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Nonlinear elliptic equations involving critical
Sobolev e:(ciponent on compact riemannian
manifolds in presence of symmetries.

Zindine DJADLI

Abstract

In this paper, we study a nonlinear elliptic equation with crit-
ical exponent, invariant under the action of a subgroup G of the
isometry group of a compact riemannian manifold. We obtain
some existence resulis of positive solutions of this equation, and
under some assumptions on G, we show that we can solve this
equation for supercritical exponents.

1 Introduction

1.1. Let (M, g) be a compact, smooth riemannian n-manifold, n > 3.
Let also ¢ € (1;22) real, and a, f and h be three smooth functions
on M. In a previous paper, Djadli [15], we were concerned with the
existence of smooth, positive solutions u to the equation

(E) Agu+au= fu%% + hu?

The goal here is to study the same problem, but in presence of symme-
tries. More precisely, we set Isomgy(M) the isometry group of M for the
metric g, and G a subgroup of Isom,(M). We assume in the rest of the
article that e, f and h are three smooth G-invariant functions. The goal
here is to study the existence of smooth, positive, G-invariant solutions
to (E).
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1.2. Let us now present the framework. We denote by CZ (M) the set
of smooth, G-invariant functions on M, that is

CEM)={ueC®M)VoeG uco=u}

where C°(M) is the set of smooth functions defined on M. We will
have to consider the Sobolev space H} (M), the completion of CF (M)
with respect to the norm

ol = ([ 19080000)) + ([ 1ot

1.3. The point here is that the presence of symmetries allows one to
improve some well known results concerning the best constant in the
Sobolev embedding and the Rellich-Kondrakov theorem. More precisely,
if one assume that G has at least one orbit of finite cardinality, Hebey
and Vaugon proved (see [27]), that it is possible to improve the value of

the best constant in the Sobolev embedding H g(M) < La=3 (M) (its
value has been obtained by Aubin [2]). The result is the following

Theorem A. Let (M,g) be a compact riemannian n-manifold, n > 3,
and let G be a subgroup of the isometry group of (M, g), Isomy,(M),
having at least one point of finite orbit. We set k = mingep CardOg(z).
Then 3B € R, such that for all u € Hy (M)

(/, |u|n—=dv(g)) < EO2 [ 1vuauig) + B [ wanlo)

where K(n,2) = [—2— (w, being the volume of the standard n-
n{n—2)wy

sphere of R"*!) is the best constant in the Sobolev embedding H, (R") —
L™ (R™).

1.4. Besides, if we now assume that all the orbits under the action of G
are infinite, Hebey and Vaugon (see {27]) have proved that it is possible
to improve the "exponent” of the embedding. More precisely, we have
the following theorem

Theorem B. Let (M, g) be a smooth, compact, riemannian n-manifold,
G a subgroup of the isometry group of (M, g), Isomy(M), and r > 1
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a real number. We assume that Vo € M CardOg(z) = +oo. Let
k = mingepm de".T,OGo(x) where Gy denotes the connected component of
the identity in G (the closure of G in Isomy(M)). Then, if

en—k<r: VYs>1 Hjgo(M)C L (M) with compact embedding

en—-k>r: V1<s< i“{,;’f_J{ HY (M) C L*(M) with compact
embedding if 1 < s < 5.3__——;_)%

-k
Note that —— < (n - )r . Roughly speaking, we can say that we

=7 . — N Ll
can increase the value of the critical Sobolev exponent when considering

H; (M) with G such that all the orbits under the action of G are
infinite.

2 Statements of the results

2.1. Following this distinction, this work will be divided in two sections.

2.1 The finite case

In this part, we assume that there exists at least one point of finite orbit
under the action of G. First, we prove the following lemma (a kind of
generic existence lemma)

Lemma 2.2. Let (M, g) be a compact, smooth riemannian n-manifold,
n > 3. We set Isomy(M) the isomelry group of M with respect to the
metric g, and let G be a subgroup of Isomy (M) having at least one orbit
of finite cardinality. We set p = :—"___'—g and let g € (1,p), and f, a, h be
three G-invariant smooth functions on M. We assume that f is positive
and that the operator A + a is coercive in Hy g(M). For v € Hy (M),
we define

1 1 f h
— il L v/ 2 T a? Y __ q+1}
B(w) = [ {5190l + v - —IloP* — o
and we set K (n, 2) the best constant in the Sobolev imbedding : H,(M) —
LPHY (M) and k = infzep CardOg(z) where Og(z) is the orbit of T un-
der the action of G. If there existvo € H g(M), vo>0sur M, v #
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0 such that

k
nkK (n,2)*(supy f)"F

(%) sup ¥(tvg) <
20
then the problem
Agu+ au = fu%:t-_% + huf?

ueC*M) , u>0 onM
admits a G-tnvariant solution.

According to this lemma, the problem reduces to the the existence of
some test function v satisfying the condition (x). Here, we will use, as in
Djadli {15], two kinds of test functions : local ones (the symmetrisation
of the test functions introduced by Aubin [4]) and the test function

identically equal to 1 (which is of course G-invariant). Using local test
functions, we prove

Proposition 2.3. Let (M,g) be a compact, smooth, riemannian n-
manifold, n > 4, and G a subgroup of the isometry group of (M, g)
having at least one orbit of finite cardinality. We consider a, f and h
three smooth G-invariant functions with f > 0 on M, and g € (1; %)
Let max f, be the set where f attains its mazimum and we assume that
3R € max f such that CardOg(Pp) = mingem CardOg(z). We also
assume that A; + a is coercive on H, (M) and that

max h(P)>0
{Pemax f such that CardOg(P)=minep CardOg(z))

Then the following problem
Agu+ au = fu%i% + hut

s €C®M) , u>0 onM
possesses a (G-invariant solution.

2.4. One can also deal with the case where

max h(P)=0
{Pemax f such that CardOg(P)=min g CardOg(r)}
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Pushing further the expansions for the test functions, we can prove the
following proposition

Proposition 2.5. Let (M,g) be a compact, smooth, riemannian n-
manifold, n > 4, and G a subgroup of the isomelry group of (M, g)
having at least one orbit of finite cardinality. We consider a, f andh
three smooth G-invariant functions with f > 0 on M, and g € (1; nt2),
Let max f, be the set where f attains its mazimum and we assume that

Ag +a is coercive on Hy g(M). We also assume that IFp € max f such
that

(1) CardOg(Po) = rréinl}CardOG(m)
xr
(i) h(Po) =0
2Scalg(Po) _ 8(n-1)a(Po} < Bgf(P)
(i4d) { "~ ) > SR if n2s
aipoi-—ﬁ‘ﬂ—l EP°<0 tf n=4

Then the following problem

Agu+au= fu% + hut

ueC®M) , u>0 onM
possesses a G-invariant solution.
Using the test function equal to 1, we prove the following

Proposition 2.6 Let (M,g) be a compact, smooth, riemannian n-
manifold, n > 3, and G a subgroup of the isometry group of (M,g)
having at least one orbit of finite cardinality. We constder a, [ and h
three smooth G-invariant functions with f > 0 on M, and g € (1; 2£3).
We assume that A, + a is coercive on Hy,g(M) and that T

(@) )

Then there exists ¢ € R} such that for all h € C& (M) satisfying

|jh[<s
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the following problem

n4t2
Agu+ au = f'u'ﬂ't_2 + hut

v€C®(M) , u>0 onM

possesses a G-invariant solution.

2.2 The infinite case

In this part, we assume that all the orbits under the action of @ are
infinite. Using theorem B of Hebey and Vaugon, we distinguish two
cases, leading to the following propesition and the following lemma.

Proposition 2.7. Let (M,g) be a smooth, compact, riemannian n-
manifold, n > 3. Let Isom,(M) be the isomeiry group of (M, g), and
let G be a subgroup of Isom,(M) such that

VzeM CardOg(z) = +o0

We set k = mingen dimOg, (z) where G denotes the connected compo-
nent of the identity in G (the closure of G in Isom,(M)), and we set
also

o _n=k42 .
p——m ifk<n-=-2

P" = 400 ifk>n-2
Let p € (1;p%), ¢ be a real number, 1 < ¢ < P, and f, a, h be three

smooth G-invariant functions. We assume that f is positive on M and
that Ay +a is coercive on Hy g(M). Then the problem

{Agu+a.u=fu”+huq
v€C®(M) u>0 onM

possesses a G-invariant solution.

2.8. This theorem gives immediately the existence of a solution because
here p is supposed to be subcritical for the embedding of Hy (M) «—
LP"(M). If we assume now that there is 2 critical exponent (i.e. in the
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case k < n — 2) and that p is equal to this critical exponent, we have
the following lemma (similar to lemma 2.2).

Lemma 2.9, Let (M, g) be a smooth, compact, riemannian n-manifold,
n > 3. Let Isomy,(M) be the isometry group of (M,g), and let G be a
subgroup of Isomgy(M) such that

Ve e M CardOg(z) = +o00

We set k = mingep dimOg,(z) where Gy denotes the connected com-
ponent of the identity in G (the closure of G in Isom,(M)), and we
assume that k < n — 2. Letq € (l;z-i"f-‘_f%_) and f, a, and h be three
smooth G-invariant functions. We assume that f is positive on M and
that A, + a s coercive on Hy g(M). For allv € Hy g(M), let

1 1 f L, h
Uiy = [ {Livpr s top2 - L—ropr—L q+1}
(v) ]{2|Vv| + 2au p+1|v| q+1|v|

where p = S=KX2. We denote by K the best constant in the Sobolev
embedding

Hig(M) « L5 (M)

(see theorem B). Then, if there exists vo € Hy g(M), vg > 0on M, vy £
0 such that

) I
Wit
- B S R

the problem Pge :

Agu+au = fu::k’?-g + hut

2 €C®(M), u>0 onM
possesses a (z-invariant solution.

2.10. Once again, using this theorem, the problem reduces to find a
test function vp satisfying the condition (). Here, using the function
identically equal to 1, we prove

Proposition 2.11. Let (M,g) be a smooth, compact, riemannian n-
manifold, n > 3. Let Isomy(M) be the isometry group of (M, g), and
let G be a subgroup of Isomg(M) such that

Ve € M CardOg{z) = +oo
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We set k = mingepn dimQgq,(z) where Gy denotes the connected com-
ponent of the identity in G (the closure of G in Isomy,(M)), and we
assume that k < n - 2. Letq € (l;mlgi and f, a, and h be three
smooth G-invariant functions. We assume that [ is positive on M, that
A, + a is coercive on Hy (M) and that

n—k—2

(_p&ﬁ:_ > K2y~ (o) =

Then there exists € € RY such that for all h € C*(M), G-invariant,

satisfying
| / hl<e

Agu+au = fu:--kf-25 + hut

the problem

v€C®(M) u>0 onM

possesses a (G-invariant solution.

3 The finite case - Proofs of lemma 2.2 and
propositions 2.3-2.6

3.1. Proof of lemma 2.2: The proof of the generic existence lemma 2.2
relies on the following variant of the mountain-pass lemma of Ambrosetti
and Rabinowitz [1], as used in the reference article of Brézis-Nirenberg
f10].

Mountain pass lemma. Let ® be a C! function on a Banach space

E. Suppose that there ezists a neighborhood U of 0 in E, v € E\U, and
a constant p such that

&(0) < p, ®(v) < p, S(u)>p foralluedlU

Set

¢ = inf max ®(w)
PeP weP

where P denotes the class of continuous paths joining 0 to v. Then there
exisls a sequence (u;) in E such that ®(u;) — ¢ and ®'(u;) - 0 in E~.
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With such a lemma, the proof of lemma 2.2 proceeds as follows. As one
will see, only minor modifications with respect to what has been done
in Brézis-Nirenberg [10] are needed. First we set

g: MxR—= R
(2,8) = glz, ) = —a(@)t + h(z)|tl°

and for s € R, we set

G(z,8) = f;g(z,t)dt

with the convention that G(x,s) = 0 if s < 0. Let u be large enough so
that forall z € M and all t € R}

g(z, )+ f(2)f" +ut > 0
This implies that g > a(:c) for all z in M. For ¢ € Hy o(M), we define

1
1) = [ {5196 + Jus - ) - Glg) - Guleh?)
Clearly J is C! on H 1,G(M ) and its differential is given by
Typ= f {VioVip+ e - F(*)P0 + apto - h(p)7e - p(v)e)

Since p > ¢ and M is compact, one gets that for all £ > 0 there exists
C. such that for all ¢ > 0
he? < ep+ Cep?
Then 1 1 c
) ¢ _lglot)? 4+ Se(wt)2 £t Pl
Gl ¢*) < =50+ 5e(0)? + =5 (6")
and it follows that for all ¢ € H; (M)

1 SIS SREEU S SR S PRy
2/{2IV¢E+ a(w)+2u(so) 26(90)
Ce

r+l _ p+1
P = S

> | {§|V<p12+ 5a(#) }

—/{%e(tp*)"‘-k;%(w*)”*‘ p+1f(so )”“}

209
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since p > a. Furthermore, by using the coercivity of A; + a, we have
for £ small

I(0) 2 kligllh, , - € [ (et

where k > 0 and C > 0 are positive constants. Then, using the Sobolev
embedding theorem

J ()

v

kleliy, o — Cllellbia
kllellt, o — CllellE
where C" > 0. Letting U = By(r) in H; (M), one then has that for r

small enough, there exists p > 0 such that for all u € U, J{u) > p. In
addition J(0) =0 < p, while for ¢t > 0and p € H; o(M), ¢ > 0,0 Z0,

v

Jip, J(69) = ~o0

(since f is positive on M and p > ¢). This proves that the assumptions
of the mountain pass lemma, are satisfied with v = t¢ for ¢ large. As a
consequence there exists (u;) € (Hy g(M ))N such that

J(ttj) -+ C
Jy; =0 strongly in (H, g(M))’

where

= inf max®(w) >
o= et 2 e

and P denotes the class of continuous path joining 0 to v. Furthermore,
taking ¢ = vg (given by lemma 2.2), and according to the assumptions
of this lemma, one can assume that

k

c < n—2
nK(n,2)" (maxa ) 7

Now we claim that (u;) is a bounded sequence in Hy g(M). According
to the mountain pass lemma we get that

1 1 1 1
J{G1V08 + g - = 7w = GO ) - (7} = e+ ol1)

(3.1)
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and that [|Jy, ||z — 0. Since
Ji. to u;, we obtain
¢

Ji, uj| < 1%, Rerluslla, o, and applying

[ {19t +ud = gl whu—m(e)*} = Huillan o) 32)

Taking (3.1) — 3(3.2), one then gets that
Loyt _ L eobyett _ g gty 4 ;)
{GH@hP - S ™ = Gluw) + 5oy

= ¢+ o(1) + flu;15, c0(1)
so that
Lyt = {Guh) - Lo(oudui} + e+ o1) + lluslla, go(D)
= oty () + e+ o(1) + llujlia, go(1)
Since f > 0 on M, there exists C > 0 such that
C q-1
2 [whrtt < st IEH™ + e o) + sl oot

But p+1 > g+1. Hence, there exists C, > 0 such that for all nonnegative
t, t911 < etPt1 4+ CL. Then

< (g—1)e
2 [t - sup o) [ < Constant-+lu; i o(1)
and
C q-— 1)
(- LB wup ) fu1 < Consant + sl oo
But for £ small enough
C qg-— 1)8)
Q) >0

Hence,
f (u})?+! < Constant + Cjllu;lln, o
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with lim;,, C; = 0. Now according to (3.1)

[{1vust+gmi = [{ = rwhm 60w buwh?}+orof)

and clearly

1
§inf(1’”)”ui”%f1,c < Constant/( 1P+ < Constant + ”“J"cho(l)
Finally
‘ ”“J’”Hl ¢ < Constant

where the constant involved in this inequality is independent of j. The
sequence (u;). gy is then bounded in H) g(M), and this proves the
claim. By classical arguments, we can now extract a subsequence, still
denoted by (u;), so that (for a certain u in H, g(M))

u; = u  weakly in H (M)
u; = %  strongly in L"(M) for all given r < p+ 1

u; > u a.e on M

Note here that

(uf)? = (u*)? a.e. on M

Jawm™ = fappr<c

By a classical result of integration, one then gets that ( Hr 5 (ut)?
weakly in LPt(M). In addition y g(z, u"‘) — g(z,u?) wea,k]y in Lp+1(M)

since (u;) converges strongly in L‘?(M ). Taking the limit for j — +oco
in the following equality

while

. 1
/M {V.—u,-v ¢+ pujp ~ fuf)Po - g(,uf)p - 5#“3'9"} =Ju;-@

we get that for all ¢ € H, (M),

/M {ViuV‘fp +uup = f(ut)Po - g(, u)p - putp) =0
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According to the Hopf maximum principle, z > 0 on M.

3.2. Now, to use the classical results of regularity, we must prove that
u satisfies this equation weakly in H;(M). In this aim, we consider
v € H (M) and we set G the closure of G in Isomy. Then uoo = u a.e.
on M. We denote by do the Haar measure on G and we set

B(z) = /C;v(a(a:))da
for all z € M. One can easily see that © is G-invariant. It follows that
[ {ViuVif; + aut — fufo — huqf)} dv(g) =0
M

since © is G-invariant. Hence

0 = fM{V;uV* (T;a;/;;v(a(m))da) + au (faldafcv(a(x))da)
. (fclda j; v(a(z))dcr) - hu? (fclda [3 u(a(z))da)}dv(g)
= fc;.lda fM {V,—uvi ([G'v(a(m))da)drau (/Gv(a(z))da)

- fuP ( .[G v(a(z))da)-—huq ( f,; u(a(a:))da)}dv(g)

Bu
t v ( L v(a(z))da) = [3 Viv(o(z))do

Henceforth

[ [19a¥ we@) +auvlo@) ~ fo# (v(o()
MJG

—hu? (v(o(z))}dodu(g) =0

Thanks to the Fubini’s theorem, we get

[, [ AT o)) +au (oo (=) - 10 (oo (a)

—hu? (v(o(z))} dv(g)de =0
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But the integral on M doesn’t depend on o € @ since a, f, h and v are
G-invariant; then we have

f {V.'uV“v + auv — fuPv —huTv}dv(g) =0
M

for all v € Hy(M). Hence, u is a weak solution in H; (M) of the equation
Au+ou = fuf + hu?

Now, by classical regularity theorems, u is C*® on M and, as we said, u
is a non-negative solution of the equation

Agu = fuP — g{.,u)

Once again, by the maximum principle, either u = (), either u > 0 on
M. Moreover, by construction, u is G-invariant.
Let us now prove that u # 0.

For this aim, we use the following assumption of lemma 2.2 : Jy, €
H, g(M}, vo # 0 such that

k
nK(n,2)*(sup f)"!;—2

sup ¥(tvg) <
>0
(we recall that k = infyep CardOg(z) where Og(z) is the orbit of z
under the action of G). First note that

k
nK(n,2)*(sup f)!‘;—2

sup J(fvg) <
120

since vg > 0. Then

k
c< n—2
nK(n,2)"(sup f) "7
where
c= j}il_:loo J(u;)

Independently, assume that u = 0. It, follows that

[ sttt = [{=atwh)? + aatyr+)
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and then, since % = 0 and u; — u strongly in L(M) :

Similarly
[etuh 0

Up to a subsequence, we can assume that [|Vu;|? — [ since (u;) is
bounded in H;g(M) and u; — 0in L?(M). Taking the limit in (3.2),
we get

ff(u;-*’)p"'l =
and according to (3.1) :

1 1 l=c¢
2 p+1
that is
1
~l=c¢
n

Besides, thanks to theorem A, we have

1 2

||fP+1 ﬂ;.”g.,.l < (SUP f)ﬁl ”ulllg-}-l

K(n.2)?
kw

IA

2
llu;ll, o (sup £)7T + Constant||u; I3

and taking the limit, since ||u;||; = 0, we get

P
K(n;Z) > 1 2 e
ke (sup f)7+

that is

K(n,z)i 2 1

ks (sup f)7+

Hence

c > k

2

= K (n,2)"(sup ) 2
which is a contradiction. This ends the proof. [ |



216 Zindine Djadli

According to lemma 2.2, the problem reduces to the existence of some
test function vp in H, (M), satisfying the condition (x). Let us now
construct such a test function. Let P € M where f achieves its maxi-
mum. We assume that

CardOg(P) = igLCardOG(m)
in other words, we assume that P is a point of minimal orbit. We set

Og(P)={h,..., B}
For each P; we consider ¥}, defined by

: 1-2 —cosag\ 172 _
i (Q) = (& +1=sger) 7P - (4 =) T vQ € Br(9)
Ym(Q) =0 VQ € M\ Bp(5)
where r = d(P, Q), Scaly(F;) = n{n—1)a?, 4}, with compact support in
Bp, (), and where § is fixed such that [e}é < 7, less than the injectivity

radius of M and such that Bp,(28) N Bp,(26) = @ for all ¢ # j.
We set

k

=1
Clearly vy, is G-invariant. One easily checks that for all t € R* :

Yin k ¥,

=3 Wt
Vi) = 2 Y i)
But .
Il = & X (1661 lp41
foralli€ {1,...,k}. Then
' k¥ ‘dJl
V) ,Z:: ‘kuwmupﬂ) Ceonioe)
that is
- £21 WL . t21 ( $L )2
—_— V _rm —_— —_—r
V) = ) 5y o
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p+1k? Ju |'¢}nllp+1 g+ 1k% Iy [k llp+1
Thanks to what we said previously and the computations of Djadli [15],
we can give the expansion of \F(t"ﬁ";) forn>35

Ym 1 18 1 1 o1 1, Scalg(P)? 1
¥t Ihz‘mrlml_ Km27ks prim O - H(n(n—4)K(n,2)2E

__ Am=Da(P}? 1 AfPeH |

nin—2)(n-4)K(n,2)%k  2n kP

, 1 1
—Clh(P)mItq+l -k—q -+ o(a)gl (t)
where
g1 € CP(RY) 91{0) =0

Ci >0 is a constant independent of m

7 =T 1€ (-10)

In the case n = 4, we have

\p(t_d’;ﬂ&_) __ L 18 1 f(p)_l_tl’+1+
Nbmllerr— K(n,2)2k2 p+1 k?

logmlfa[P) ln—lesmlglE): 2
w2 16(n — 1) Cit

1 1
t lig+1
—Cih{(P)m’t* i O(E)yz(t)

where
92 € C*(R*) g2(0)=0
C1>0,C1 >0 are two constant independent of m

_(n—2)(¢g—1) _
- 4

! le(-1;0)

3.3. Before proving propositions 2.3-2.6, we prove the following techni-
cal lemma, useful in the proof of propositions 2.3 and 2.5.
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Lemma 3.4. Let 1 < g < p= 2£2 and A > 0, B > 0 be given real
numbers. For m € IN*, let also A(m), B(m) and C(m) be real numbers
such that A(m) - A, B(m) - B and C(m) = 0 as m — +oo. We
define

F(t,m) = A(m)t* — B(m)**! - C(m)t*!

Then, for m large, one has that there ezists t,, such that
F(tm,m) = I?;i)XF(t'm)

1

with the additionnal property that if to = (rp%f‘j-B-) P=T then t,, — to as
m — +o00. Furthermore, if A(m) = A + O(m®), B(m) = B+ O(m?)

and C = O(m®), for some s < 0, then t,, = to + O(m®}.

Proof of lemma 3.4: For m large enough such that B(m) > 0, one
has that

lim F(t,m) = ~o0

t—=+too

As a consequence, there exists £, > 0 such that

Fltm,m)= I?iggc F(t,m)

Furthermore, one clearly has that there exists T' > 0, independent of m,
such that for m large enough, ¢, < T. In the same order of idea, one
clearly checks that there exists ¢ > 0, independent of m, such that for
m large enough, t,, > €. Suppose now that a subsequence (tm,) of (tm})
converges to some ¢{. Then we have
I__l;l}'*_l'loo F(tm‘-, m;) =0
so that
2Ai = (p+ 1)Bi*

Hence, t = ty, where tg is defined in the statement of the lemma. Clearly,
this proves that t,, — tg as m — +oo. On what concerns the second
part of the lemma, let us now write that t,, = tg + 0, with 6, = 0 as
m — +00. Since F(t,,m) = 0 for all m, one has that

2(4+0(m") = (p+1)(B+0m) B (1+ %;"1)
+(g+1)0(m®) (to + )"~
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Hence, _
—1 [/ p-1
24 4+ O(m®) = (p+ 1) Bt} (1 + t_)
0

and since 2A = {p+ 1)Bt5~", and

-1 -
(1 + 0—"‘) —1+2= g, 4 O(fm)
to to

one gets that 8, = O(m?®). This ends the proof of the lemma.

3.5. Proof of Proposition 2.3: We assume that n > 4 and that

max h(P} >0
{PeMazf such that CardOg(P)=min gp CardOg{z)}

In other words, we assume that there exists P € max f such that i(P) >
0 with P of minimal orbit. We choose such a point to construct the ,,’s,
and we set

( ) = (t m) == A(m)t2 _ B(m)tPH _ C(m)t’”’l
||¢m||p+1

There,
A(m) = %f{W( S + a(2) (pif)?) > 0

B(m) = p-l-l I f(ps P+i)p+l >0
Clm) = [ b ()T

and (see Djadli {15])

1M o 400 B(m) = —l- f(P) B>0

Let t,, and £ be as in lemma 3.4. According to the above estimates,

Ym 1o, 1
vl — T —— — (P —Cih(P tq“ !
(mll¢mn,m1—Kh 2)%k 2 p+1kpf( LA (P)m' +o(m')
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with C{ > 0 and h(P) > 0. One can then write for m large

Y 1 1 1 +1
bp— ) K (P
“I|¢m!|p+1) K(n,2)%k 2 p+1ka( Pt

1 12 1 1
& — Pyt
= K(n,2)2k2 p+1kr

¥ (

As a consequence

Ym ) < k
li#bmllp+1 nK{n,2)"(sup f)“z;2

U(tm
and condition (x) of lemma 2.2 is verified. This ends the proof of propo-
sition 2.3.

=

3.8. Proof of Proposition 2.5: First we assume that n > 5 and that

max h(P)=10
{PeMezf such that CardOg(P)=min g CardOg(z)}

Let P be some point of max f of minimal orbit for which h(P) = 0.
According to the above expansions, we have

!ém l 1 t2 l. 1 1 SCGI 1: t2 1
— p+l e tg

( T —_ (P)t __( 5

Il¢m"p+1 K(fl,?) k2 p-|- 1 kP m n(n - 4)K(n,2) k

dn-1a(P)t2 1 A f(PprH! 1 (
“n(n-2)(n-4)K(n,2)?k 2n )+ )

By lemma 3.4, one can write t,, = to+ (L) with 5(%) = O(%). Hence

“ onllort K(n,2)2k 2

1 1 1_Scal (P)(to +O(1))% 1
- = p+l _ = =
p+ 1kP (Pt m' nn-4)K k

(n,2)?

Ll

i(ﬂ_-lli(ﬂ(LniQ(.,%.].)z_l _ Agf(P){tat O(L))PH! 1
T Ta(n—2)(n-0)K(n,2)? k on ) Tol )
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and
U 1 1¢
Y(pim———) = ———==2
 nllp) ~ Km,27k 2
- L_l._ P+l 1 S.ml.;.(ﬂ).tg 1
p+1 ka(P)tm m (n(n - 4)K(n,2)%k
o An-T)a(Pif 1 AT 1) 1
n(n—2)(n—4)K(n,2)*k 2n kr m
Now assume that
SealgP)§ _ Aln_1a(PMf  AJ(PMEY 1
n(n —4)K(n,2)? n(n-2)(n-4)K(n,2)? 2n kr—1
that is

2Scal,(P) _ 8(n~-1je(P) S AL F(P)
n—4 (n-2)(n-4) J(P)
Then, for m large,

U i 1¢2 i 1 "
i 1) < Kmaike  pxie! Elitn
m||¢m||p+1) K({n,2)2k 2 p+1kpf( )
1 183 1 1 1
S Kmorke prikd o

v

so that, for m large,

Ym 1

Y Gl < K 2y o 1)

This is condition (*) of lemma 2.2. In the case n = 4, the arguments to
obtain such an inequality are similar to those just developed. This ends
the proof of proposition 2.5.

3.7. Proof of Proposition 2.6: As a test function, we use here the
constant function 1. For a fixed t > 0, if we note C; = ¢, we can write

‘I’(Ct = — a-

t? tp+l tq-i-l
2 p+1 q+1 [
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We set ,
A:ja,,é:[f,é:/h
Then
wey=ta- Tl e
(=3 p+1°  q+1°
One clearly has
A B 1]
W(C,) < =2 ~ P+l gatt
G <t - T ora
Setting
A B IC|
Ft) = o2 — —=—rtl | —Lygatl
® 2 p+1 +';H-l

we compute
F'(t)= At - Bt* + |C|t7
Hence, if 24 < BtP~! and 2|C|t9~! < Bt*~! we will have F'(t) < 0.

That is, if
24 _1_ 2|C|,

0>t and oz (Hk
then F'(t) < 0. We set
7" = max((22)77, ()

One has that F is deacreasing in [T”; +oo[ and that its maximum is
attained in ]0; 7’]. Now let t be such that

¥(Cy) = sup ¥(C)
>0
One has easily

i, B ¢
Fty) = 8-t + —q' +'1t£$+‘
LAFT 18] ven
-5+ ™
nRy1 g+1

A
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Assume that
1 __,z )
nK (n,2)"(sup f)"z;2 n By
that is [f
L5 n n
(G > K 2(f o)f
Assume also that
= N
|C| T'q-’.l < !. _— lAP;l
g+1 nK(n,2)"(sup f)*T 7 BT
that is
- +1
¢l < g B - AYK(n,2)"
Icl nK (n,2)* B2 (sup f) "5 { (m,2)"(sup ) } T"1+1
One clearly gets
- : 11’%} -~ n-~1 n=32
1€ < g +1)B = {87 - 43K, 2)"(sup )7 }

nK(n, 2)"1-;'1;_2 (sup f) 7 (24) =

in the case where T’ = (34)77 and

223
5 (q + 1 Bp-o =2 aea .
¢ B AYK(n,2)" 5
el < ( K(n 2)“(supf)—r2p-q { e (n,2)"(sup f) })

in the case where T = { 31—1; ) PTG. This ends the proof of the proposition.
a

Remark 3.8. ¢ in the previous proposition, depends on the dimension
of the manifold, of G, of f),a, of [y, f, of maxpy f and of g. More
precisely if
ghl_n=2
k(g+1) (Jy NP7 =
1
nK(m, 27 eup J) 2 2 Tos a)Ft

{(/‘Mf)%z - (fM") K(n K2 (oup 1) }

Ch
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o = (k(q+1)(fo)§*%"‘2;2
2 - n-2 g1l
nK(n,2)"(sup f) 7 27~4

{(fo)_ ) (/M) ﬂfﬁ(ww)%‘?})ﬁ

then we can take € = min {C;, C;}.

4 The infinite case - Proofs of lemma 2.9 and
proposition 2.7 and 2.11

In this section, we assume that

VzeM CardOg(z)=+00

Proof of proposition 2.7. The first part of the proof (to prove that
there exists a positive, smooth solution of the equation), is similar to
that of lemma 2.2. We omit it.

Let us now prove that u # 0. Setting v; = u; — u, we have

vt = [ 1vur+ [ 190+ o)

/M(u;)pﬂ=/Mup+l+[M(U}i-)p+1+o(l)

since the embedding H, (M) < LP*!(M) is compact. Then according
to (3.1) and (3.2), since u; — u strongly in L" (M) forall 2 < r < p+1:

and

s+ [ {3190} = e+ o)
and
[M {qu|2 + au? — fuPt! — huq"'l} + [M {|ij|2} = o(1)

It follows that

[, 190 = o(1)
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and consequently
J(u)=c

But ¢ > 0. Then u Z 0 and « > 0 on M. This ends the proof of the
proposition.

4.1. Proof of lemma 2.9: The proof is the same that the proof of
lemma 2.2. Of course, instead of using theorem A, we use theorem B,

4.2. Proof of proposition 2.11: The proof is similar to that of
proposition 2.6. We omit it.
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