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An unknotting theorem for tori in S*.

Akiko SHIMA

Abstract

Let T be a torus in $* and T* a projection of T". If the singular
set ['(T™) consists of one disjoint simple closed curve, then T' can
be moved to the standard position by an ambient isotopy of S%.

1 Introduction

In this paper we will study an embedded torus T in S*. If the singular
set of the projection T* (C S2) of T consists of one double curve, then
what can be said about the position of T'?7 The following theorem is the
main result.

Main Theorem (Theorem 4.1). Let T be a torus in §*. If the
singular set T(T*) consists of one simple closed curve, then T can be
moved to the standard position by an ambient isotopy of S*.

We will work in the PL category. All submanifolds are assumed to
be locally flat. Let $* be the 4-dimensional sphere, S* the 3-dimensional
sphere, and p : S*\ {oc} — 53\ {oc} the projection defined by
p(z1, 72, 3, T4) = (1, 22, 23).

Let B = {(zy,72,23) € Rz} + 2%+ 2} < 1}, and F; = BN
{(z,22,23) € R®|z; = 0}. Let F be a closed oriented surface, and
f: F — 8%\ {oo} a map. We say that f is in general position, if for
each element z of f(F), there exist a regular neighborhood N of z in
53\ {00} and a homeomorphism A : N — B such that N and A satisfy
the following two conditions:
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(1) Under A, (NN N f(F),z) is homeomorphic to either
(B, P, (0, 0, 0)), (B, RUp, (0,0, 0)) or (B, PLUPUP;, (0, 0,0)).

(2} Let R be a component of f~1(f(F) N N). There exists an integer
t such that ho f|[R: R — P, is a homeomorphism.

Note. If (N,N N f(F},z) is homeomorphic to (B, P, U P, (0,0,0)),
then z is called a double point. If (N, N f(F),z) is homeomorphic to
(B, AU P U P;,(0,0,0)), then z is called a triple point.

Throughout this paper, we assume that p|F is in general position.

With every point P or subset F of $*\ {co}, we associate the point
P* = p(P} or the subset F* = p(F). We define ['(F*) to be the set of
all double points and triple points and put I'(F) = p~Y(T'(F*)) N F.

A solid torus V is said to be standard in S3, if V is a regular neigh-
borhood of a trivial knot in §3. And the torus 8V C §3 C $4 is said to
be a standard torus in §%. In [H-K], they proved that a boundary of a
handlebody in S* is unique up to ambient isotopies of §4.

The circle is taken to be the quotient space §' = R/(8 ~ 8+2r for
all # € R). We will write "6 € S!”. We denote by (a,b) the greatest
common divisor of the integers a and 5. Let py : I x S' — I x §!
be the b-fold cyclic cover given by (z,8) — (z,b8) for b € Z\{0}. Let
re : I x §' — I x S! be the rotation map given by (z,6) — (z,6 + ¢)
for $ € S, Let @ : §' — I x S! be an immersion. Let ig: ] x §1 —
I x8'x8C1IxS!x S5 be the inclusion map (z,¢) — (z,d,8). Let
a,b be integers satisfying b #0. We define immersed surfaces a(a, b) in
I x 81 x 81, which satisfies

a(a,5)N T x ST x 8 = igrogp(py ' (@(S1))).
In particular, we denote by T (a,b) the immersed tori «(a,b) obtained
from « shown in Figure 1.

Figure 1
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All the homology groups are with coefficients in Z.

Example 1.1. If (a,b) = 1 and b # 0, then there exists a torus 7" in §*
with T™ = a(a, b) (see [T, Theorem 8]).

Example 1.2. There exists an embedded torus T in $§* with 7* =
T1(a, b) where (a,b) = 1, b # 0. We can check that ($3,T'(T™)) is home-
omorphic to (53, (a,b)-torus knot) where (a,b)-torus knot is defined
in {[R} (see p 53). Therefore T)(a,b) is the immersed torus having the
singular set I'(T*) of one simple closed curve.

2 Solid tori and immersed surfaces in S°

Lemma 2.1. Let V be a solid torus, A a properly embedded annulus
into V' with [a;] # 0 in H (V) where ag, a1 are the components of 0A,
then there erists an embedding map h: Ax I — V with h(e,0) = a for
alla€ A, and h(BAx TUA x 1) C 9V,

Proof {(Only outline). We find a disk F such that 8F = [ Uk, {
and k are disjoint arcs, intENA=¢,INk=0l=3dk,l C 8V, and
k C A. Let B be a component of 8V \ (ag Uay) with B 2 {. Then
AU B is a torus. There exists a 3-manifold W with W = AU B,
W O E. Let N(E) be a regular neighborhood of E in W. We have
that @N(F) = Do U C U D; such that D; is a disk, C is an annulus,
and IN(EYNOW = C. Then W\ N(E)) = (AUB\C)U DyuU Dy
is a 2-sphere. By the Schéenflies Theorem ([R} p 34), W\ N(E) is a
3-ball. W is obtained from W \ N(E) by attaching a l-handle N(E).

Therefore W is a solid torus. We make a map h by using W.

Lemma 2.2. If V},V, and V3 are solid tori in 83 such that V,NV; =
OV; N dV; is an annulus and S° = V; UV, U V3, then there exist integers
i, j such that V; and V; are standard solid tori in S3.

Proof. The set Vi NVanV; consists of two disjoint simple closed curves.
Let ¢ be a component of ViNV;NV;. We denote ¢ = pil;+q;m; € Hi(dV)
(i=1,2 or 3) where /; is a preferred longitude of 3V;, m; is a meridian of
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'0V;, and (pi, ¢;) is a pair of relatively prime integers. By van Kampen’s
theorem, we have =) (VU V) =< [;, ;| IP' = l?’ >. We get

Z if (pi,pj) =1

ZoZy i(pip)=Id#1
ZGBZha.f pk:O,ps-}’:O,{k,S}z{i,j}
ZoZ pp=p;=10

H\(V;UV;) =

Since V; U V; is the complement of an open regular neighborhood of
some knot, H (V; U V;) 2 Z. Hence we have to consider the following
two cases:

(1} pi #0,p; #0,(pi,pj) =1 or
(2) pr =0,ps = £1,{k, s} = {i,5}.
Case (1).

We construct a Seifert. fibration on S3 in which each solid torus V;
has ¢ as a fiber. If |p;| # 1 for all ¢, then there are three exceptional
fibers. But we can show that in any Seifert fibration of the 3-sphere,
there are at most two exceptional fibers (see [J-S] p 181). This is a
contradiction. Hence there exists an integer k with p; = £1. We have
m (Vi U Vi) =< I, ) 17 = B! > Z. Therefore V; is a standard solid
torus (7 # ¢, k). Similarly, we can show that V; is a standard solid torus.

Case (2).

Since ¢ = qxmy = i, + g;m,, we have g = +1. There exists a disk
D in Vi with e = 8D C 8V}. Hence [c]=0in H,(S3\ intV,) and ¢, = 0.
The solid torus V; is a regular neighborhood of some knot K. But K
is a boundary of some disk in §%. Hence K is a trivial knot and V; is
a standard solid torus. Let V = Vi U V,. Since ¢ = +m; = I, and
Vi N V; is an annulus, then V is a solid torus. Let V; be the third solid
torus with t # k,s. Then S =V UV, VNV, =39V = dV;. But up to
homeomorphism there is only one way of decomposing S into two solid
tori with the same boundary. Therefore V; is a standard solid torus.

Remark. Let V;, V; be as above. If H)(V;UV;) & Z and [€]=0 in
H,(V;UV;), then px = 0,p, = %1, {k, s} = {3, j}.
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Fact. Let F be a closed surface in $* with p|F in general position,
and ¢ a simple closed curve in S® such that ¢ is transverse to f(F),
¢NT(F*) = ¢. Then the number of points of cNI'(F*) is even.

Lemma 2.3. If F is an oriented closed surface in §* with p|F in general
position, then F'\I'(F) is divided into some regions. Then we can color
each region black or white so that adjacent regions have different colors.

Remark. Suppose that I'(F*) consists of double points, and let n be
a number of components in ['(F) which are not contractible in F. By
Lemma 2.3, one sees that if F is a torus, then n is even.

Proof. Let Dy, ..., D, be the components of S 3\ F*. We will construct
a function f {Dy,..., D} — Z3. Let zo be a point of 5%\ F*, 2
a point in I);, and [; an arc in 53 such that [; is transverse to F™ and
dl; = {zo,z;}. We define f(D;) = 0 if the number of points of ;N F*
is even, otherwise f(D;) = 1 . By Fact, we can show that f does not
depend choices of z; and #;. And then f satisfies the property that D
is an adjacent region of D; (i.e. there exists a path I C S such that
1(0) € Py, 1(1) € D;, {I)QT(F*) = ¢, and I{I)NF* = {one point}), then
f(D:) # f(D;). Let € = {Ey,..., E;} be the components of F*\T(F™).
The orientation of F induces the orientation of E;. We define a function
h: & — Z, by h(E;) = 1 if the positive normal vector of F; points to
a white region, otherwise h(E;) = 0. Using h, we color the regions of
F\TI'(F).

Lemma 2.4. Let F, p|F be as above, and ¥* a component of I'(F*).
If v* is @ simple closed curve, then p~!(y*) N F consists of two disjoint
simple closed curves.

Proof. Let N be a regular neighborhood of v* in $3. Then p Y(N)NF
consists of either two disjoint annuli, one Mobius band or two disjoint
Mobius bands. Since F is an oriented surface, p~'(N) N F consists of
two disjoint annuli. Therefore p~!(y*) N F is two disjoint simple closed
curves. This completes the proof of Lemma 2.4.
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3 Local moves of surfaces in §*

Lemma 3.1. Let F be an oriented closed surface in S with p|F in
general position. Let v* be a component of I'(F*) which is a simple
closed curve, cy, cy the components of p~1(y*)NF. If y¥* satisfies one of
the following conditions, then v* can be cancelled by an ambient isotopy

of 5.
(1) There exist disks Iy, Dy in F with 0D; = ¢; and int D;NT(F) = ¢.

(2) There exists an annulus A in F, and a solid torus V in §% such
that 84 = 1 Uez, 8V = A", intV N F* = ¢, and v" is a generator
of HI(V) > 7.

(3) There exists an annulus 4 in F with 84 = ¢; Ueg, ] = 1 in
m1(F), and intANT(F) = ¢.

Proof. If v* satisfies (1), the lemma is proved by [Y, Lemma (4,4)]. If
+* satisfies (2), the proof is easy.

Suppose ¥* satisfies (3). The surface A* is an embedded torus in $3,
and v* is a simple closed curve on A*. Since [¢;] = 1 in m;(F'), there
exist disks D; in F with D; = ¢; (see [E, Theorem 1.7]). Let D = D;
with AND; = ¢;. Let V}, V, be the closures of the components of $3\ A*
with ViUV, = 83, 9V; = A*, and V; D F* U D*. By the solid torus
theorem (see [R] p107), either ¥; or V, is a solid torus. In general, D*
is an immersed disk. By Dehn’s lemma, there exists a non-singular disk
E with intEN A* = ¢ and 0F = v~.

Case 1) V; is a solid torus.

Move T by an ambient isotopy of $%, then we may assume that V) is
a standard solid torus. And V; is a standard solid torus, too. We have
¥* = dFE C 8V, E C V;. Then #* is a meridian of Vy and a preferred
longitude of V,. We have 84 = ¢, U cq, 0V = A%, intVo N F* = &,
and [v*] = £1 in H,(V3) 2 Z. Using Lemma 3.1 (2), we can prove the
lemma in Case 1).

Case 2} V; is a solid torus.

Let I be a preferred longitude of 3V,, m a meridian of dV;. We
express v* = pl + gm where (p, g) is a pair of relatively prime integers.
Since y* = 9F C 8V}, then £ C V) and [y*] = 0 in H;(V;). Hence
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|p|=1 and ¢ = 0. We have 04 = ¢; U g, OV, = A*, intVy, N F* = ¢,
and [y*] = £1 in H,(V,) 2 Z. Using Lemma 3.1 (2), we can prove the
lemma in Case 2}.

We will define a symmetry-spun torus in S* (see [T]). Let D? x §!
be a solid torus, and K a knot in DZx S, Let 5, : D? x S! — D2 x §!
be the b-fold cyclic cover given by (z,8) — (z,b8) for b € Z\{0}. Let
741 D?*xS' — D?x 5 be the rotation map given by (z,8) — (z, 8+¢)
fordpe S Letig: D?2x S' — D?2x S§'x @ C D? x §* x S! be the
inclusion map (z, ¢) — (z, ¢, 8). Let a, b be integers satisfying b #£0. We
define an embedded torus T°(K3) in D? x S! x S, which satisfies

T*(Ky) N D? x S' x 0 = igfagp(ps ' (K)).

And we identify D? x §! X §! with a regular neighborhood of a standard
torus in S*. Then the torus T%(Kj}) is called a symmetry-spun torus in
St

Let T be a torus in 5%, o : $! — [ x S! an immersion. Suppose
T* = a(a,b) where (e,b) = 1, and b # 0. Then there exists a knot & in
D? x §! such that T is ambient isotopic to T*(dy).

Remark. Let T be as above. There exists a symmetry-spun torus
Te(&) in S* such that (T°(ds))* = a(e, b) and T is ambient isotopic to
T (ay).

Lemma 3.2. Let T be a torus in S*, and a an immersion from S! to
I x St with T* = afa,b) where (a,b) =1, and b#£ 0. Let & be a knot in
D? x 81 obtained from as above. If & is a trivial knot in S3, then T can
be moved to the standard position by an ambient isotopy of S*.

Proof. We may assume that T is ambient isotopic to T%(as). By
[T,Theorem 8], then there exists a homeomorphism f : §* — §* with
f(T*(a)) = T%(ay) or T'(a). We easily check that T7°(c) and T (d)
can be moved to the standard position by an ambient isotopy of S4.
Then there exists a solid torus V in $* with 8V = T%(dy) or T {d).
Hence 8f~!(V} = T®(ay), and f~}(V) is a solid torus. By [H-K, Theo-
rem 1.7], T%(cs) can be moved to the standard position by an ambient
isotopy of §4.
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4 Main Theorem

Theorem 4.1. Let T be a torus in S* with p|T in general position. If
I'(T*) consists of one simple closed curve, then T can be moved to the
standard position by an ambient isotopy of S4.

Proof. We distinguish four cases according to the position of I'(T'). See
Figure 2.

v

Figure 2

If the position of I'(T) is either I or II, then T can be moved to the
standard position by Lemma 3.1. The case 111 cannot happen by Lemma
2.3. We will consider the case IV. Let Ay, Ay be the closures of the
components of T\ I'(T'), and v* = [(7T*). Then T; = p(A;) is an
embedded torus, and T) N Ty = 4*. By the solid torus theorem, there
exist solid tori Vi, V, with 8V, = T;. We distinguish two cases: (1)
T; C V;or (2) VinTy = 7* ({i,5} = {1,2)).

Case 1) TTCVaorTh C V.

We may assume T} C Vo. Move T' by an ambient isotopy of S*, and
we suppose that V3 is a standard solid torus.

(1) [¥*]=0 in Hy(V2).

The simple closed curve v* is a meridian of Vz. Let V = 53\ intV5.
Then Aj; is an annulus satisfying 84, = ¢;Ucg, 8V = A3, intVNF* = ¢,
and [y*] is a generator of H (V) & Z. By Lemma 3.1 (2}, v* can be
cancelled. '

(i) [v*] # 0in H, (V7).

Let N be a regular neighborhood of v* in V2, A = ¢l(ON N intV3},
and ag, @ the components of 3A4. Then A is an annulus, and [a;] # 0 in
H,(V3). Cut V; by a meridian disk. We obtain Figure 3 (1) by Lemma
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2.1. In Figure 3 the curve v* is coiled four times to a preferred longitude
of Vo. Let V.= V,\ N, and B = T, \ intN. Then V is a solid torus,
and B is an annulus. Let by, b, be the components of B, then [b;] # 0
in H;(V). We obtain Figure 3 (2) or (3) by Lemma 2.1. By Lemma 3.1
(2), we cancel v* of Figure 3 (2). We see in Figure 3 (3) that 7" is an
immersed torus Ty (a, b) with (g,b)=1, b # 0. By Lemma 3.2, T' can be
moved to the standard position. We completed the proof in Case 1).

Case ) ViNTy =y or VanNTy ="

If V; O V; or V; O V;, then we can use the method of Case 1). There-
fore, we may assume V; NVy; = v*. Let N be a regular neighborhood of
~v*in §3, and W = Vy UN UV,. Then 0W is a torus.

(24) [y) = 0 in Hy (W).

We denote v* = pil;+gqim; € H,(8V;) where [; is a preferred longitude
of 8V; and m; is a meridian of dV;. We calculate H,(V;UV;) in a similar
way to Lemma 2.2. Since H(W) 2 Z and [y*] = 0 in H,(W), we have
p; = 6,|pd = 1 where {i,j} = {1,2} (see Remark after Lemma 2.2).
Moreover, we get |¢;| = 1, and v* = £l; + ¢;m;. Since v* is a boundary
of a meridional disk of 9V}, V; is a standard solid torus and v* = &/;.
By Lemma 3.1 (2), 7™ can be cancelled.

(2-i0) [y*] # 0 in Hy (W),

Suppose that W is a solid torus. Let A; = V; N &N, and a},a} be
the components of dA;. Then A; is an annulus, and [af] # 0 in H{(W).
Cut W by a meridional disk D. Using Lemma 2.1, we get Figure 4 (1).
Drawing the picture of T7* N N N D, then we get Figure 4 (2). Then we
see T* N D in Figure 4 (3). Moreover, v* satisfies Lemma 3.1 (2). Thus
~* can be cancelled.

Suppose that W is not a solid torus. Let V = $°\ intW. By the
solid torus theorem, V is a solid torus. We find an annulus A with
N D ADY 8N D IOA, AN(ViUV,) = v*, and a; C J; where Jy and J,
are components of N \ (intV; UintV3) and a1, a3 are the components of
?A. Let N, be the closure of the component of N\ A with N;NintV; # ¢.
Then V; U N; is a solid torus. Let Z; = Vi U Ny, Z2 = V, U N; and
Zz = V. Then Z; is a solid torus, Z; N Z; = 8Z; N 0Z; is the annulus,
and S% = Z; U Z, U Z3. By Lemma 2.2 and the fact that W is not a
solid torus, we have that Z; and Z; are standard tori. Let W, = Vi,
and Wy = §3\ intV,. Then W; is a solid torus, 8W; = 0V, = T}, and
W; O W,. We can reduce the argument to Case 1}.
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This completes the proof of Theorem 4.1.

TR

Figure 3

Figure 4
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