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Magneto-micropolar fluid motion: existence of
weak solutions.

Marko A. ROJAS-MEDAR and José Luiz BOLDRINI

Abstract

By using the Galerkin method, we prove the existence of weak
solutions for the equations of the magneto-micropolar fluid motion
in two and three dimensions in space. In the two-dimensional case,
we also prove that such weak solution is unique. We also prove

the reproductive property.

1 Introduction

In this work we study global existence of weak solutions for the equa-
tions that describes the motion of a viscous incompressible magneto-
micropolar fluid in a bounded domain Q2 C B™ n = 2 or 3, in a time
interval [0,7],0 < T < +00. Such equation are given by (see [1], for
instance):

% +uVu—(p+x)Au+V(p+ %h.h) =xrotw+rhVh+ f
j%—:’ +ju.Vw — yAw + 2xw — (o + S} Vdivw = xrotu + g (1.1)
oh

Frie vAh+uVh—hVu=20

divu=0, divh=0 in Q.
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Here, u{t,z) € R™ denotes the velocity of the fluid at a point z € Q
and time t € [0,7]; w(t,z) € R",h(t,z) € R" and p(t,z) € R de-
note, respectively, the microrotational velocity, the magnetic field and
the hydrostatic pressure; the constants u, x, r, o, 8, 7, j and v are
constants associated to properties of the material. From physical rea-
sons, these constants satisfy min{u, x, , j, v, ¥, @+ 8 + v} > 0
f(t,z) and g{t,z) € R™ are given external fields.

We assume that on the boundary 8§ of €2, the following conditions
held

u(t,2) = wit,z) = h(t,z) =0, (t,z)€[0,T]x I (1.2)

(we shall consider homogeneous boundary conditions just for simplicity).
The initial conditions are

u(0, z) = uo(x), w(0,z)=wo(z), h(0,z)=ho(z), z€Q (L3)

Equation (1.1)(i) has the familiar form of the Navier-Stokes equations
but it is coupled with equation (1.1)(ii), which essentially describes the
motion inside the macrovolumes as they undergo microrotational effects
represented by the microrotational velocity vector w. For fluids with no
microstructure this parameter vasnishes. For Newtonian fluids, equa-
tions (1.1)(i) and (1.1)(ii) decouple since x = 0.

It is now appropriate to cite some earlier works on the initial boundary-
value problem (1.1)-(1.3), which are related to ours and also to locate
our contribution therein. When the magnetic field is absent (h = 0), the
reduced problem was studied by Lukaszewicz [6, 7], Galdi and Rionero
[2] and Padula and Russo [8]. Lukaszewicz [6] established the global ex-
istence of weak solutions for (1.1) - (1.3) under certain assumptions by
using linearization and an almost fixed point theorem. In the same case,
by using the same technique, Lukaszewicz [7] also proved the local and
global existence, as well as the uniqueness, of strong solutions. Again
when k_= 0, Galdi and Rionero [2] established results similar to the ones
of Lukaszewicz [6). Padula and Russo {8] studied the uniqueness of the
solutions for problem (1.1)-(1.3) in unbounded domains.

In a recently work, Kagei and Skowron [3] studied the reduced prob-
lem (with h = 0) coupled with an equation of thermal convection. They
used arguments analogous to the ones by Lukaszewicz [6], {7].

The fuli system (1.1)-(1.3) was studied by Galdi and Rionero [2],
and they stated without proofs results of existence and uniqueness of



Magneto-micropolar fluid motion: existence of. .. 445

strong solutions. Rojas-Medar [9] also studied the system (1.1)-(1.3) and
established the existence and uniqueness of strong solutions by using the
spectral Galerkin method, reaching the same level of knowledge as in the
case of the classic Navier-Stokes equations for strong solutions. Ahmadi
and Shahinpoor {1] studied-the stability of solutions of the system (1.1)-
(1.3).

In this work, we use the Galerkin method, as in Lions [5}, to prove the
global existence of weak solutions for n = 2 or 3; in the two-dimensional
case, we also prove the uniqueness of solutions.

Let {u, w, k} be a weak solution of (1.1)-(1.2) (the exact definition
will be given later on). If the functions u, w and h satisfy the following
conditions:

u(0,z) = (T, z), w(0,z) = w(T,z), h(0,z) = h(T, z), (1.4)

then we say that the system has the reproductive property (see Kaniel
and Shinbrot [4] for the case of Navier-Stokes equations). We observe
that the above property is a generalization of the notion of periodic-
ity. We will show that {1.1)-(1.2) has always a weak solution with the
reproductive property.

We reach in this way, for weak solutions, basically the same level of
knowledge as in the case of the classic Navier-Stokes equations.

Finally, the paper is organized as follows: in Section 2 we state the
basic assumptions and results that to used later on in the paper; we
also rewrite (1.1) - (1.3) in a more suitable weak form; we describe the
approximation method and state our results (Theorems 2.1, 2.2 and 2.3).
Each one of the following sections will be devoted to their proofs.

2 Preliminaries and results

Let Q C R™,n = 2 or 3, be a bounded domain with smooth boundary
Q. We denote by LP(f2) the usual Lebesgue spaces and by ||.||z» the L?-
norm on §%; in the case p = 2, we simply denote the L?-norm by [.} and
the corresponding inner product by {(-,-). When B is a Banach space, we
denote by L9(0, T'; B) the Banach space of the B-valued functions defined
in the interval (0, T) that are Li-integrables in the sense of Bochner. The
Sobolev spaces H*(2), H3(R) ( with s € R) are defined as usual; we
denote by ||.||s 2and (.,.}H+, respectively the norm and the inner product



446 Marko A. Rojas-Medar and José Luiz Boldrini

in H*(S2) (or H§(R2)) when appropriate). We also will use the following
solenoidal function spaces '

Coo() ={ve(CP(Q)" /dive=0 in Q}
H= closure of Cg% () underthe (L*)" —norm,
Vo= closure of C§5,(Q) under the (H*)" — norm.

In the special case where s = 1, we denote V) simply by V. The norm
and inner product in H and V, are

= Zn: [ fi gidz, _1f|= (f, HM?

i=1 7%

and
n

(u,v)s = Z(ui! vi)ue L lulls = (u, u):lz‘
=1
If X is a Banach space, X* will denote its topological dual.
We observe that V is characterized by

V={ve (H{Q)" /dive=0 in Q},

and, consequently, the H!-norm and H}-norm are equivalent for u € V.
We denote ||u|| = [Vul.
On the other hand, let us denote

n

a(v,w) = Z [ dv; g:’d

b(u,v,w) = Z[ ’3 w; dz,

i,j=1

Lvw = —yAw-(a+ ﬁ)lev w,

which we define for all vector-valued functions u,v,w, for which the
integrals are well defined.

To ease the notation, in the following we will denote with the same
symbols the scalar and vector valued functional spaces. The distinction
will be clear from the context. Also, in what follows, most of the time,
we will denote by u;, w; and h; the time derivatives of u, w and hA.
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We can now define a notion of weak solution for (1.1)-(1.3).

Definition. Let ug, ho € H and wo € L*(Q); we will say that a triple of
functions (u,w,h) defined on (0,T) X §2 is a weak solution of (1.1)-(1.3)
if only if the functions u, w, h satisfy

u,h € L*(0,T; V)N L®(0,T; H),
w € L}0,T; Hy(Q))n L0, T; LA(R)),

and also satisfy the following equations

(ut, ) + {2+ X)a(u, @) + b(u, 1,0} — rb(h, h, ) = (f, @) + x{rot w( (p))
2.1

Jlws, @) + (Lw, ¢) + 2x(w, ¢) + jb(u, w, ¢) = (g,4) + x(rot u, ¢} (2.2)

(h‘fv"b) + va(h, ’(»b) +b(uv h1¢) - b(h?ua¢) =0 (23)

for all o, € V and ¢ € H} () and also the initial conditions (1.3) (as
it usual, the above reqularity condition is enough to guarantee that (1.3)
has a meaning).

If one does not assume (1.3), we will say that (u,w,h) is a weak
solution of (1.1)-(1.2).

Remark. Usually, as in the case of the classical Navier-Stokes equa-
tions, one should assume ¢,¢ € V N L*(Q) and ¢ € Hg(R) N L™(R).
However, since in this paper n = 2 or 3, this is not necessary.

To prove the existence of solutions of system (1.1)-(1.3) we will use
the Galerkin method. We fix s = n/2,n = 2 or 3, and we consider

the special basis {¢*(z)}%2, of V,/, and {¢'(z)}2, of Hglz(ﬂ), whose
elements we choose as the solutions of the spectral problems:

(‘Pia v)n/? = )‘i(ﬁoi'l v), Vv € Vﬂ/2 with I‘Pil =1,

and

(¢, w)njz = Ai(#,w), Yo € Hy'*(R) with |¢| = 1.
Let V¥ = span{p!(z), ..., ¢*(z)] and Hi = span[¢!(z), ..., #*(z}]; we
observe that V¥ C Vi, and Hy C Hy'*(9).
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For every k > 1, we define approximations u*, w* and A* of v, w and
h, respectively by means of the following finite expansions:

k k
uk(t,z) = Zc,-k(t)c,o"(m),wk(t,m)=Zdik(t)¢i(5’f')
i i=1

hE(t,z) = Ze,k(t Hz),

where cix, dix, ec € W'(0,T) and satisfy the following equations (a.e.
t€[0,7):

(uf, ) + (1 + x)a(u®, @) + b(uF, u*, @) — rb(h* B¥, )

= (f, ) + x(rot w*, ¢), (2.4)
j(wi, 8) + (Lw*, §) + 2x(w*, ¢) + jb(u*, w*, ¢) = (g, ) + x(rot u* ,cb))
2.5

(i, ) +va(h*, ) + b(u*, k¥, ) = b(h*, o, p) =0, (26)
for all ,4 € V* and ¢ € Hy, and the following initial conditions:

u¥(0) = uf, w*(0)= wg, R*(0)=hE n Q (2.7

where (uf)k, (wf)x and (%), are suitable sequences of functions chosen
in V¥, Hk and V*, respectively, such that uf — ug and h§ — hg in H
and wf — wq in LZ(Q) as k = oo.

By using these approximation, we will prove the following resuits.

Theorem 2.1. If f € L%(0,T;V*),g € L%0,T; H~'()), uo, ho €
H,wo € L*(S2), then there erists a weak solution (u,w, k) of (1.1)-(1.3).

Theorem 2.2. Let n = 2. The weak solution (u,w,h) of Theorem
2.1 is unique. Moreover, u, h are almost everywhere equal to a contin-
uous functions from [0,T] to H and w is almost everwhere equal to a
continuous function from [0, T] to L?(Q).

Remark. Exactly as in [5, p. 74], it is possible to prove that, after
modification in a set of measure zero in [0, T), the solution refered to
in Theorem 2.1 satisfy the following: u, h are continuous from [0,T] —
V(’;_z) /4 and w is continuous from {0,7] - H ~(n=2)/4 3nd also weakly

continuous from [0, 7] — H and [0,T] — L*(R), respectively.



Magneto-micropolar fluid motion: existence of. .. 449

Theorem 2.3. If f € L*(0,T;V*), g € L*(0,T; H~1(Q)), then there
ezist a weak solution of (1.1)-(1.2) having the reproductive property
(1.4).

Remark. In the case where we have uniqueness of solutions for the
initial value problem, as for exampie the two dimensional case (Theorem
2.2), if the external forces fields are regular and T-periodics in time, the
above Theorem 2.3, furnishes a T-periodic weak solution for (1.1)-(1.2).
In fact, it is a strong solution and actually very regular. This is so
because we can prove that u(t), w(t),h(t) € C*(Q) for t > 0 and any
initial data ug, hg € H,wo € L2(2). Thus, u,(t), w,(t), hp(t) € C°()
for t € [T,2T), and, by the T-periodicity, we conclude that u,(t) =
up(t+T) € C°(N), wp(t) = wp(t+T) € C® () and hp(t) = hp(t+T) €
C°(R2) for t € [0,T). In particular, we must have u,(0), wp(0) and
h,(0) € C=(9).

3 Proof of Theorem 2.1

Setting ¢ = u*, ¢ = w* and ¢ = rh* in (2.4), (2.5) and (2.6), respec-

tively, we obtain

1d

§E|uklz + (g + x)a(u®, u¥) = x(rot w*, u¥) + rb(h* A*, u*) + (£, u¥),

j d .

2w+ ya(wt, w) + 2x|wH? + (@ + B)ldiv
= x(rot u*, w*) + (g, w¥), -

g%m*? + rva(h¥ %) = rb(R¥, ¥, B¥),

since b(¢, p,¢) =0 for V¢ € V¥ and ¢ € Hg.
Adding the above inequalities and observing that r b(h*, %, u*) +
r b(h%, uk, h¥) = 0, we get

1d .
5 (1 4 51w P 4 b 7) + (4 x)a(uF, u¥) + va(wh, wb)

e[t + lu*?). (3.1)
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The above differential inequality implies for any ¢t € [0, T] the integral
inequality

HOF + SO + b O + [ (0t ala, o
+ya(w*, w) + 2rva(h®, B%) + dx|w*|? + 2(a + B)|divew*[?)ds
< WO + A OF + rIBHOF + ¢ [ (wH @)+ [w*))ds

ve [ U + gl -ds.

Due to our choice of u*(0), w*(0) and h*(0), there exists ¢ > 0 indepen-
dent of k such that |u*(0)] < c|ug|, |w*(0)] < e|wo| and |R*(0)| < elhol-
Consequently, by using Gronwall inequality we obtain the global exis-
tence in ¢t for the approximations (u¥,w*, A*¥) and also the following

u*, h¥are uniformly bounded inL*(0,T; H) n L%(0,T; V), (3.2)

w¥is uniformly bounded inL®(0, T; L2(Q)) 0 L0, T; HY(Q)). (3.3)

The next step in the proof consists in proving that (uf) and (hf) are
uniformly bounded in L2(0,T,V}) and (wf) is uniformly bounded in
L3(0,T; H*(2)). To do this, we observe that

wf = Pr(xrotw* + rhE VRF 4 f— u* Wk — (u+ x)Au*),(3.4)
jwf = Rp(xrot vk + g — Lw* - juk Vwk — 2xw"), (3.5)
RE = Pr(RF.VuF - uF VRE — vARF), (3.6)

where P, and Ry are the projections Py : H = V* and Ry : L*(Q) — H
defined by

k k

Py = Z(u, oY and Riw = Z(w, ).

=1 =1

Since V, — H and V¥ < V,, we can consider the restriction P; : V; =
V,. It is easy to see that Py is linear and continuous in this case, hence
Pp : V) — V) defined by

(Pe(v),w)y= (v, PBw) Yve V', Vwel,,
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and [[Py]] € ||Px]| < 1. We also observe that the functions ¢'(z) are

invariant by Py, i.e,
i

P(¢f) = ¢'.
Analogously, R : H3(2) = H(£2) is linear and continuous, then Rj :
H=*(Q) = H~*(2) is well defined by
(R (u),0) = {u, Rif) Yue H°(), V8 € Hy(Q),

and ||R;|| < ||Bx|l € 1. Moreover, the functions ¢* are invariant by Ry,
i.e, .

Ri(¢') = ¢'.
Next, we observe that

||P£(rotwk)|lv; < |trot wk”V; = |sup rot w*, v)] < |Vl
v|v, €1

Consequently,

t 1
[ Ipzorat Ol <c [ Ivutord <o
0 ’ 0

thanks to the estimate (3.2).
Also we have

PrAut||ye < |AdF|lvs = sup [{AwF,v) = sup Vuk, Vu)| < | VuF|,
k i Py

vifv, £1 “u”VaSl

and thus, by using the estimate (3.2), we get
T T
/ IPL A ()| adt < f iVt (1))2dt < C.
0 * 0

To prove the boundedness of Pf(h*.Vh*) and P} (u*.VuF) in the space

L*(0,T;V}) we will use the following interpolation result whose proof

can be found in Lions [5].

Lemma. If (u*) is a bounded sequence in L*(0,T;V) N L*°(0,T; H),
1 1

then (u*) is also bounded in L*(0,T; LP(S?)), where %: 3" a2y Le.,

p=4ifrn=2 p=3ifn=3.
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We have that, for all v € V,,

Ov,
(uk.vu, v < Zlu a5 (8) sl 5
QJ =1
dv,
< -
< 5;1 Dlur Ozl 5 ams
< et (0) |30

1 1 1
since — + ~ + o= 1, using the Sobolev embedding H*~1(Q) < L™(Q).
This implies

T T
L Ipet ey < o [ kol

Thus, thanks to the above lemma, P} (u*.Vu*) is uniformly bounded in
L*(0, T3 V).

Similarly, we prove that P?(k*.VA*) is uniformly bounded in
LA(0,T; V). ,

The above estimates together with the equality (3.4) implies that
(uf) is uniformly bounded in L2(0,T;V?). Analogously, we can prove
that (h¥) is uniformly bounded in L2(0,T'; V*). Now, to prove that (w})
is uniformly bounded in L%(0,7'; H~*(2)), we estimate the right-hand
side of the equality (3.5). We observe that

j2”wt |I—n/2 < ('(X ”Rk l‘Ot'U, ”—n/Z ”ng”—-nIZ+7”Rkka||—n/2
+i2 R T wR)I2,, 15 + 2wt 12, ).

Consequently,

5’ /OT ||wf(s)||2_n/2ds < f (|| Ry (rot u* S)H-n/z+ ||R;g(3)”2_n/2
H Ry (u*. V) (8) |22 + [0 ()12 ) ds
b [ IRLLOHO) 2, s
= F*¥(T).
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Thus, it is sufficient to estimate F*(T) independently of k. The first
integral in F*(7T) is estimated analogously as before. We estimate the
second integral; we have

“Rkka“—n/Z < “ka”—nf2 < c[|'w ” nf2+2
since L is a strongly elliptic operator. As n = 2 or 3, we have H! «»
H~™?%*2 and, consequently,
IR LWk |2z < cllw|3p < Vb,

Therefore, estimate (3.3) implies that there exist a constant ¢ > 0,
independent of k, such that

t

e [ NRLwH )2 ads < ¢ [ 1Vuk(e)Pds <.

0

Therefore, arguing as in Lions [5, p.76] and making use of the Aubin-
Lions Lemma, with By = V,pp = 2,By = V',py = 2and B = H
(see Theorem 1.5.1 and Lemma 1.5.2 in [8, p. 58]), we can conclude
that there exists u,h € L%(0,T;V) and subsequences, which we keep
denoting (u*), (k*) to simplify the notation, satisfying

¥ > u and A* - h weakly in L%(0,T;V),

v* - u and h* o h weakly x in L*°(0,T; H),

v* - u and h* 5 h strongly in L%(0,T;H),

uf — u; and h‘;‘ — hy weakly in L2(0,T;V}),
as k — oo.

Also by the Aubin-Lions Lemma, with By = H}(Q),p0 = 2, By =
H=*(Q),py = 2 and B = L?(Q), we conclude that there exists w €
L2(0, T; H}(2)) and a subsequence, which we shall denote again by (w*),
such that

wf = w weakly in L*(0,T; Hg()),
w* = w weakly * in L0, T; L*(Q)),
w* < w strongly in L%(0,7;L*(Q)},
wF = w, weakly in L%0,T; H™*(Q)),
as k — oo
Once these later convergences are established, it is a standard proce-

dure to take the limit along the previous subsequences in (2.4)-(2.6) (see
[5, p. 76-77] to conclude that (u,w, k) is a weak solution of (1.1)-(1.3).
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4 Proof of Theorem 2.2

We first prove the result of regularity. We observe that the proof of the
previous theorem shows that, in case n = 2, u;, hy € L2(0,7;V*) and
w, € L2(0,T; H~1(Q)), since Voj2 =V and H, ;2 = H}. Consequently,
by applying Lemma 1.2 in Temam [10, p. 260], we obtain that » and
h are almost everywhere equals to a continuous functions from [0, 7]
into H, and w is almost everywhere equal to a continuous function from
[0, 7] into L2(£2).

We also recall Lemma 1.2 in Temam [10, p. 260-261] which asserts
that the following identity holds:

%'99(’5”2 = 2(pi(t), p(t)) forall .

This result will be used in the following proof of uniqueness.

Consider that (uy, wq, k1) and (uz, wo, hy) are two solutions of prob-
lem (2.1) - (2.2) and (2.3) corresponding to the same f, g, ug, wo and hg.
Define differences

O=uy ~uy, T=w —wy and { = h; — Aa.
They satisfy

(8e.0) + (1 + x)a(8, ) + b(6, u1, ) + bluz, 8, )

=rbd((, b1, ) — rblh2, (, ) — x(rot 7,0) = 0,
(1, 8) + (L7, 8) + 2x(T, $) + jb(8, w1, d) + jb(uz, 7, ) — x(rot 8, ) = 0
(Ger ) + valC, %) + b(8, hy, ) + b(ua, ¢, ¥) — b(C, u1, ) — b(ha, 8, %) = 0

for any @,% € V and ¢ € H}{(Q); also we have §(0) = 7(0) = ¢(0) = 0.
Setting ¢ = #,¢ = r and ¥ = r{ and integrating in ¢, we obtain

1 t ¢
20O + (a4 ) [ a(6,8)ds,+ [[1(6,11,6) = r5(¢, 1,0
0 [0}
—rb(hy,(,8) - x(rot7,6)]ds = 0,

y 1 { 1
%Ir(t)|2+7f IVr?ds + (a+ﬁ)/ \div T|2d3+2x/ Ir%ds
1] 0 Q
i
+ / [56(6, w1, 7) — x(rot8, r))ds = 0
0

P t 4
SO +rv [ a(¢.)ds+r [To(6,h1,0) — b, 1,6)
—b(hs,8,¢)]ds = 0.
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Adding the above equalities, we have

]. j r ] i
SOOF + Hr@F + ZKOP + (a4 [ NoPds+ [ fiifds
2 2 2 0 0
t t t
4w [ciPds + (ot ) [ Wiveids+2x [ |rfds
Q o] 1]

t
= —.[ [6(8, u1,8) — rb{{, h1,6) — 7b(ha, {,0) — x(rot 7,8) + jb(8, w1, T)
0
—x(rot 8, 7) + rb(#, h1,{) — rb(¢, u1,¢) — rb(h2,8,()]ds. 4.1)
Now, we observe that rb(hs,(,8) + rb(he,8,{) =0,

t t
] b(6,u1,0)ds < f ¢ 1612 l[wa |lds
0 0
t
c [ 161101 w1 s

t i
< BEX [ypipas e [ 167l
10 ) 0

where we used Lemma 3.3 in Temam [10], p.261, together with Holder
and Young inequalities.
Analogously, we can prove

t t i
[ o s < 5 [Cicids + e [ ¢ ulas,

Now, we have
i t t
f x(rot8, r)ds < EEX / |6][%ds + ¢ f |7[?ds,
0 10 Jo 0

i { t
] x(rot 7, 8)ds < 3’-/ |1-rn2ds+c] 1(2ds
0 4 Jo 0

A

and

IA

14

r [ claiiba o] ds
t

e [ ImalICI21cI o 2101 2ds
t t

C. [ ImlPiclelds +¢ [ Iciielis

t
r/ b(C, hy, 8)ds
0

IA

IA
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t
< o [ ImIPIcR + 510Ps

rV +x ft
/ lgii?ds + 22X [ jolpas.

u

Analogously, we can prove
[ ' P + Lo
i [ e rids < e [ClPiirk + 5l00ds
0. 0 2 2
T e #+X'[" 2
+1 [Ciiritds + £2X [Cjo2as,
i - i 1
r [ b0.8.0ds < e [IIPIZICE + 5161ds
+
22X Miopas+ 2 [ oy

The constantes depend only on the fixed parameters of problem. By
using the above inequalities in (4.1), we get

O} +3lr @ + riK®)1” < c[;(|0(s)|2_+ A7 (&) +ri¢(s)P) L(s)ds

where £(.) = [lur()II? + lwi O)* + 2 (JI* + 1 € L1 (0, T).
Now, the use of Gronwall inequality implies for every ¢ € [0, T] that

0(OF + 51 ()17 + rICOF < (18(0)12 + 517 (@) + rIC(0) ),

T

where ¢ = L(s)ds < +co. This last inequality, implies that 8(t) =
0

T(t) = ((t) = 0, and hence uy = uz,wy = we and hy = he. Thus the

uniqueness is proved and this completes the proof of Theorem 2.2.
5 Proof of Theorem 2.3
We estimate part of the right-hand side of the equality (3.1) as follows

x(rotw*, u*) + x(rot u*, w*) = 2x(w*, rot u*)
< 2xfw¥| frotuk| = 2xlut| vk
< xhe*|? + xa(u*, u¥)
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since [rotu*| = |Vu*| as in Lukaszewicz [6], p.87. Also,
p
(fu*) < I flhve]Vu¥| < —Ilfllv- se(ut,uh),
1
(90" < Nlglly—|1Vokl < -Q-G(wk,wk) + g;llgllir—t-
Consequently, in (3.1), we have
d :
SOWH2 4 b2 4 rihH ) + (¥, o) + va(wt, )
+2rva(h®, h%) 4 2x|w*|? 4 2(o + B)ldiv wF]?
1 1
< ;”f”%/- + ;”9”%{—1
Also, we have,
d .
T IT ) e )
1
+2rva(h*, B¥) < llf“v- ',;“9“?1—1'
Recalling that
a(v,v) > Colv)* Yo eV and a(w,w) > Cslwl® Vw e HL(R),
we conclude that
d .
E(lukﬁ + §lw*? + r|B5|2) 4+ pColuf|? + vCas|w*|? 4 2rvCylh*?
1 1
< AW+ = ot
Let Cp = min{uCy, ~C—§,-1,2rv02} > 0, we have
7

d . )
Eﬂ'ﬂ-kl2 + i w* % + |5 + Co(luf)? + jlw*| + riR*))
1 1
< I‘;ﬂf“%- + ;”9”?;-1,

or, equivalently,
C

d
e (Ju*? + jlw® | + rih*?) < C[-—-Ilfl ve + ——Ilglln—:]

dt
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Integrating from 0 to T, we obtain
ST (Juk(T)[* + jJw*(T)? + r|H (1))
< Jut @) + 71w (0)® + rIn* (0)?

¢ (T c (T
+2 [ et iRt + 2 [ gl
HJo Y Jo

We denote by 6%(t) the vector (uf,w*,h¥) and {|0%(t)||? = |u*(t)]? +
lw* () + rip* ()2,
With this notation, the above inequality is rewritten as

T
eT05(T)||* < |16* (01" +f—‘f0 e (IF O + llg®lE-)de (5.1)

Now, let’s define the mapping S* : [0,7] = R>* as
S (2) = (c1rlt), -, crklt), 5 2duk(t), ... i Pdir (t), P Pean (), ..., v Penic (1))

where c;x(t), dix(t) and e;x(t),7 = 1, ...,k are respectively the coefficient
of the expansion of u*(t), w*(¢) and h*{t), as defined in Section 2.
To be used later on, we observe that

IS (@)l psx = 16* ()], (5.2)

since we have chosen the spectral basis {¢*(2)}2, and {¢'(z)}{2, to be
orthonormal in (L2(Q))"™.

Now, we define the mapping ®* : R3* 5 R% as follows: given
So € R we define *(S;) = S*(T), where S*(t) corresponds to the
solution of problem (1.1), (1.2) with initial value corresponding to Lp.
Tt is easy to see that ®* is continuous and we want to prove that $* has
a fixed point. For this, as a consequence of the fixed point theorem of
Brouwer, it is enough to prove that for any A € [0, 1], 2 possible solution
of the equation
‘ Sg(A) = A®*(S§(A)) - (5.3)
is bounded independent of A.

Since $5(0) = 0, by (5.3), it is enough to prove this fact for A € (0, 1].
In this case, (5.3) is equivalent to ®F(S4())) = S5(X)/A, and therefore
by definition of ® and (5.2), inequality (5.1) implies that

.
TSSO/ Migan S ISEgon + [ € ULLNG- + g @)1},
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which implies that

T o
IS < I *(uf(g!%;.jlug(t)nﬁf-l)dt:M, (5.4

since A € (0,1]. This bound is independent of A € {0, 1] and, therefore,
®* has a fixed point S§(1) satisfying the same bound as (5.4).

This corresponds to the existence of a solution uX(2), wk(t), E(2)) of
(1.1), (1.2) satisfying v£(0) = uk(T), wk(0) = wf(T) and hE(0) = A3(T),
that is periodic approximate solution.

Moreover, |u*(0)] + j]w*(0)]? + r|r*(0)|? = ||S(’,‘(1)f]2Rak < M, which
is also independent of k. Thus, the arguments in the proof of Theorem
2.1 can be repeated for the approximate solutions (’u:, w"’f, hf,), and this
furnishes exactly the same kind of uniform in & estimates for them, and
therefore the convergence of a subsequence to a solution (uy,, wy, hy) of
(1.1)-(1.2) satisfying u(0) = u(T), w(0) = w(T) and A(0) = h(T’).
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