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Strict uniformization of real algebraic curves
and global real analytic coordinates on real
Teichmuller spaces.

J. HUISMAN

Abstract

We construct a global system of real analytic coordinates on the
real Teichmiiller space of a compact real algebraic curve X, using
so-called strict uniformization of the real algebraic curve X. A
global coordinate system is then obtained via real quasiconformal
deformations of the Kleinian subgroup of PGL;(R) obtained as a
group of covering transformations of a strict uniformization of X.

1 Introduction

The object of this paper is to construct a global system of real analytic
coordinates on the real Teichmiiller space of a compact real algebraic
curve.

In the litterature one can find several global systems of complex an-
alytic coordinates on the complex Teichmiiller space T'(X') of a compact
complex algebraic curve X [3, 5, 8, 9, 13]. If the complex algebraic curve
X can be defined be polynomial equations with coefficients in R, then
the Galois group ¥ of € over R acts naturally on T(X). Some of the
fore-mentioned coordinate systems then, are equivariant with respect to
the £—action on T(X) [3, 5, 8, 9] and hence, induce global systems of
real analytic coordinates on the real Teichmiiller space (X ) of the real
algebraic curve X . These coordinate systems are relatively complicated.
For example, it seems not feasible to determine explicitly their image-
which would have its interest in questions concerning moduli spaces of
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real algebraic curves. _

One can hope to find a more simple coordinate system on T'(X)%
by constructing a global system of real analytic coordinates on T(X)*
which does not necessarily extend to a global system of complex analytic
coordinates on T(X). This is indeed the case, as we will show in the
present paper. .

The idea of construction is roughly the following. Given a compact
real algebraic curve X of genus g > 2, there is a uniformization p: Q — X
of X by an open subset Q of the Riemann sphere P!(C} having the
following properties.

1. The map p is a holomorphic covering map.

2. The set 2 is stable for the action of the Galois group £ of € over
IR and the map p is equivariant with respect to the action of .

3. The inverse image p~'(X ) of the set of real points X% of X is
equal to Q N P(R).

In fact, p is universal among all uniformizations of X having the above
properties. Such a uniformization will be called a strict uniformization
of X. Such a uniformization of a real algebraic curve seems to have been
considered for the first time in :

Koebe, P.: Uber die Uniformisierung reeller algebraischer Kurven. Nachr.
Akad. Wiss. Gottingen (1907), 177-190.

Let G' be the group of automorphisms of the covering p of X which are
equivariant with respect to the action of X on £2. Then, G turns out to be
a Kleinian subgroup of PGL;(R) and its quasiconformal deformations
in PGL2(R) turn out to parametrize the real Teichmiiller space of X.

The group G' is what we will call the strict fundamental group of X
and has a particularly easy presentation. If X does have real points,
then G is a free group on g generators. If X does not have real points,
then G is a group on g + 1 generators satisfying a simple relation. In
both cases, one can easily construct a global system of real analytic
coordinates on the real quasiconformal deformation space of G. That
coordinate system will then give rise to a global system of real analytic
coordinates on the real Teichmiiller space of X. The image of the latter
coordinate system will be studied in a forthcoming paper [10].
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The paper is organized as follows. Section 2 introduces briefly the
equivariant theory of topological covering maps and introduces the strict
fundamental group of a transformation space. Section 3 relates so-called
strict equivariant coverings of a transformation space to ordinary cover-
ings of its quotient. Section 4 determines the strict fundamental group
of a compact real algebraic curve. Section 5 recalls what uniformization
of a real algebraic curve by the double half-plane is, That is then used in
Section 6 to prove strict uniformization of compact real algebraic curves.
All this is then used in Section 7 to construct a global system of real
analytic coordinates on the real Teichmiiller space of a real algebraic
curve.

Convention. A Riemann surface is not necessarily connected nor com-
pact.

2 The universal strict equivariant covering

Let  be any group. A I-space is a topological space X endowed with
an action of ¥ such that every element of ¥ acts continuously on X. A
subset U of X is said to be stable if 0 -2 € U for all v € U and all
o € X. A T-space X is said to be.equivariantly connected if § and X are
the only open and closed stable subsets of X. If X is locally connected,
then X is equivariantly connected if and only if ¥ acts transitively on
the set of connected components of X.

A continuous map f:Y — X of Z-spaces is said to be equivariant
if flo-y)=0-f(y)forall y €Y and all ¢ € £. An equivariant base
point of a I-space X is an equivariant map b: X — X. Let X and Y
be Y-spaces and let b and ¢ be equivariant base points of X and Y,
respectively. An equivariant map f:Y — X is said to be equivariant
base point-preserving if f o c = b. We denote this by f: (Y, ¢) -+ (X, ).

An equivariant covering of a L-space X is an equivariant map p:Y —
X of E-spaces which is a covering map. Recall that a morphism from
a covering p:Y — X into a covering ¢:Z — X is a continuous map
f:Y — Z such that go f = p. A morphism of equivariant coverings is
a morphism of coverings that is equivariant.

An equivariant covering p: (X, b) = (X, b), where b and b are equivari-
ant base points, is said to be a universal equivariant covering of X if, for



50 J. Huisman

every covering ¢: (Y, ¢) = (X, b}, there is a unique morphism of equivari-
ant coverings f: (X, ) = (Y, ¢) such that go f = p.

Let X be a ¥-space, and let b be an equivariant base point of X.
Suppose that X has a universal equivariant covering p: (X,b) — (X, ).
By the universal property of such a covering, the group Aut(X/X) is
uniquely determined by X, up to unique isomorphism.

Definition 2.1. The group Aut( X/X) of automorphisms of the equivari-
ant covering X of X is called the equivariant fundamental group of X,
and 13 denoted by w (X, Z;b), or simply by m (X, X).

The following proposition gives a criterion for a universal equivariant
covering to exist. For a proof, one is referred to [8].

Proposition 2.2. Let X be a locally and equivariantly connected -
space. Let b be an equivariant base point of X. Let X, be the connected
component of X containing b, for all o € L. Then, the following condi-
lions are equivalent,

1. The E-space X has a universal equivariant covering.
2. The topological space X, has a universal covering for all o € L.

Moreover, if one of these conditions is satisfied, a universal equivari-
ant covering p: (X b —+ (X, b) is Galois; i.e., the map p induces a
homeomorphism :

X/m(X,Z) = X

An equivariant map f:Y — X of X-spaces is said to be strict if
f maps any Z-orbit in Y bijectively onto a L-orbit in X. The map
J is a strict equivariant covering if f is an equivariant covering map
that is strict. A morphism of strict equivariant coverings is a morphism
of equivariant coverings. Note that such a morphism is automatically
strict.

A strict equivariant covering p: (X,5) — (X,b), where b and b are
equivariant base points, is said to be universal strict equivariant covering
of X if, for every strict covering ¢:(Y,c) — (X, b), there is a unique
morphism of strict equivariant coverings f:(X,b) = (Y,c¢) such that
go f=p.



Strict uniformization of real algebraic curves... 51

Let X be a X-space, and let b be an equivariant base point of X.
Suppose that X has a universal strict equivariant covering p: (X, b) —
(X, b). By the universal property of such a covering, the group Aut(X/X)
is uniquely determined by X, up to unigue isomorphism.

Definition 2.3. The group Aut(X/X) of automorphisms of the strict
equivariant covering X of X is called the strict fundamental group of
X, and will be denoted by o,(X,%;b), or simply by o1 (X,L).

We will deduce from the following lemma a criterion for a universal
strict equivariant covering to exist.

Lemma 2.4. Let X andY be locally connected L-spaces. Letp:Y — X
be an equivariant covering. Then, there is a strict equivariant covering
7Y = X, and a morphism of equivariant coverings f:Y — Y having
the following universal property. For any sirict equivariant covering
q: Z — X, and any morphism of equivariant coverings g:Y — Z, there
is o unique morphism of strict equivariant coverings g: Y — Z making
the following diagram commutative.

Yy L Z
Nt i)

Y

Proof. Let S be the subset of the fiber product Y xx Y consisting of
all pairs (z,y) such that z and y belong to the same X-orbit in Y. Let
R be the smallest open and closed subset of Y x x Y containing S and
which is an equivalence relation on Y. Observe that such a subset exists
since Y xx Y is locally connected. Let Y be the quotient Y/R. Let f
be the quotient map from Y onto Y. Since the equivalence relation R
is contained in Y xx Y, the map p factorizes through f, i.e., there is a
continuous map § from Y onto X such that po f = p. Smce R is an
open and closed subset of Y x x Y, the map 7 is a covering map.
Consider the natural actionof Zon Y xx Y. Obviously, -5 =S
for all ¢ € &. Hence, - R also is an equivalence relation on Y, open and
closed in Y Xx Y and containing the subset S. Since R is the smallest
equivalence relation having this property, one haso-R C Rforall o € X.
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It follows that the action of & on Y induces an action of ¥ on Y and
the maps f and p are equivariant.

Since the equivalent relation R on Y contains the set § , the equivari-
ant covering map p is strict. We show that this strict equivariant cover-
ing of X satisfies the required universal property.

Let g: Z — X be a strict equivariant covering of X and let ¢:Y — Z
be a morphism of equivariant coverings of X. Consider the equivalence
relation B =Y xz Y on Y. Since g o g = p, the set R is a subset of
Y xx Y. Since the covering g is strict, S C R’. Moreover, R’ is open and
closed in Y x x Y since the map g is a covering map of Z. It follows that
R is contained in R’ and, hence, that there is a unique continuous map
§ from Y into Z such tha,t go f=g. It is clear that § is equivariant.

Proposition 2.5. Let X be a locally and equiveriantly connected %;-
space, and let b be an equivariant base point of X. Let X, be the con-
nected component of X containing b, for all 0 € L. Suppose that the
topological space X, has a universal covering for all o € B. Then, the ©-
space X has a universal strict equivariant covering p: (X,b) — (X, b).
Moreover, this universal sirict equivariant covering is Galois; i.e., § in-
duces a homeomorphism

X/e1(X,5) = X.

Proof. By Proposition 2.2 there is a universal equivariant covering
P (X, b) = (X, b) of X. It follows readily from Lemma 2.4 that the
mduced strict equivariant covering

P (X,0) — (X,b)

is universal. 1t also follows from Lemma 2.4 that the the action of
71(X, %) on X induces an action of 71(X,T) on X. Since the latter
action is one acting by automorphisms of the strict equivariant covering
p, one has induced surjective maps of the quotients

X/m{X,5) — X/m(X,5) — X/o1(X,5) — X.

According to Proposition 2.2, the composition of these maps is a homeo-
morphism. It follows that each of the above maps is a homeomorphism.
In particular, p induces a homeomorphism from X /o, (X, Y) onto X.
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3 Universal coverings and universal strict
equivariant coverings

It will be useful to relate strict coverings of a E-space X to ordinary
coverings of the quotient space X/Z. First, we need to introduce some
notation. .

Let X be a X-space. Denote by SCovx the category of strict equivari-
ant coverings of X and denote by Covx;y the category of coverings of
the topological space X/X. One has a functor

F: Covgjx — SCovx.

Indeed, let 7: X — X/ be the quotient map. If f:Y — X/Eis a
covering, the fiber product Y xx/z X is a topological space on which
¥ acts diagonally. The projection on the second factor from Y X /g X
onto X is an equivariant covering of X. We denote this map by fx. It
is trivial to check that fx is a strict covering of X. Define the functor
F on objects as F(f) = fx. It is clear what the functor F' should be on
morphisms.

Recall that an action of a group T on a topological space X is said
to be discontinuous if for all z € X, there is an open neighborhood U
of 2 such that

1. (e-U)CUforall o € ¥;, and
2. (o-UYNU =0 for all 0 € £\X,

where ¥, denotes the stabilizer of z.

Proposition 3.1. Let X be a locally connected -space. Suppose that
T acts discontinuously on X. Then, the functor F:Covyx/z — SCovx
is an equivalence of calegories.

Proof. We define a functor
G:SCovx — Covyyx

as follows. Let g: Z — X be a strict covering of X. One has an induced
map f: Z/E = X/¥ and one needs to show that f is a covering of X/¥.
It will then follow that G(g) = f defines a functor from SCovx into
COVX JT-
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Let z be any element of X. Let U be an open neighborhood of such
that (c-U)C U forallo € &, and (o - UYNU =P forall o € B\,
Since g is a covering, the inverse image g~ HU) of U is a disjoint union
L;e;s Vi of open subsets V; of Z. Moreover, the restriction of ¢ to each
V: is a homeomorphism onto U.

Since U is stable for the action of ¥, the inverse image g~} (U) is
also stable for the action of .. The topological space X being locally
connected, we may assume U to be connected. Then, each V; is con-
nected. Let y; be the inverse image of z in V;. Since the covering g is
strict, y; is a fixed point of ¥;. By connectedness of Vi, the open subset
Vi of Z is T,-stable.

Since (o -U)NU = @ for all 0 € £\E,, the quotient U/L, is an open
neighborhood of 7 (z) in X/X. Similarly, g=1(U)/%, can be considered
as an open subset of Z/X. The inverse image of U /Xz by fis equal to
this open subset of Z/X. The quotient g~1(U/ )/ is equal to the disjoint
union of the quotients V; /X, each of which is mapped homeomorphically
by f onto U/Z,. Therefore, f is a covering map.

It is easy to check that the functors F and G are quasi-inverses of
each other.

Corollary 3.2. Let X be a locally and equivariantly connected L-space.
Suppose that X acts discontinuously on X. Let b be an equtvariant base
point of X. Lel .

P (X, 8) = (X, b)
be a strict equivariant covering of X. Denote by
P (X/%,8) » (X/5,B)

the induced ordinary covering of the quotient space X /T, where b and b
denote the induced ordinary base points of X /T and X /X, respectively.
Then, § is a universal strict equivariant covering if and only if p is a
universal covering. In particular, the following conditions are equivalent.

1. The E-space X has a universal strict equivariant covering.

2. The quotient space X/X has a universal covering.
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Moreover, if one of these conditions is satisfied then one has an isomor-
phism
0'1(X., 2) = WI(X/E)

of fundamental groups.

Remark 3.3. Observe that Propositions 2.2 and 2.5 and Corollary
3.2 show the following statement. Let X be a locally and equivariantly
connected ¥-space. Suppose that ¥ acts discontinuously on X. If all
connected components of X admit a universal covering, then the quo-
tient X /¥ admits a universal covering.

4 The strict fundamental group of real alge-
braic curves

Let ¥ be the Galois group of € over R, ie., & = {1,0}, where o is
complex conjugation. Let X be a Riemann surface. A real structure on
X is an action of £ on X such that ¢ acts antiholomorphically. We will
also say that such a Riemann surface is defined over B. We denote by
XZ the subset of fixed points for the action on X by X. The points of
XZ are called real points of X.

Recall that a Riemann surface X is of finite type if X is biholomor-
phic to the complement of a finite set in a compact Riemann surface. A
Riemann surface of finite type is essentially a complex algebraic curve,
Similarly, a Riemann surface X defined over R which is of finite type is
essentially a real algebraic curve. Therefore, in what follows, by a com-
plex algebraic curve (resp. a real algebraic curve) we mean a Riemann
surface of finite type (resp. a Riemann surface of finite type defined
over R).

Let X be a compact connected real algebraic curve. Let g = g(X)
be the genus of X. The number of connected components of X wil]
be denoted by s = s(X). The real algebraic curve is said to be dividing
if X\XT is not connected. It is well known that s = g + 1mod2 and
1 < s < g+1if X is dividing, and that 0 < s < g if X is nondividing.

Proposition 4.1. Let X be a compact connected real algebraic curve.
Let g = g(X) and s = s(X). Then, the strict equivariant fundamen-
tal group o,(X,X) is isomorphic to the group generated by elements
Y1y -y Y41 Subject to the following relation.
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1. If X is dividing then
Ve Yo [Yorts Vsl [ Vo] = 1.
2. If X is nondividing then
4 e £ ’Yf+1 T '792+1 = 1.

In particular, the group ,(X, X} is a free group on g generators if X* #
B. The group 01(X,X) is isomorphic to the group

<AL Yot |V 7 >
ifXE=0.

Proof. Since the Euler characteristic x(X¥) of the set of fixed points
X% of X is equal to 0, one has x(X/E) = 1x(X) =1-g. Let S be
a connected compact surface such that X/¥ is homeomorphic to the
complement of the union of s disjoint open discs in S. Then, x(S) =
1—g+s.

If X is dividing then X/Z is orientable. The same then holds for
S. Tt follows that S is an orientable surface of genus 2{g — s + 1).
Then, the group o, (X, L), being isomorphic to the fundamental group
of X/X by Corollary 3.2, is generated by elements +y,..., 441, subject
to relation 1.

If X is nondividing then X/ is nonorientable, and so is S. It follows
that § is the connected sum of g+1—s real projective planes. In this case,
the group 0,(X,X) is then generated by elements 74,..., 7,41 subject
to relation 2.

5 Uniformization of real algebraic curves

For the convenience of the reader we recall some facts on ordinary uni-
formization of real algebraic curves before discussing their strict uni-
formization. For proofs, the reader is refered to [8].

We will call a connected Riemann surface hyperbolic if it is univer-
sally covered, in the holomorphic sense, by the upper half-plane I. An
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equivariantly connected Riemann surface defined over R will be said to
be hyperbolic if each of its connected components is a hyperbolic Rie-
mann surface.

We denote the upper (resp. lower) haif-plane by & (resp. L), and
we denote by DD the double half-plane ¥ U L. The uniformization of
Riemann surfaces over R is then merely a consequence of the classical
uniformization of Riemann surfaces {[6], Theorem 1V .4.1).

Theorem (Uniformization of Riemann surfaces over R).
Let X be a hyperbolic equivariantly connected Riemann surface defined

over . Then, there is a universal equivariant holomorphic covering
p D = X of X by the double half-plane D.

A universal equivariant holomorphic covering p: D — X will be
called a uniformization of the Riemann surface X over R. In case X
is a real algebraic curve, a uniformization of X as a Riemann surface
defined over R will be called a uniformization of X as a real algebraic
curve.

If p: ID — X is a uniformization of a Riemann surface X over R,
then the group G of automorphisms of p acts holomorphically on D, i.e.,
G is a subgroup of the group Autg (D) of equivariant automorphisms
of D. The group Autg (D) is nothing but the group PGL2(R) acting
on ID by Mébius transformations. Hence, the group G is a subgroup of
PGL2{R). Since G acts discontinuously on D, the group G is Kleinian.
(We refer to [14] for definitions and facts concerning Kleinian groups.)

We will say that a Kleinian subgroup G of PGL,(R) is of the first
kind if its region of discontinuity is equal to ID. Otherwise, G is said
to be of the second kind. In that case, the domain of discontinuity of G
contains ) as a proper subset, and the limit set of G is a nowhere dense
subset of P'(R). Note that the definition of the kind of a Kleinian sub-
group of PGL;(R) extends the classical definition in case G is contained
in PSL2(MR), i.e., in case G is Fuchsian.

Proposition 5.1. Let X be a hyperbolic equivariantly connected Rie-
mann surface defined over R. Let p: D — X be a universal equivariant
holomorphic covering of X. Let G be the group of automorphisms of the
covering p. Then,

1. the group G is isomorphic to the equivariant fundamental group
WI(-X:E) of X;
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2. the group G is ¢ Kleinian subgroup of PGLy(RR), acting discontin-
uously on ID;

3. the quotient Riemann surface ID/G is equivariantly isomorphic to
X.

Moreover, the following equivalences hold.

4. The group G is of the second kind if and only if the Riemann
surface X has a nonempty ideal boundary.

5. The group G is Fuchsian if and only if X is not connected.

6. The group (G conlains parabolic elements if and only if X has punc-
tures.

7. The group G contains elliptic elements if and only if X has real
points.

6 Strict uniformization of real algebraic curves

In this section we show that, with a few exceptions, a real algebraic curve
can be uniformized by an open subset of the Riemann sphere such that
this uniformization is, in fact, a universal strict equivariant covering of
the real algebraic curve.

Theorem (Strict uniformization of real algebraic curves)

Let X be a compact connected real algebraic curve of genus g. Suppose
that X% is nonempty if g = 0 or 1. Then, there is a S-stable open
subset 2 of P* (@) containing the double half-plane ID, such that there is

a universal strict equivariant holomorphic covering p:Q — X of X by
Q.

Proof. Let Y be the complement of X in X. Then, Y is an equivari-
antly connected Riemann surface defined over JR. Observe that Y is
hyperbolic. Indeed, if X¥ is nonempty then every connected component
of Y has a nonempty ideal boundary, hence Y is hyperbolic. If XT is
empty, then by hypothesis, X is of genus greater than or equal to 2.
Then, since X =Y and X is hyperbolic, Y is hyperbolic too.
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Applying to Y uniformization of Riemann surfaces over B, there is
a universal equivariant holomorphic covering p: D — Y of Y by the
double half-plane .

Let G be the group of equivariant automorphisms of p. Then, G is
a Kleinian subgroup of PGL;(R). Let € be its region of discontinuity.
Then, §2 is stable for the action of X. We show that & acts freely. on Q.
That will allows us to extend p to a map p from Q into X. Then, we
will show that $ is a universal strict equivariant holomorphic covering
of X.

Suppose that G acts not freely on 2. Let z € Q have a nontrivial
stabilizer G,. Let ¥ € G; be nontrivial. Then, «4 is an elliptic Mdbius
transformation. But Y does not have real points. According to Proposi-
tion 5.1, G does not contain eliptic elements. Contradiction, i.e., G acts
freely on .

Let py be the restriction of p to ¥/, and p, the restriction of p to
L. Since p is equivariant, pz(2z) = o(pi(o(2))}) for all 2 € L. Since p, is
conformal and G acts freely on all of , the map p; extends uniquely to
a continuous map p; from QN into X (cf. [2], Satz 1V.8.41). Similarly,
p2 extends uniquely to a continuous map §, from QML into X. Then, by
uniqueness of py, one has f;(z) = ¢-§;(a(2)) for all z € QNL. In partic-
ular, py and p; coincide on Q NP (IR). Hence, they induce a continuous
map §: 2 = X whose restriction to D is equal to p. By the so-called
analytic definition of quasiconformal mappings ([12], Theorem 1V.2.3},
P is quasiconformal. Since its restriction to I is holomorphic and Q\D
is of measure 0, p is holomorphic on all of 2.

It is clear that the elements of G act as equivariant automorphisms
of the map p. Hence, § induces a holomorphic map f from the Riemann
surface 2/G into X. Its restriction to the open subset D/G is an iso-
morphism onte its image Y. Therefore, f is an open embedding of Q/G
into X.

Since Y has no punctures, the group G is loxodromic by Proposition
5.1. Therefore, the quotient /G is compact. It follows that f is an
isomorphism onto X, i.e., the map p: Q2 — X is surjective. Since 2/ is
simply connected, the induced map /% — X/X is a universal covering

of X/E. By Corollary 3.2, § is a universal strict equivariant covering of
X.
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A universal strict equivariant holomorphic covering 5:Q — X of a
real algebraic curve X will be called a strict uniformization of X.

Remark 6.1. Let p:  — X be a strict uniformization of a real algebraic
curve X. By Corollary 3.2, the induced map on the quotients

79/ — X/T

is a universal dianalytic covering of the Klein surface X/¥ associated to
X (see [1] for the theory of Klein surfaces and dianalytic maps). The sim-
ply connected Klein surface Q/X is open in the Klein surface P'(€)/X.
Strict uniformization of real algebraic curves thus implies uniformization
of Klein surfaces.

Proposition 6.1. Let X be a compact connected real algebraic curve of
genus g. Suppose that XT is nonempty if g =0 or 1. Let :Q2 = X be
a universal strict equivariant holomorphic covering of X. Let G be the
group of automorphisms of the strict equivariant covering p. Then,

1, the group G is isomorphic to the strict fundamental group 01(X, 2)
of X;

2. the group G is a lozodromic Kleinian subgroup of PGL2(R) with
Q as region of discontinuity;

3. the quotient Riemann surface Q/G is equivariantly isomorphic to
X.

Moreover, the following equivalences hold.
4. The group G is nonelementary if and only if g > 2.

5. The real Kleinian group G is of the second kind if and only if X
has real points.

6. The group G is Fuchsian if and only if X is dividing.

Proof. Statement 1 is clear. Statement 3 follows from Proposition 2.5.
To show statement 2, it suffices to observe that the restriction of p to
the double half-plane ID is a universal equivariant covering of X\ X%,
and therefore, G does not contain any elliptic or parabolic elements by
Proposition 5.1.
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By Proposition 4.1, if g = 0 or 1 then the group G is commutative,
in particular, elementary. if ¢ > 2 then G is not commutative. Since G
is loxodromic, G is necessarily nonelementary. This shows equivalence
4,

Since the equivariant covering  is strict, 5~1(XT) = QN PY(R).
Hence, G is of the second kind if and only if X* # 0. This proves
equivalence 5.

Equivalence 6 is obvious.

Remark 6.2. Let X be a compact connected real algebraic curve of
genus g having real points. Let p:2 =& X be a strict uniformization of
X and let G be the group equivariant automorphisms of the covering
p. By Proposition 4.1, G is a Kleinian group freely generated by ¢
elements. Since any finitely generated free Kleinian group is a Schottky
group {14], the group G is a Schottky group. Sibner showed that a
compact connected real algebraic curve can be uniformized by a classical
Schottky subgroup of PGL2 () [16]). We will show in a forthcoming paper
that the strict uniformization p: 2 — X of X is, in fact, a uniformization
of X by a real Schottky group [10]. \

7 Global real analytic coordinates on real
Teichmiiller spaces

In this section, a real or complex algebraic curve is understood to be
compact and connected.

Let X be a real algebraic curve. Let T'(X) be the complez Te-
ichmiiller space of X, i.e., its elements are pairs (Y, f), where Y is a
complex algebraic curve and f: X — Y is an orientation-preserving qua-
siconformal homeomorphism. Two such pairs (Y, f) and (Z, h) represent
the same element of T'(X) if and only if there is a biholomorphic map
k:Y — Z such that k o f is homotopic to h. It is known that T'(X)
admits a natural structure of a complex analytic manifold. For that
structure, T'(X) is connected and of dimension 3¢ — 3 if X is of genus
g>2 (see [15] for details).

The action of X on X induces an action of £ on T(X). Indeed, one
defines o-(Y, f) as (Y7, f?), where Y? is the complex conjugate structure
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on the manifold Y and f2: X — Y? is defined by f?(z) = f(o-2). It
is easily verified that this gives rise to an action of £ on T(X). It
turns out that ¢ acts antiholomorphically on T(X). Since T(X)% is
nonempty, T(X)T is a real analytic manifold of dimension 3¢ — 3 if
g > 2. Furthermore, T(X)Z is connected [4]. The real analytic manifold
T(X)% is called the real Teichmiiller space of X.

The real Teichmiiller space of a real algebraic curve X is of mterest
for the study of moduli of real algebraic curves having the same topo-
logical type as X [7]. In this section we will construct a global system of
real analytic coordinates on the real Teichmiiller space of a real algebraic
curve of genus g > 2.

Let p:© — X be a strict uniformization of the real algebraic curve
X. Let G be the group of automorphisms of the equivariant covering p.
Let M(G) be the space of Beltrami coefficients for G with support in 2
(see [11] for definitions or nontrivial unproved statements that appear
without reference). Since G is a subgroup of PGL;(IR}, the group T
acts naturally on M(G).

Recall that for any Beltrami coefficient u4 € M(G), there is a unique
orientation-preserving quasiconformal selfhomeomorphism w* of P! ()
having 0, 1 and oo as fixed points and which is such that its complex
dilation is equal to . Since the set of all orientation-preserving qua-
siconformal selfhomeomorphisms of P*{{) having 0, 1 and cc as fixed
points is a group, one gets, by transport of structure, the structure of
a group on M(G). This structure on M(G) is such that T acts by
homomorphisms.

Let p be in M(G). Then, for all « € G, the selfhomeomorphism
w* o a o {w*)~! of P'(€) is a Mdbius transformation. One defines a
homomorphism of groups

G — PGL2(0)

by letting ¢*(a) = w* o @ o (w*)~! for any @ € G. Of course, ¢* is an
isomorphism of G onto its image. The maps +* are called quasiconformal
deformations of G. We put

Def(G) = {k: G = PGLy(D) | Iu € M(G): " = &}

the set of quasiconformal deformations of G. Note that ¢* is equal to the
inclusion of G into PGL2(€) when p is the trivial Beltrami coefficient 0.
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The action of ¥ on PGLy(€) induces an action of X on Def(G). The
subset Def(G)® of Def(G) is the subset of real quasiconformal deforma-
tions of G. Obviously, a quasiconformal deformation k: G = PGL2{@)
is real if and only if £(G) C PGL,(R).

One has a natural map

1: M(G) — Def(G)

defined by letting the image of u be ¢ for all ¢ € M(G). This map is
clearly equivariant. Let Mp(G) be the subset of Beltrami coefficients u
in M(G) such that the deformation ¢* is equal to the inclusion Lof G
in PGL2(@). Then, My(G) is a subgroup of M(G), stable for the action
of £ on M(G), and the map ¢ is a quotient map for the action of My(G)
on M(G).

The set Def(G) of quasiconformal deformations of G gets the struc-
ture of complex analytic manifold since Mo(G) acts freely on M(G).
In fact, Def(G) is a connected complex analytic manifold of dimension
3g — 3 if ¢ > 2. The action of ¢ on Def(G) is antiholomorphic. Since
Def (G)E # @, the set Def(G)® of fixed points is a real analytic manifold
of dimension 3¢ - 3if g > 2.

A useful fact on My(G) is the following. An element p € M(G)
belongs to Mo(G) if and only if the restriction wl‘;\ of w* to the limit set
A of G is equal to the identity.

It is clear that for u € Mo{G), the map w* maps the domain of
discontinuity Q into itself. One lets Mo(G) be the subset of Beltrami
coefficients g € Mo(G) such that w¥, considered as a map from £ into
itself, is homotopic to the identity map idg on §2. Then, Mo(G) is a
normal subgroup of My(G) which is stable for the action of ¥ on M(G).

Let T(G) be the quotient of M(G) by the action of Mo(G). Then,
T(G) has a natural structure of a complex analytic manifold and is
called the Teichmiiller space of G. In fact, T(G) is a connected complex
analytic manifold of dimension 3g — 3 if ¢ > 2. One has an induced
action of ¥ on T(G). Complex conjugation ¢ acts antiholomorphically
on T(G). It turns out that 7(G) is equivariantly biholomorphic to the
complex Teichmiiller space T'(X) of X. Let

@ T(X) — T(G)

be such a biholomorphic map.
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The map «: M(G) — Def(G) factorizes through the quotient map
M(G) — T(G) and gives rise to an equivariant holomorphic map

x: T(G) — Def(G).

In fact, 7 is a universal holomorphic covering of Def (G). The group
of automorphisms of this covering is equal to the quotient group
Mo(G)/ My(G).

Let Def(G)*® be the connected component of Def (G)® containing
the inclusion °: G — PGL,(@).

Lemma 7.1. The induced map
7E: T(G)F - Def(G)®

maps T(G)* real bianalytically onto Def (G)E0.

Proof. Since T(G)¥ is connected and since 7{0) = %, one has that the
image 7(T(G)F) of T(G)¥ is contained in Def(G)E2.

It is easy to see that x¥ is surjective onto Def(G)E2, Indeed, the
restriction of 7 to the inverse image A = 7~!(Def(G)=?) is a covering
of Def(G)®0. Since T acts trivially on the latter space, X acts trivially
on the connected component C of A that contains T(G)E. Then,

T(G)* € C C A% C T(G)E.

Hence, T(G)E = C is a connected component of A. Therefore, 7% maps
T(G)® onto Def(G)%:.

Let us show that 7% is injective. Let u and v be Beltrami coefficients
in M(G) representing two elements of T(G)%. Due to a result of Earle
(see [4] or [7], Theorem 21.1), we may assume that u# and v are in
M(G)E. Suppose that # and v are such that (# = ¢*. Then, w = y-p~!
is in Mp(G). Hence, the map w* maps  into itself and is equal to the
identity on the limit set A of G.

Since ¢ and v are in M(G)Z, w is also in M(G)E. Therefore, the
map w® is equivariant. In particular, w* maps PI(R) into itself. Since
this map is the identity on A C-P!'(R), one has that any point & of
P'(R) and its image w“(z) belong to the same connected component of
P'(R)\A. It follows that w*, considered as a map from (2 into itself is
homotopic to the identity. Hence, p-v=? = w ¢ HO(G) and therefore,
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g and v give rise to the same element of T(G). This shows that #* is
injective. '

Now that we have proved that n¥ is bijective onto Def(G)Z?9, it
follows that 7% is a real bianalytic map since its complexification 7 is a
holomorphic covering map. |

We will now construct an equivariant holomorphic open embedding
¥ of Def(G) into €®93, in case that X has real points and its genus
satisfies g > 2.

According to Proposition 4.1, the group G is freely generated by ¢
elements 1i,...,7, of G.

Observe that the Mobius transformations +; and v, do not have fixed
points in common. Indeed, if they had a common fixed point then they
would have had both of their fixed points in common ([14], Proposition
[.1D.4). This would imply that there are nonzero integers m and n such
that 4* = v3. This contradicts the fact that G is freely generated by
Ty 7g-

Since 4; and <y, are loxodromic elements not having common fixed
points, one may assume that v, has 0 as attractive and oo as repelling
fixed point and that 2 has 1 as attractive fixed point.

Define

P: Def (G) — €383
by letting
Y(k) = (as,...,ag,bg,...,bg,€1,...,¢4), (1)

where a; (resp. b;) is the attractive (resp. repelling) fixed point of «(v;}
and ¢, |¢;} < 1, is the multiplier of (), forall i =1,...,g.

Observe that 9 is well defined into €®9~3 since each Mdbius trans-
formation ;, for i > 2, is loxodromic and does not have co as fixed
point.

Proposition 7.2. Suppose that X has real points and that its genus

satisfies ¢ > 2. Then, the map v is an equivariant biholomorphic open
embedding of Def(G) into €¥973.

Proof. It follows from quasiconformal deformation theory that 4 is a
holomorphic map. It is clear that % is equivariant. Since dim Def(G) =
3g — 3, it suffices to show that ¢ is injective in order to conclude that 4
is an equivariant biholomorphic embedding.
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Suppose that x and X are in Def(G) such that (k) = %(A). By
definition of quasiconformal deformations, x(7;) and A(7;) both have
0 as attractive and oo as repelling fixed point. Since their multipliers
are equal, K(v1) = A(7;). One similarly proves that x(v2) = A(ys). It
is obvious that k(7;) = A(y;) for i = 3,...,g. Since G is generated by
71,179, ONne has kK = A. This proves that ¥ is injective. . n
Theorem 7.3. Suppose that X has real points and that its genus satis-
fiesg > 2. Let U:T(X) — €33 be the map Yomop. Then, the induced
map

¥E:T(X)E — R¥-3

is a global system of real analytic coordinates on the real Teichmiiller
space T(X)T of X.

Proof. Of course, ¥F = ¥ o 7¥ 0 ¢%. Now, ¢:T(X) — T(G) is an
equivariant biholomorphic map. Hence, ¢X:T(X)* — T(G)E is real
bianalytic. By Lemma 7.1, #¥: T(G)T — Def(G)E? is real bianalytic.
By Proposition 7.2, : Def(G) — €83 is an equivariant biholomorphic
open embedding. Hence, ¥Z:Def(G)E — K%~ is a real bianalytic
open embedding. Therefore, its restriction to the connected component
Def(G)=? is a real bianalytic open embedding too. It follows that ¥Z
is a real bianalytic open embedding of T(X)¥ into R*~3, i.e., a global
system of real analytic coordinates on T(X)*.

‘The situation in the case of X being a real algebraic curve without
real points is rather different. In this case the global system of real
analytic coordinates on T(X)¥ turns out to be the one induced by an
equivariant global system of complex analytic coordinates on the entire
complex Teichmiiller space T(X). The reason for this is that, since X
has no real points, a uniformization of X as a real algebraic curve is
necessarily a strict uniformization of X. Complex analytic coordinates
on complex Teichmiiller spaces obtained by quasiconformal deformations
of the uniformization of a real algebraic curve X have been constructed
in the papers [8, 9].

For completeness, we treat briefly the construction of a global system
of real analytic coordinates on T(X)¥ in the case that X has no real
points. It will then also be clear why in this case the coordinate system
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extends to an equivariant global system of complex analytic coordinates
on T(X).

Let X be a real algebraic curve without real points. We suppose
again that the genus of X satisfies g > 2. By Proposition 4.1, there are
elements vy, ...,7g+1 of G satisfying the relation

7?"'7_3“ =L

As before we may assume that 7; has 0 as attractive and oo as
repeiling fixed point and that v; has 1 as attractive fixed point.
Then one defines a map

: Def(G) — €873

by Equation 1, as in the case of X having real points. Note that 41
does not intervene at all in the definition of ¢. Nevertheless, 9 is injec-
tive. More precisely:

Proposition 7.4. Suppose that X has no real points and that its genus

satisfies g > 2. Then, the map v is an equivariant biholomorphic open
embedding of Def(G) into €¥973.

Proof. As before it suffices to show that ¢ is injective. But this is done
in the proof of Theorem 5.2 of [8].

Theorem 7.5. Suppose that X has no real points and that its genus
satisfies g > 2. Let U:T(X) — €% be the map Ypomop. Then, ¥
is an equivariant global system of complez analytic coordinates on the
complex Teichmiiller space T(X) of X. In particular, the induced map

vE:T(X)F — R¥7°

is a global system of real analytic coordinates on the real Teichmiiller
space T(X)E of X.

Proof. As before, @:T(X) — T(G) is an equivariant biholomorphic
map. Since X does not have real points, the domain of discontinuity Q
of G is equal to the double half-plane D. Since the connected compo-
nents of € are simply connected, Mp(G) = Mo(G). It follows that the
equivariant map 7: T(G) — Def(G) is biholomorphic. By Proposition
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7.4, the map % is an equivariant biholomorphic oper embedding % of
Def(G) into €®~3, Hence,

Y=gormop:T(X)— g3

is an equivariant global system of complex analytic coordinates on the
entire complex Teichmiiller space 7'(X). ]

Remark 7.8. It should be eminently clear that, in the case that X
has real points, the coordinate system WZ on the real Teichmiiller space
T(X)¥ of X does not extend to a global coordinate system of complex
analytic coordinates on the complex Teichmiiller space T'(X) of X.
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