurable set E* with |E*| =C.

Neither can the requirement of §; being continuous at the point
SUP;,(a)>c @ be dropped from the statement of Theorem I1. For exam-
ple‘l it X = (Ol 1): -u'(') = || and f = X(o,1/2)» We _have 6}"- = X(-o00,0] +
3X(0,1) and SUP; (a)>17a@ = 1 . Thus, FF = (0,1/2) satisfies |} =
1/2 > 1/4 and therefore £} is not an admissible configuration for prob-
lem (68) with C = 1/4.

Qur last example shows that, in general, g-uniqueness of the optimal
configuration £*/ breaks down when sup,g)=c ¥(E) = +oo. In fact, if
we take X = (0,1), u(:) = || and f(z) = 1/z, we see that, for every
0<C<l,

+oo = sup v{E)=v((0,C))=v((0,C/2)U(1-C/2,1))
w(E)=C

while

(0, CY A (0, C/2)u (1 - C/2, 1)) # 0.

Now consider a topological space X equipped with the o-algebra of
its Borel sets. As before, ¢ and v denote two g-finite Borel measures
on X such that v is absolutely continuous with respect to . A Borel
subset B € X is said to be a pu -connected subset of X when there
exists a g-null set Z such that BU Z is connected. When every level
set F\ of a measurable function f : X — R is p-connected, we say
that f is a p-connccted function. Thus, for every level set Iy of a u-
connected function f, there exists a measurable set Z, with u{Z,) =0
such that Fy U Zy is connected. The concept of coalesce of measures
was anticipated in the introduction: the measure v is coalescent with
respect Lo ¢ whenever a connected optimal solution to problem (68) do
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exists for every C belonging to the range of u, 0 < C < p(X). We will
see that coalescence of a measure v with respect to g is closely related
to the p-connectedness of level sets of the Radon-Nikodym derivative

f=dv/du.

Theorem 12. Suppose that &;, the distribution function of f = dv/dp,
is continuous on its support. Then, the measure v is coalescent with
respect to yu provided that f is a p-connected function. Furthermore, if
the measure v is coalescent with respect to p and sup,gy—c V(E) < +00
for every 0 < C < p(X) belonging to the range of ju; then f = dv/du is
a p-connected function.

Proof. Assume that dv/du is a p-connected function and let be given
a 0 < C < p{X) belonging to the range of . Then, there exists a
measurable set E with u(E) = C and Theorem 11 shows that E*/ is
an optimal configuration for problem (68). By realizing that E*/ is a
level set of the p-connectedfunction f = dv/dv, we conclude that there
exists a p-null set Z such that £*/UZ is connected. Since u(E*/UZ) =
p(E*fy = C and v(E*fU Z) = v(E*)), the set E*/ U Z is a connected
optimal configuration. From the arbitrariness of 0 < C' < u(X) it follows
that the measure v is coalescent with respect to p.

To prove the converse, assume that sup,g)=c ¥(E) < +oc for every
0 < C < p(X) belonging to the range of u. It will be sufficient to show
that F;’ is u-connected for all A € (0, essupf). Now, if the measure v is
coalescent with respect to z and 0 < C' < pu{X) belongs to the range of 4,
then a connected configuration E¢ such that sup, g—c v(E) = v(E¢).

" - *f — + -
From Theorem 11 we see that E¢ differs from Ef = Fsupa,(apca only in
a p-null set and so, the level set Fit is ji-connected whatever be

SUPs, (a)>C &

0 < C < (X)) belonging to the range of u. If A € (0, essupf), then C) =
ds(A) obviously belongs to the range of y; moreover, the inegqualities
0 < Cx < p(X) holds. We affirm that FY differs from FJ, in

SUP§ (a) >0y @
a p-null set: ll".l fact, we !1a.ve SUPS (o) >Cy @ = SUP§ (a)>8,(0) @ < A and,
by the continuity of é;, 8;(A) =C)\ = JI(SUPJ,(abcA o), whence
Frcrd (77)

SUPS {a)> 6y @

and
+y —
.“(F,\ ) - u(Fstpa!{q,)C’\ ar)' (78)
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The assertion easily follows from (77} and (78), which finishes the proof.

Using a different argument, we proved in the Introduction that the
harmonic measure w({zo, %), R3, ) of the upper half-plane is coalescent
with respect to the Lebesgue measure on the real axis. This fact directly
follows from Theorem 12 by observing that the Poisson kernel (3) is a
quasi-concave function of z satisfying |Ny| = 0 for every A.

To end this paper, we remark that the Poisson kernel for the circle
B (0), expressed by

1 1-r?

P ;0) = — 0 1,0<8 <27
(r, 6:6) 27 1 ~ 2rcos(¢p — 8) + r2’ rer< s f <

is also a |-|-connected function when considered as a function on 8B (0)
or, what amounts the same, as a 2x-periodic function on R. Since con-
dition |Ny| = 0, A € R, is also satisfied by P, Theorem 12 applies
and the harmonic measure w((r, ¢), Bi(0), -) corresponding to the circle
turns out to be coalescent with respect to the Lebesgue measure on the
boundary 9B;(0).
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