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Some results about blow-up and global
existence to a semilinear degenerate heat
equation.

Jacques GIACOMONI

Abstract

In this paper, we are dealing with the following degenerate
parabolic problem :

(P.) Bu — |zf?Au = g(u) in RT x B,
t u(t,2) = 0in Rt x 8B, ;u(0,z)=u > 0

where By = {x € RV ;{|z|| = 1} and g is nonlinear.

We are interested in analizying such. questions as local and
global existence, blow-up in finite time and convergence to a sta-
tionary solution for solutions of (£;).

First, we give some examples of nonlinearities g where the blow
up in Lz(‘{%) N L*(B;} occurs. In a second part of this work,
we present two cases of global existence of solutions to (£;) which
converge in L™ (B1) to a stationary solution of (F;) when t — 0.

1 Introduction
In this work, we study the following problem :

(P) 3*7.& — |I|2A'M = g(u) in R+ X B]
) uf{t,z)= 0in Rt x 8B, ; u(0,z) =uo > 0,

where ¢ is nonlinear and Bj is the unit ball in RN,
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First, using Hille-Yosida theory, we prove for all uop € L*®(By)n
Lz(ﬁ%)l and g € WS (R"), the local existence and the uniqueness of
the solution u(t) = S(t)up of (P,), where S(¢) is the semigroup associated
to (F). Then, we are interested in the behaviour of the solution u(t)
as t increases. Precisely, under different assumptions of g and ug, we
give on one hand, some examples of blow-up in finite time and on the
other hand, some examples of global existence of solutions to (P;) which
converge to a stationary solution of (F;).

Throughout this work, we keep in mind the results of [7] and [8]
which deal with the stationary problem (P) :

—|z]?Au = g(u) in By
‘P){ u € HY(B)/{0};u> 0

Precisely, in [7], the authors prove the nonexistence of nontrivial solu-
tions to (P) in the case where g satisfies the following assumptions :
9(s)

(GS1) A - (852)? +3_12T — >0

o

(GS2) Vs >0, G(s) < 2,

Otherwise, in [8], the authors give some results about the existence of
nentrivial solutions of (P) in the case where g is sublinear. They treat
three cases :

L. g(u) ~ Au+u? —u? where 1 < p<gq
2. g(u) ~ Au_up where p> 1 and A > (N_z—z)z

3. g(u) ~ u*+ Auwhere 0 < o< 1and X < (J_V_2:2)2

It is worth noting that in all cases, an unbounded connected branch of
positive solutions in either H}(B;) or L%°(B,) exists and in the second
and third case, there is uniqueness of the nontrivial solution in H}(B).
Then, it is very natural to see in which cases the nonexistence of non-
trivial solutions of (P) implies the blow-up in finite time for solutions of
(P} and when the uniqueness of the solution of (P) implies the conver-
gence to a stationary solution for solutions to (F;) when ¢ — +00. In
this work, we prove some results in these directions.
So, the outline of the present paper is as follows :

1L2(]%|1.-'5_) = {u/ fo {%E—dz < oo}
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1. Local existence of solutions to (P,) in BT x L® N Lz(]%‘l%).

2. Some examples of blow up in finite time for solutions to (F)

{(a) The case g(0) =0
(b) The case g(0) > 0

3. Two examples of existence of global solutions and convergence to
a stationary solution.

Precisely, in Section 2, we apply Hille-Yosida theory in LN Lz(ﬁy). In
Section 3, we start adapting a classical spectral method (see for instance
[4]} to prove the blow-up in finite time when g satisfies :

(B1) g is convex and positive in RF.

(B2) (N 2)2 < Iim g(g—s)=/\<+oo.

s—0+

(B3) There exists sg > 0 such that sq :q—mdi_;\—; < 400

Next, we use a well known "energy method” (see for instance {4]). For
this, we assume the following hypothesis :

8
h(s) = g(s) — As > Cs>*!, for all s > 0.

(B4) A = lir(rlx+ 9(s) < +oo and there exists @ > 0, C' > 0 such that
=

(B5) There exists ¢ > 0 such that (2+€) fo h{(t) dt < sh(s), Vs> 0.

Then we prove that if uo satisfies [g I—“—“L I8, g 3+ < 0, where

= [ g(t) dt, the solution u(f) to (Pt) blows up in fimte time. Fi-
nally, we conclude the section with the case g(0) > 0. Precisely, we apply
a method from [3] which links directly the blow-up and the nonexistence
of stationary solutions. For this, we assume :

(B6) g(0) >0, g € C*{[0,+00[), convex and increasing.

(B7) There exists zq > 0 such that hoe _&%':7 < 0.

327
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Then, for any up > 0, the solution u(t) = S{t)ug blows up in finite time.

In Section 4, we give some results concerning the existence of global
solutions to (F;). First, proving the radial symmetry of the solution to
(F:) when wp is radially symmetric, we exhibit the heat kernel of —|z|2A
in H3(Bi). Then, using a method due to Fujita, we prove the existence
of a global solution of (F;) for small initial data when g(t) ~ Af + t7,
p > 1and A < 0. Moreover, we prove that u(t) converges to 0 in L>(B,)
with an exponentional decay when t — +oc.

Finally, assuming the following hypothesis :

(G3) s — '1(331 is continuous and strictly decreasing,

(Ga) o) #2he o

1

o o g(s)
M L =) _—
(CO) sgl'(l;l_'_ 3 > ( 2

we show that for any uo > 0 satisfying ug € L°°N LZ(I%"%) y Jfwollpe <

F71(0) and uo £ f71(0) where f(t) = g—(tﬂ , the solution u(t} of (P} is
global and converges to the unique nontrivial stationary solution of (F,)
in Loo(Bl) n H&(Bl)

2 Local existence

Throughout this section, we assume that g € W, (R). Our goal is to
study the local existence of a solution to (P;). Precisely, we show that
we can apply Hille-Yosida theory in L>®{B;) N L%&f;). Consequently,
for every ug € LwﬂLz(ﬁ;), the uniqueness of solutions of (P;) follows.

First, we remark :

Proposition 2.1. Let A = —|z|2A. Then, A is a self adjoint mazimal
monotone operator in Lz(ri"fg). Moreover, D(A) = {u € Lz(]%i%)/u €

H}(By) and |z)?Au € Lz(ri-]%)}.
Proof. For this, notice that for every v € D(A4) and A > 0 :

2 2 — 2 2
”u —A lxl A u‘”[,z('f:_rz - “"’”Lz(ﬁ;_) + 2)‘”V u’”Iﬂ

)

2 2 2 2
LR AT



Some results abouts blow-up and global. .. 329

which implies that A is dissipative in Lg(ﬁy). Then, it suffices to show

that A is maximal. Taking f € Lz(l%fg), we consider the following
minimization problem :

[,\ - inf f,'(u)
uEH'(Bl)

where &{u / {":2 4 z\IV‘ul?‘) dz - / 5, -Iifm—lug-

By Cauchy-Schwarz’s inequality,

fl

2 . 'LL2
L> (]3_‘2+,\[\7u|2)da;—(];91 'l_if:_z)s(/ } "2)2 > —00

= uem(B )2 B,
then, considering a minimizing sequence {u,}, v C H3 (BN L%ﬁ;),
it follows that ||u,|| HinL2(dx) S C. And by standard compactness argu-

=
ments, there exists n € H§(B;)N L?('I:%'T}') such that up to subsequences :

d
U, — u weakly in Hé(Bl),uﬂ -» u weakly in Lz(—z—)

n—oo0 n—o0 |:L’|2

and
f Un n—boo LE

B, |22 B, |z|?

'Therefore, I is achieved by u and the proof is complete.

We deduce immediatly the following corollary :

Corollary 2.2. A is mazimal monotone in L®(B1) N Lz(ﬁ”g). More-
over, D(A) = {u € HM(B1) N L*®/|z|*Au € L? (]—[y)ﬂL“’}

Proof. let f € Lz(ﬁ%) N 1 and A > 0. By Proposition 2.1, there
exists u € Hi N Lz(_ﬁz) such that

v —-Az|PAu= fin B; (2.1)
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Thus, it suffices to show that u € L°(B;). Multiplying (2.1)
by (u = ||fllz=)*, we obtain :

/ (u || flzee)* +,\f | V{u=1l £ llz=)*

[z
o)t
= [ U= s IRE=E <

which yields (u—||f|lL)* = 0 and u < [[f|[z=. By thesame arguments,
we show that 4 > —{| f||r«. This ends the proof of Corollary 2.2.

Remark. For N > 3, L=(B,) C Lg(fﬁg). And in this case, to prove
Corollary 2.2, it suffices to show the maximality of A in L.

Now, we apply Hille-Yosida theory (see [15]) and we deduce the
following proposition :

Proposition 2.3. Let uy € L*®(B)) N Lz(ﬁ%). Then, there ezisis a
unique solution u(t) = S(t)up to () in a mazimal interval (0,T[,T > 0
such that

(i) u(} € CU0, T[, L=(B1) n L*({ER)) 1 C* (10, TL, L*(5)).-
(i) Forallt in]0,T[, u(t) € HMB)N L™N Lz(]%i’%) and |z|2Au(t) €
(%)
(#11) If ug > 0, then u(t) > 0 for allt > 0.

(iv) Ifug € L=(B;)N LQ(]%”F) satisfies |z|*Aug € L®(B))N L2(]%’f;),
then u(t) € C'([0,T[, L=(Bi1) N L*({&).

Proof. By Proposition 2.1, Corollary 2.2 and since g € Wl we can
apply Theorems 3.7 and 3.9 of [4]. This proves assertions (|) {ii) and
{iv). Now, let us prove assertion (iii). For every To < T, we multiply
the equation in (F;) by LET;: and integrate by parts to obtain for every
t € [0,Ty}:

%%/B. I?x_lfd = fB |Vu|? - f 9[3,2 < C(To)f [~ !2
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which implies by Gronwall’s lemma that = = 0. This completes the
proof of Proposition 2.3.

|

As a consequence of Hille-Yosida Theory, we have the following al-
ternative for u(t) = S(t)up :

Corollary 2.4. Ifug € Lz(l-%l‘%)ﬁLm, then, either T = T (Huollp(ay) =

+o0o and the solution u(-) = S{-)ug is global, or T < +oo and the
solution blows up in finite time which means that

-
Hu(t)|ln= + ||“(t)||1,2(g—f,) 5 4o

Proof. See {4].
Remarks. If g = 0 and wp € H' N LN L*(%) then u(t) = S(t)uo
is global and satisfies :

lu(®)® _  _(2=2y2y 2
—— g e ' 2 g z 3 2.2
/B‘; IIIQ " llm(I—::f:) ( )

The proof is based upon Hardy’s inequality. First, observe that since
g = 0, (P) is linear. Therefore, u{t) = S(t)ug is global. Moreover,
multiplying (F7) by u(t)e‘gw and integrating by parts, we have :
d [u“|2 (N—2)2t N-2 2 |u"f2 (M)?t
— = =2f— _ dz —2
dt/B‘[mizez dz 2(2)/&!:5'262 T
f [Vu!ze(g)%daf <0
B,

by Hardy’s inequality. Thus, integrating on [0, ], we deduce (2.2).
Now, we deal with the behaviour of the solution to (F£). In the next
section, we give some examples of blow-up in finite time of solutions to

(F).
3 Blow up in finite time in L2(ﬁ—’l"§) N L*®

Throughout this section, we assume that g belongs to VV,{,;”, ug € LN
Lz(ﬁg) and G(s) = [5 g(t) dt.
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3.1 Main results

We consider three classes of functions g. First, we adapt a classical
“spectral method” (see for instance [4]). Precisely, we prove the following
theorem :

Theorem 3.1.4ssuming N > 3 and

(B1) g is convezr and positive in IR™,

(B2) (%52)% < A= lim 9(s) < 400,

s—+0+ 8

(B3) There exists sy > 0 such that ':°° —%‘} < oo where h(s) = g(s) —
AS.

Then, for any up > 0 in LN L2(]%fy), w(t) = S(t)ug satisfles : AT €
RY such that

. fu(t}? _ - -
g, = o g 0l =4

The second blow-up case is based upon an “energy method” (see for
instance [4]).

Theorem 3.2. Assume that ug satisfies (*) [g vu° - Iz, le‘—fgl <0
end that g has the following properties :

(B4{) A = lim+ % € R and there exists a > 0, C > 0 such that

50

h(s)=g(s) — As > Cs**! forall s > 0,

(B5) There exists ¢ > 0 such that for alls > 0, (24 ¢}H(s) < sh(s)
where H(t) = [{h{s)ds.

: (£)[2
Then, u(t) = S(t)ug satisfies: 33T > 0 such that tlig}_ B, lt‘;zp -
+00.

Remarks.

1. If g(s) = As+ 8P with A > (5—2:3)2 and p > 1, (B1), (B2) and
(B3) are satisfied.
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2. If g(s) = As+ s with p > 1, (B4) and (B5) are satisfied.

3. Let ¢ € LN H}. Then, by (B4), there exists M > 0, large
enough, such that ugp = M ¢ satisfies (*).

4. If up > 0 is a radially decreasing nontrivial subsolution of (P}
and belongs to H}(B;,) N L*, then, a simple computation based
upon a "Pohozaev’s equality type” shows that (*) is satisfied for
N > 2. Indeed, multiplying —|z|?Aup < g(uo) by z - V uo and
integrating by parts, we obtain :

which implies :

|Vuf? [ Gl L[ g
o < — ds
LT Lo e S o) o, e <0

Finally, we deal with the case g(0) > 0. In this case, we adapt a
method from {3]. And we use the results of nonexistence of solutions to
the problem (P).

Theorem 3.3. Assume that N > 3 and the following assumptions on
g:

(B6) g > 0 is convez, increasing and belongs to C' ([0, +o0f),

(B7) There ezists so > 0 such that > —%ﬁj < 0.

g
Then, for all ug > 0 in LN L2('l%|17) and nontrivial, u(t) = S(t)ug blows
up in finite time in L°° and in Lz(]%[‘”;).
Remarks.

1. It is worth noting that in Theorems 3.1 and 3.3, no additional
assumption is required for ug. Here, the nonexistence of weak
nontrivial solutions of the stationary problem (P) implies the blow-
up in finite time for any initial data in L* N L2(ﬁ7).

2. The assumptions (B3) and (B7) prevent the existence of unbounded
global solutions {i.e. which blow up when ¢ — 00).
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Now, we prove Theorem 3.1:

Proof of Theorem 3.1. Let us consider 1, the eigenfunction associated
with the first eigenvalue A! of —(|z|? + |¢|>)A in H}(Bi1) such that
JB, 1 = 1 (for this, notice that N' > 3 implies that L&) C L (&%)
It is easy to prove that A! — (N )2 when ¢ — 0. Therefore, by (BZ),
there ex1sts € > 0 small enough such that Al < A. Thus, multiplying
(P) by 4 7> We obtain :

i/’ ‘ﬂi)iq.p/ _ﬂﬂ_i’e_[ g(u(®) b
dt Jp, |z|? “Jg, |zl + 12 JB, |z|?

Since g is convex (which implies that f is convex), by Jensen’s inequality,
we have :

d [ u(t) 1 / u(t) ¢, / u(t)%.
— >{(A—A h
From which it follows :

d #(t) ds _ fdsoma .
i ([itg) 2t w0 [

Integrating (3.1), one has fj $() —d—“’j > t+C which together with (B3)
implies that ¢(-) blows up in finite time. Finally, noting that for N > 3,
the injection L™= < Lz(ﬁ%) is continuous, the proof of Theorem 3.1 is

complete.

Next, we give the proof of Theorem 3.2:

Proof of Theorem 3.2. Suppose that the solution u(t) = S(t)up
is global. Let us consider E(t) = 2fB (Vu(t)]? — [, QE-]L}D Then,
mutltiplying (#;) by Ef’ and integrating by parts, we obtain :

lugf? / s d /‘ G(u(t)) d
LA = = ——(FE(t
-/1.5‘1 ]2 2dt IVu(e)"+ T B, |z|2 dt( ®)
Thus, F(t) is decreasing and E(t) < E(0) < 0. Now, multiplying the
equation in (P) by ]“—z(]? and integrating by parts :

1d [ P 2 [ gu®)u) ‘
vit fo T = f IVeOP+ [ B 6
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By using {B5), and taking H(s) = [ h(t) dt, we prove that :

Ld P Ju(®)?
EE/B. 2 f [Vu) + 2+ )f |:c|‘ s J[Bl Top?
b [ HEO)
> “2EM)+c [ o
H(u(?))
> —2B©+e [ 25D (3.3)

2
Thus, (3.3) and (*) imply that llm / Iz l)J = +o00. Then, by (3.3) :

L [ Lok /_Hauit_uj_ﬁf_ww [ o L
2dt Jp, |2 EE s, 127 = \Up, Jei

Taking ¢(¢) = fp, Il,"-i%l—, we have :

d
dt

(t) 2 2:Co()E (3.4)

Integrating (3.4) on [tp,t], we obtain :
1 1
= >C{t—1t
$()F  o(t)? (¢~ to)

which contradicts that u(-} is a global solution of (F;). This compietes
the proof of Theorem 3.2.

Finally, we prove Theorem 3.3. Here, we use an approach from (3] :
the nonexistence of stationary weak solutions implies the nonexistence
of global, bounded solution of {F;) for every uo > 0.

First, we adapt the definition of a weak stationary solution of (F)
from [3] :

Definition 3.1. A weak stationary solution of (P;) is @ funclion v €
L'(By) such that §$26(z) € L}(B1) (where §(z) = dist(z,0By)) and

V¢ e CYBY) _] ,,,Mdz_] g(u)
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Then, we have the following result :

Proposition 3.4. Assume that g satisfies (B6) and (B7). Then, there
15 no weak stationary solution of (). Proof .

We apply a method from [3]. Precisely, for all 5 such that 0 < 5 < 1,
we define :

—|z{?Au= (1~ n)g(u) in By
(Pn){ w20, zge }Itl)(Bl)

Asin [3], we define h(u) = f3' 2%, h(n) = Aoh(u) and &(u) = h~! (h(u)).
It is easy to prove the following assertions {see [3]) :
{i) ®(0)=0and 0 < ®(u) < u.
(1) @ is increasing and concave. Moreover, ®'(u) < 1.
(i) @ € L™ and ®(u) satisfies :

vee ok B) - [ eneza-y [ LK

which means that ®(u) is a “weak supersolution” of (F,).

Forall £ € C3(B1), let us consider the following iterative scheme :

{-fB, 1 A8 = (1= 1) fy, G5 in By
u=2%(u), ue€ Hll)(Bl)

Then, noting that ®(u) € L* implies that for ¥ > 3, ﬂfﬂ%n A
and by the fact that 0 is a strict subsolution to (F,), we prove, by the
maximun principle, that in L%, {u,},>; is a decreasing sequence of
weak supersolutions of (F,;) and u, < ®(u). Thus, v, = nl_ilﬁo u, € L™
is a weak solution of (F,). Now, consider for all ¢ in ]0, 1, the following
problem :

(P ){ —(lal? +|e)Av= (1~ n)g(v) in B
€ v>0, v € HYB))

As in [1], we prove the existence of a minimal solution of (P, ;), vcn,
such that v, , < v, < ®(u).
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Putting w, n(z) := v, n{e2), for z € By, we have :

—({z2+ DA we, = (1 — p)g(wey) in Bn
w€‘7j 2 0, an E 110(8 )

As above, we can show that ¢ — w,, is increasing in L°°. Passing to
the limit € — 0, it is easy to prove that w := lin}] w, satisfies [|w||fe <
€

|luyllzee and is the minimal non trivial sclution of the following problem :

{—(Iw!2+ DA

Therefore, w(z) = 7—Lx—y * Tl where Cy = (N ~ 2)joy_1| and
Culzl

(1-n)g(w) in BV
0

l\/ ||

)
|on -1/ the surface area of the unit sphere. Thus,

Cn g(w) .
0) = f dz > £
w(0) R" Iml“‘"\‘l‘l""ﬂ veombper I

+

/R” (=12 + l)lwIN 2

This contradicts the boundedness of w and the proof of Proposition 3.4
is now complete.

Proof of Theorem 3.3. First, note that by the maximum principle,
it suffices to prove Theorem 3.3 in the case ug = 0 (note that since
¢ is increasing, ug < wo = Vt > 0, S(t)ug < S(t)wg). Moreover,
g(0) > 0= u; > 0 for ¢t small. Then, for § > 0 small,

u(t+38) =St +8)0=5(@)oS(8)0> S(t)0==u(t)and 4, >0,Vt> 0

Now, taking ¢ € CZ(B,;), multiplying the equation in () by ﬁ}' and
integrating by parts, we obtain :

L
d uAG = a(u(t))é (3.5)

dt Jp, Iﬂ'«l2 B B o
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Therefore, choosing ¢ = 9. (defined in the proof of Theorem 3.1} we

have :
u(t}y, uth, gl(u{t)) .
aﬂlm2+*ﬂmﬁﬂ& A EE

dt ]B, |z|? B, (g—'(!:fg‘)——m - A:) Eﬁ‘——l)%

which provides the following alternative :

1. either there exists M > 0 such that fBl %%M, fBl “i’l" <M
forall t > 0, or

2. fp, M P oo,

Let us suppose that the second case holds. Then, by Jensen’s inequality,
we have for ¢ large enough :

HL L ()

f(t) de 1 u(t
#5240 wh twf u(t)v,
L902+ where J()= [ "R

which contradicts (B7). And u(t) = $(¢)0 blows up in finite time.
Finally, suppose that the first case occurs. And let { denote the
unique solution of the following problem :

{—(!mﬂAC:l in By

Thus,

Hence,

(=0 in 9B,

For N > 3, it is easy to prove that { € W%P(B;) for all p < %r- which
by Hardy’s inequality and by Sobolev’s embedding implies that { €
LZ(];!;IE,) N H§(B1). Hence, there exists {(,}, v C C§°(B1) such that :

dz

, A L2(4)
AC 5 AC and ¢, -EF ¢ (3.6)
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Choosing ¢ := (,, in (3.5) and integrating in [t,t + 1], we have :
u({s8)C, 1" t+1
L]+ [ e, e
B, |zl 1

t41

9(u(s))Cn

),
A Ao

Passing to the limit n — oo, we obtain by (3.6) :

w(S)on norco [ u(8)C
/Bl EICEAN ey

Moreover, by Leb&sgue theorem and by (3.6) :

/H‘l dS/ S))Cn n—)oo t+l ]
B, |z B, Iﬂrl2

/IH dszl (—AG) ™ /m ds] (=AQ)

Therefore,

[, ]m*f Tas [ ws-ag = [T [ LN

Now, since u; > 0,

" ‘ uls t+1
iy dsfg,%-[fm%t

g(u(z +1))¢
B |z]?

ar

< <M

Therefore, by monotone convergence, there exists w € Ll(]-‘ﬁ%)
that u(t) “23° w in Ll( 42y 1t implies that for all ¢ € C2(B,) :

(3.7)

such

/;?1 ulgl)f’ ad /;3, [zfi” / [B. u(s)(—Ag) =% /;31 w(—A¢) and

[’“ ds /B a(ﬂzm_ﬁ oy [ gw)e

s, =

339
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(For this, note that ff*! ds fg, 9_%‘5)& < 2fB ¥¢ < +00). Therefore,
for all ¢ € CZ(B;) :

_ / wAd = g(w)d
B] Bl _rzﬁ_
which contradicts the nonexistence of weak stationary solutions to (F).

This completes the proof of Theorem 3.3.

Remarks. Consider g e C' convex , increasing function satisfy-

ing lim g(:) > (N 2) , (B7) and for all s > 0, —(—)— > G(s) =

30t
fo g(t)dt . Then, we can apply the previous method. Precisely, for all

ug > 0, u(’) = S(-)ug blows up in finite time in Lz(]%xr;).
It suffices to modify the proof of Theorem 3.3 as follows :

1. 0 is replaced by e¢. which is a subsolution of (P) and ep, < ug,
for € small enough.

2. The nonexistence of stationary solutions of (£;) is provided by the
results from [7).

4 Global existence of solutions to (F;) and
convergence to a stationary solution

4.1 Main results

In this section, we give two examples of global existence of solutions
to (P;) which converge to a stationary solution when t — co. In each
case, we obtain an exponential control of the convergence either in L*°
or in H}(B;). Here, it is worth to underline that the convergence to a
stationary solution is related to the uniqueness of the solution to (F).
First, we prove the following :

Theorem 4.1. Assume that N > 2 and the following hypothesis :

(G1) lim —(:l:/\<0,

50+
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(G2) There exists € > 0, such that |g(s) — As| < Cls[!**.

Then, for ug such that ||ug||f smail enough, u(-) = S(-)uo is global and
there exists C > 0 such that ||u(t)||p~ < Ce*! for all t > 0.
In the second part of the section, we prove the following theorem :

Theorem 4.2. Assume that N > 3 and g satisfies the following as-
sumptions :

(G3) s — g—(fl is continuous and strictly decreasing,
(G4) 4228 oo,
(Gs) L2 x> (M52,

Then, for any up such that 0 < ug < f71(0) and up Z f~1(0), with
f(s) = 1(;1’-1, u(t) = S(t)uo is global and converges to the unique non-
trivial solution of (P), wx, when t — oco. Moreover, if we suppose,
in addition, that —g is strictly convex, there exists K > 0 such that
[u(®) = wallgp(m,) < Ce ™t forallt 2 0.

We start by proving a proposition which provides the heat kernel of
~-|z|?A:

Proposition 4.3. Consider u = T(t)ug € L®(B1)N Lz(]%fg) solution
of .

u — |z|?Au=Au in By
u(t,z) =0 in R*Y x 8By, «(0,z) = uo

where uq is radial. Then, u(t) is radial and if v(t,s) = u(t, z) with
s = —In|z| and Ay = (852)?, then,

_ 2
e 25— (dn—Mi- 150

v(t, 8) =

(41rt)i]’.' * v{0, s).

Proof. First, we remark that the radial symmetry of u follows from the
uniqueness of the solution to (P). Then, to compute the heat kernel of
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—|z|2A, we use a method from [7]. Indeed, put w(t,s) := e"ﬁ'z—_z’v(t, s).
We show that w satisfies :
W — Wes = (A — Ay)w in R x (0, +00)
(Pw) _ a—+po _ N2,
w(t,0)=0 , w(t,s) "= 0, w(0,s)=v(0,s)e” "z

Taking w(t, —s) = —w(t,s) for all s > 0, we have that (P,) is satisfied
in R* x K. And we can apply Fourier transform. Indeed, for N > 2,
w(t, ) belongs to L?(R) (for N > 2, it is obvious since v € L* and for
N =2, it suffices to remark that fp E‘; < oo = [F* wlds < 00).

A simple computation shows that @(¢, z) = woe~(FF+AN-28 (g
ing inverse Fourier transform, one has :

2 2
e n=ap-LE o 2s—(An-Myp- L2
w(t,s) = wo* —————— and v, s) = v *

(47t)2 (4w t)%

This completes the proof of Proposition 4.3.

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Here, we apply a method from [4]. First,
remark that by the maximum principle, it suffices to prove Theorem 4.1
when up is radially symmetric. Then, by Proposition 4.3, T(t)ug is
radially symmetric and

JRZ PRNCYRRS YA
1T(uollpe = ||vo* Py
(dmt)2 Loo
N—2 1s?
e"T’"“(’\N_A):_ 4c
< vollpeo T (4.1)
(4m t)3 Lt

lxlz
Now, using Laplace transform f(y) := ff‘f e¥"~3r dz, we show that
N-=2 2

s
e"‘N(él?rt)%. Therefore, by (4.1}, HT(t)uollre < e*!||luollLs. Now,
we apply a method from [4]. First, we define ©(-) such that 8(z) =

;ﬁ\—'[xl‘"‘ ~ z with € defined in (G2) and é > 0 satisfy

minO(z)+5<0, () +5>0 and O(8) <0
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Let us choose g € LN Lz(]%’r;) such that ||uglir= < 4. Then, u =
S(t)up satisfies :

t
le@llee < IT@ulize + € [ u(e)iE < 6

t
+ CeM | e (e lu(s)llLe) te ds
0

Putting #(t) = sup e **||u(s)|lr which is an increasing function, we
0,t

have :

b(t) <5+C f ()€ ds < 8+ - p() .

€|A|
If # = inf{z > 0/O(z) + & <0} > 4, it is easy to prove that $(t} < p
for all ¢t € [0,T[, where T is defined in Proposition 2.3. Moreover,
lu(t)llze < e*p, which implies that u is global and T = oo. This
completes the proof of Theorem 4.1,

Remarks.

1. If p €]1,400[, the function g : s — sP satisfies the hypothesis
of Theorem 4.1. Therefore, Theorems 3.1 and 4.1 show that the
behaviour of the solution of (P;) depends on the initial data.

2. It is worth noticing that for N = 2, we obtain almost a complete
description of the behaviour of solutions of (F;). Precisely, Ax =
(M=2)2 = 0 is the “blow-up critical parameter” (see [13]) which
means that for A < Ay, there exists global solutions of (P¢) for
small initial data and if A > An then for all up £ 0, u(t) = S(¢)uo
blows up in finite time. However, we do not know what happens
in the case A = Ay. Moreover, since the heat kernel of —|z|2A
does not vanish at the boundary, we cannot apply a method due
to Fujita (see [9]) which would furnish the answer. For N > 3, we
suspect that Ay still remains the critical blow-up parameter.

Now, we give the proof of Theorem 4.2.
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Proof of Theorem 4.2.

Since there is a unique nontrivial solution to (P}, it suffices to prove
Theorem 4.2 when wup is radially decreasing. In this case, S(t)ug is
also radially decreasing. Indeed, choosing ¢ €]0,1[, we remark that
u(t, ex) = u(t) is solution to

P — |z|*Au = g(u} in R+ x Bi
(Pes) u(t z)=0 in Rt xdB. (0 z) = up(ex)
Since up(ex) > wug(x), by the maximum principle, for any ¢ €10, 1],

ue(t) > S(t)ug which proves that S(t)ug is radially decreasing.
Now, as above we prove that :

d [ |u@®)]® g(u(t))u(t)
dt Jp, =2 fqu(t |2+f B

Moreover, E(u(t)) = § fs, IVu(t)]? fB1 —H;n satisfies

;;E( (1)) <0 and E(u(t)) < E(ug). (4.2)
Futhermore, multiplying the equation in (P,) b s/ O e obtain :
— 1P +)?
_gg : ((’M(t) Iilz (o)) == -/; IV(uU)"f_l(O))-l-P
_ [ Q- fu@DE- )Y
~ Jp, |22 -

which implies that for all ¢t > 0, u(t}) < f~'(0) and therefore Upo{u(t)}
is uniformly bounded in L*°(B,}. By (4.2), for N > 3, it follows that :

V()P » 1
[Bl P2l < Buo) - G (0))/1desc

B

Therefore, Ugso{u(t)} is bounded in L>°(B;) N Hi(B). Then, for any
sequence {t,}, . pv such that t, — +oo, there is w € L°°(By) N Hy(By)
{depending a priori on {t.}, . ry) satisfying

u(ty) "2 4w in H&(Bl) , u(t n) Y w in Lz(l |2)
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and y
Gu(t,) "=° G(w) in L' (=3 z

For this, notice that on one hand

lu(ts) —wl? [ | oyh 1
/81 o= (g, et ) (fal e

o

where p < & and 1 s + = 1. On the other hand, since U;>o{u(t)} and
w are umformly bounded in L™

/ |G (u(tn) ‘:G(w)|2 <cf |u(tn) — wi?
B

O L 12

& J By [+1

Let us show that

Hg(B)1)
—

u(tn) w when n—co

For this, it suffices to prove that [p [Vu(ts)|? e Jp, IVw|®. Let us
prove that fg IVu(t,)|? does not concentrate in z = 0. First, for any

8 < 1, multiplying the equation in (F;) by ]‘%l‘-} in Bs, we have :

2
d/ |u]? +/‘ qu(t)l'Z—/ u!tl ds:f g(u(t))u(t)
lz|<é |z}=4 =<8

dt Jizi<s [? an |z|2
Since u(t) is radially decreasing,

d Jul? 5 g{u(t))u(t)
f + /u Vel s [ B (4.3)

dt Jzj<s 122 ||

Integrating (4.3) in [¢,¢ + 1], we obtain :

B Vu(s)|? < C !
< —
/m|<s el* / Sf [Vule)l lel<s ||

where C is independent of ¢. Then, for all € > 0, there is §(¢) > 0 small
enough such that for all § < é(¢), we have :

t+1
o< [ ]M Vu(t)? < ¢ (4.4)

345
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To conclude the proof, suppose that fg [Vw|? < lgrgo/ [Vu(tn)]?.
n B

Then, by (4.2) E(w) < E, = tl_i}m E{u(t)). However, by (4.41), it is easy

to prove that

/Hldsf Vu t,.+r)|2“~$/ [ Pw)*  (4.5)

Indeed, by the boundedness of {u(t)}:>0 in L™ N Hg(By),

NP A+ ol < NIPATE )z 25
t4r
[ NaPATE 7= sdatu(ella gy

from which it follows :

C
i |Z|265(t+f)u0|lm(|—;f,) < llu®lze

N

N

t+7 d
+ o —= o= < Z
t  (t+T1-8)7s2 T

(for this, using a method from [4] Lemma 3.10, we prove that

I |3|2AT(t)u0”L2( de) S %““"”H&(Bx)

and . )
T () uoll by s,y < ff”"ﬂ”g,z(lﬁ) < Ct™7|uo|Leo

for N > 3)

Finally, (4.4) and the compactness of the embedding H?(é < |z| <
1) <= HY8 < |z| < 1) imply (4.5). Now, using that E(-) is decreasing,
we have :

/tt“ E(5(r)w) dr < E(w) < En,

which contradicts (4.5). Thus,

[ a2 [ oo
B] Bl
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and for any
t > 0E(S(t)(w)) = E(w) = Ew.

This implies that w is a stationary solution of (F;.uo) and either w = 0,
or w = w) which is the nontrivial solution of (P).

Now, let us prove that u(t) ‘=% w in L®(B;). By a bootstrap
argument (see [12]), it is easy to prove that for any é > 0,

l|u(t) — wllLee(jo1n8) = 0 (4.6)
We consider ug := € v, which satisfies
|z?Aug + g(ue} > 0 if € is small enough (4.7)

We recall that 1, is the eigenfunction of —(|z|2 + |¢[*)A defined in the
proof of Theorem 3.1. Note that by (G5) and (G4), (4.7) is satisfied for
¢ small enough. Then, up is a strict subsolution of () and as above, it
implies that %S(t)uo > 0 for all ¢ > 0. Hence, u(:) is increasing. Hence,
w = vy. Then, by Dini’s theorem and (4.6), we have for all é > 0 :
lu(t) — wallLoeizs) == 0 (4.8)
Moreover, from [8] we know that wy(0) = f~'(0). Therefore, since
{u(t)}e>0 U {wy} are radially decreasing
lim sup lwor — w(t)llLem:) < limsup l|2(t) ~ wallLe(1zi<5)
+ limsup ||'u.(t) - w)~||L°°(IrI26)
t—+oo
= limsup ||u(t) - wallL=(zi<) < f7(0)
t—+oo

— lim lim u(t,z)
=00 |z}—=0

Thus, suppose that ¢ = ltl_i,‘m ]li!mou(t,a:) < f~1(0). Then, since u(t,-)
0 |z

is radially decreasing, for any zs such that lz] = & > 0, wi(zs) =
t]Lm u(t, z5) < cx. This contradicts that w is continuous.
[sv]

Now, considering any uo such that 0 < uo < f7(0) and uo # f'(0),
there exists ¢ > 0 small enough such that e, < ug. It implies that

S(t)(ewe) < S(t)(uo) < F71(0) and [|S(H)uo — walle(r) =F 0(4.9)
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To conclude the proof of Theorem 4.2, let us prove that if we suppose,
in addition, that —g is strictly convex, then, there exists K > 0 such
that ||u(t) — wallp1(p,) < Ce R for all £ > 0. First, note that

%/1:31 o ~ ()" ';;(t)lz F j; Vs = w ()1
/ (9(w») = g(u(t))) (wx — u(t))—
B,

lz[?

By (4.9), for t large enough, we have :

i/ W_A:_M+ﬁ _A_g'(wx))/B (wx ~ u(t))? <0 (4.10)

a Jo,  JoP 2 EL EE

where %Mﬁ%ﬁﬁﬂiﬁﬁﬂg&ﬂmh&oﬂi_—#&)wl)

Then, the strict convexity of —g implies (see [8

Mi-a- T - I;F%Fo

Thus, from (4.10), it is easy to prove that :

_ 2
JES PP
By

|z|? -

Using (4.10} and putting K = ’\2 , we have for all ¢

[, 19(ws - ut)? < ce K (4.11)

This completes the proof of Theorem 4.2,

Remarks.

L If g(s) := As — |s|P"'s where A > (¥:2)2 and p > 1, then, g
satisfies the assumptions of Theorem 4.2.
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2. Suppose that —g is strictly convex and satisfies the assumptions
(G3) to (G5). Then, taking § > 0, (4.11) and a bootstrap argu-
ment show that forall t > 0 :

lla(t) = wallpoo(uizs < C(8)e™F
However, we don’t know if that remains valid for é = 0.

3. The assumption (G5) and the second part of Assumption (G4)
suffice to prevent that u(¢f) = S(f)up converges to 0 in L*®(By)
when t — oo and when ug # 0.

i—00

Indeed, suppose that ||S{¢)uoliye(p,; —+ 0. Then, adapting a
method from [14), we consider € small enough such that A! < A.
Then, multiplying the equation in (F;) by %, :

u(t) ¥ +)\1[ u(t) e __/ glu(t)) .
B By

P+ Jp [P

dt Jp, |z|?

from which it foliows for ¢ large enough :

_‘_i_ u(t)we _1 u g t))"pc
dt/B, |z[2 2 )“fgl Ia:|2 f B
> S -2 [ Wh

|=|?

Moreover, assumption {G5) implies that for e small enough ¢'(0) =
A > Al. Thus, by (4.12), we have % > Ce Li‘& 2% too
which contradicts the uniform boundedness of {u(t)}¢>o0-

4. In [8], the authors show the existence and the uniqueness of the
solution, u., to the following pertubed problem :

P —|z|2Au = g(u) + ¢ f(¢) in B
(F) ue H(B), v>0

where g satisfies (G3) to (G5), f is a positive function in R* and
belongs to C!(RT) such that —HT f(s)+g(s)=-o0ande >0
8 o0

small enough. Moreover, A;(—A — M&%ﬁﬂ&ﬂ) > 0. Then,
Theorem 4.2 holds for (F;).
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