An unknotting theorem for tori in S^4 .

Akiko SHIMA

Abstract

Let T be a torus in S^4 and T^* a projection of T. If the singular set $\Gamma(T^*)$ consists of one disjoint simple closed curve, then T can be moved to the standard position by an ambient isotopy of S^4 .

1 Introduction

In this paper we will study an embedded torus T in S^4 . If the singular set of the projection T^* ($\subset S^3$) of T consists of one double curve, then what can be said about the position of T? The following theorem is the main result.

Main Theorem (Theorem 4.1). Let T be a torus in S^4 . If the singular set $\Gamma(T^*)$ consists of one simple closed curve, then T can be moved to the standard position by an ambient isotopy of S^4 .

We will work in the PL category. All submanifolds are assumed to be locally flat. Let S^4 be the 4-dimensional sphere, S^3 the 3-dimensional sphere, and $p: S^4 \setminus \{\infty\} \longrightarrow S^3 \setminus \{\infty\}$ the projection defined by $p(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3)$.

Let $B = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 \leq 1\}$, and $P_i = B \cap \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_i = 0\}$. Let F be a closed oriented surface, and $f: F \longrightarrow S^3 \setminus \{\infty\}$ a map. We say that f is in general position, if for each element x of f(F), there exist a regular neighborhood N of x in $S^3 \setminus \{\infty\}$ and a homeomorphism $h: N \longrightarrow B$ such that N and h satisfy the following two conditions:

¹⁹⁹¹ Mathematics Subject Classification: Primary 57Q45, Secondary 57Q35.

Servicio Publicaciones Univ. Complutense. Madrid, 1998.

- (1) Under h, $(N, N \cap f(F), x)$ is homeomorphic to either $(B, P_1, (0, 0, 0)), (B, P_1 \cup P_2, (0, 0, 0))$ or $(B, P_1 \cup P_2 \cup P_3, (0, 0, 0))$.
- (2) Let R be a component of $f^{-1}(f(F) \cap N)$. There exists an integer i such that $h \circ f|R: R \longrightarrow P_i$ is a homeomorphism.

Note. If $(N, N \cap f(F), x)$ is homeomorphic to $(B, P_1 \cup P_2, (0, 0, 0))$, then x is called a *double point*. If $(N, N \cap f(F), x)$ is homeomorphic to $(B, P_1 \cup P_2 \cup P_3, (0, 0, 0))$, then x is called a *triple point*.

Throughout this paper, we assume that p|F is in general position.

With every point P or subset F of $S^4 \setminus \{\infty\}$, we associate the point $P^* = p(P)$ or the subset $F^* = p(F)$. We define $\Gamma(F^*)$ to be the set of all double points and triple points and put $\Gamma(F) = p^{-1}(\Gamma(F^*)) \cap F$.

A solid torus V is said to be *standard* in S^3 , if V is a regular neighborhood of a trivial knot in S^3 . And the torus $\partial V \subset S^3 \subset S^4$ is said to be a *standard torus* in S^4 . In [H-K], they proved that a boundary of a handlebody in S^4 is unique up to ambient isotopies of S^4 .

The circle is taken to be the quotient space $S^1 = \mathbb{R}/(\theta \sim \theta + 2\pi)$ for all $\theta \in \mathbb{R}$). We will write " $\theta \in S^1$ ". We denote by (a,b) the greatest common divisor of the integers a and b. Let $p_b: I \times S^1 \longrightarrow I \times S^1$ be the b-fold cyclic cover given by $(x,\theta) \mapsto (x,b\theta)$ for $b \in \mathbb{Z}\setminus\{0\}$. Let $r_\phi: I \times S^1 \longrightarrow I \times S^1$ be the rotation map given by $(x,\theta) \mapsto (x,\theta+\phi)$ for $\phi \in S^1$. Let $\alpha: S^1 \longrightarrow I \times S^1$ be an immersion. Let $i_\theta: I \times S^1 \longrightarrow I \times S^1 \times \theta \subset I \times S^1 \times S^1$ be the inclusion map $(x,\phi) \mapsto (x,\phi,\theta)$. Let a,b be integers satisfying $b \neq 0$. We define immersed surfaces $\alpha(a,b)$ in $I \times S^1 \times S^1$, which satisfies

$$\alpha(a,b) \cap I \times S^1 \times \theta = i_{\theta} r_{a\theta/b}(p_b^{-1}(\alpha(S^1))).$$

In particular, we denote by $T_1(a,b)$ the immersed tori $\alpha(a,b)$ obtained from α shown in Figure 1.

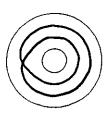


Figure 1

All the homology groups are with coefficients in Z.

Example 1.1. If (a, b) = 1 and $b \neq 0$, then there exists a torus T in S^4 with $T^* = \alpha(a, b)$ (see [T, Theorem 8]).

Example 1.2. There exists an embedded torus T in S^4 with $T^* = T_1(a,b)$ where (a,b) = 1, $b \neq 0$. We can check that $(S^3, \Gamma(T^*))$ is homeomorphic to $(S^3, (a,b)$ -torus knot) where (a,b)-torus knot is defined in [R] (see p 53). Therefore $T_1(a,b)$ is the immersed torus having the singular set $\Gamma(T^*)$ of one simple closed curve.

2 Solid tori and immersed surfaces in S^3

Lemma 2.1. Let V be a solid torus, A a properly embedded annulus into V with $[a_i] \neq 0$ in $H_1(V)$ where a_0, a_1 are the components of ∂A , then there exists an embedding map $h: A \times I \longrightarrow V$ with h(a, 0) = a for all $a \in A$, and $h(\partial A \times I \cup A \times 1) \subset \partial V$.

Proof (Only outline). We find a disk E such that $\partial E = l \cup k$, l and k are disjoint arcs, $intE \cap A = \phi$, $l \cap k = \partial l = \partial k$, $l \subset \partial V$, and $k \subset A$. Let B be a component of $\partial V \setminus (a_0 \cup a_1)$ with $B \supset l$. Then $A \cup B$ is a torus. There exists a 3-manifold W with $\partial W = A \cup B$, $W \supset E$. Let N(E) be a regular neighborhood of E in W. We have that $\partial N(E) = D_0 \cup C \cup D_1$ such that D_i is a disk, C is an annulus, and $\partial N(E) \cap \partial W = C$. Then $\partial (\overline{W} \setminus N(\overline{E})) = (A \cup B \setminus C) \cup D_0 \cup D_1$ is a 2-sphere. By the Schöenflies Theorem ([R] p 34), $\overline{W} \setminus N(E)$ is a 3-ball. W is obtained from $\overline{W} \setminus N(E)$ by attaching a 1-handle N(E). Therefore W is a solid torus. We make a map h by using W.

Lemma 2.2. If V_1, V_2 and V_3 are solid tori in S^3 such that $V_i \cap V_j = \partial V_i \cap \partial V_j$ is an annulus and $S^3 = V_1 \cup V_2 \cup V_3$, then there exist integers i, j such that V_i and V_j are standard solid tori in S^3 .

Proof. The set $V_1 \cap V_2 \cap V_3$ consists of two disjoint simple closed curves. Let c be a component of $V_1 \cap V_2 \cap V_3$. We denote $c = p_i l_i + q_i m_i \in H_1(\partial V_i)$ (i=1,2 or 3) where l_i is a preferred longitude of ∂V_i , m_i is a meridian of

 ∂V_i , and (p_i, q_i) is a pair of relatively prime integers. By van Kampen's theorem, we have $\pi_1(V_i \cup V_j) \cong < l_i, l_j | l_i^{p_i} = l_j^{p_j} >$. We get

$$H_1(V_i \cup V_j) \cong \left\{ egin{array}{ll} oldsymbol{Z} & ext{if } (p_i, p_j) = 1 \ oldsymbol{Z} \oplus oldsymbol{Z}_{|d|} & ext{if } (p_i, p_j) = |d|
eq 1 \ oldsymbol{Z} \oplus oldsymbol{Z}_{|p_s|} & p_k = 0, p_s
eq 0, \{k, s\} = \{i, j\} \ oldsymbol{Z} \oplus oldsymbol{Z} & p_i = p_j = 0 \end{array}
ight.$$

Since $V_i \cup V_j$ is the complement of an open regular neighborhood of some knot, $H_1(V_i \cup V_j) \cong \mathbf{Z}$. Hence we have to consider the following two cases:

(1)
$$p_i \neq 0, p_i \neq 0, (p_i, p_i) = 1$$
 or

(2)
$$p_k = 0, p_s = \pm 1, \{k, s\} = \{i, j\}.$$

Case (1).

We construct a Seifert fibration on S^3 in which each solid torus V_i has c as a fiber. If $|p_i| \neq 1$ for all i, then there are three exceptional fibers. But we can show that in any Seifert fibration of the 3-sphere, there are at most two exceptional fibers (see [J-S] p 181). This is a contradiction. Hence there exists an integer k with $p_k = \pm 1$. We have $\pi_1(V_i \cup V_k) \cong \langle l_i, l_k| \ l_i^{p_i} = l_k^{\pm 1} \rangle \cong \mathbb{Z}$. Therefore V_j is a standard solid torus $(j \neq i, k)$. Similarly, we can show that V_i is a standard solid torus. Case (2).

Since $c = q_k m_k = \pm l_s + q_s m_s$, we have $q_k = \pm 1$. There exists a disk D in V_k with $c = \partial D \subset \partial V_k$. Hence [c] = 0 in $H_1(S^3 \setminus intV_s)$ and $q_s = 0$. The solid torus V_s is a regular neighborhood of some knot K. But K is a boundary of some disk in S^3 . Hence K is a trivial knot and V_s is a standard solid torus. Let $V = V_k \cup V_s$. Since $c = \pm m_k = \pm l_s$ and $V_k \cap V_s$ is an annulus, then V is a solid torus. Let V_t be the third solid torus with $t \neq k$, s. Then $S^3 = V \cup V_t$, $V \cap V_t = \partial V = \partial V_t$. But up to homeomorphism there is only one way of decomposing S^3 into two solid tori with the same boundary. Therefore V_t is a standard solid torus.

Remark. Let V_i, V_j be as above. If $H_1(V_i \cup V_j) \cong \mathbb{Z}$ and [c]=0 in $H_1(V_i \cup V_j)$, then $p_k = 0, p_s = \pm 1, \{k, s\} = \{i, j\}$.

Fact. Let F be a closed surface in S^4 with p|F in general position, and c a simple closed curve in S^3 such that c is transverse to f(F), $c \cap \Gamma(F^*) = \phi$. Then the number of points of $c \cap \Gamma(F^*)$ is even.

Lemma 2.3. If F is an oriented closed surface in S^4 with p|F in general position, then $F \setminus \Gamma(F)$ is divided into some regions. Then we can color each region black or white so that adjacent regions have different colors.

Remark. Suppose that $\Gamma(F^*)$ consists of double points, and let n be a number of components in $\Gamma(F)$ which are not contractible in F. By Lemma 2.3, one sees that if F is a torus, then n is even.

Proof. Let D_1, \ldots, D_s be the components of $S^3 \setminus F^*$. We will construct a function $f: \{D_1, \ldots, D_s\} \longrightarrow \mathbb{Z}_2$. Let x_0 be a point of $S^3 \setminus F^*$, x_i a point in D_i , and l_i an arc in S^3 such that l_i is transverse to F^* and $\partial l_i = \{x_0, x_i\}$. We define $f(D_i) = 0$ if the number of points of $l_i \cap F^*$ is even, otherwise $f(D_i) = 1$. By Fact, we can show that f does not depend choices of x_i and l_i . And then f satisfies the property that D_i is an adjacent region of D_j (i.e. there exists a path $l \in S^3$ such that $l(0) \in D_i, l(1) \in D_j, l(I) \cap \Gamma(F^*) = \phi$, and $l(I) \cap F^* = \{\text{one point}\}$), then $f(D_i) \neq f(D_j)$. Let $\mathcal{E} = \{E_1, \ldots, E_t\}$ be the components of $F^* \setminus \Gamma(F^*)$. The orientation of F induces the orientation of E_i . We define a function $h: \mathcal{E} \longrightarrow \mathbb{Z}_2$ by $h(E_i) = 1$ if the positive normal vector of E_i points to a white region, otherwise $h(E_i) = 0$. Using h, we color the regions of $F \setminus \Gamma(F)$.

Lemma 2.4. Let F, p|F be as above, and γ^* a component of $\Gamma(F^*)$. If γ^* is a simple closed curve, then $p^{-1}(\gamma^*) \cap F$ consists of two disjoint simple closed curves.

Proof. Let N be a regular neighborhood of γ^* in S^3 . Then $p^{-1}(N) \cap F$ consists of either two disjoint annuli, one Möbius band or two disjoint Möbius bands. Since F is an oriented surface, $p^{-1}(N) \cap F$ consists of two disjoint annuli. Therefore $p^{-1}(\gamma^*) \cap F$ is two disjoint simple closed curves. This completes the proof of Lemma 2.4.

_

3 Local moves of surfaces in S^4

Lemma 3.1. Let F be an oriented closed surface in S^4 with p|F in general position. Let γ^* be a component of $\Gamma(F^*)$ which is a simple closed curve, c_1, c_2 the components of $p^{-1}(\gamma^*) \cap F$. If γ^* satisfies one of the following conditions, then γ^* can be cancelled by an ambient isotopy of S^4 .

- (1) There exist disks D_1, D_2 in F with $\partial D_i = c_i$ and $int D_i \cap \Gamma(F) = \phi$.
- (2) There exists an annulus A in F, and a solid torus V in S^3 such that $\partial A = c_1 \cup c_2$, $\partial V = A^*$, $intV \cap F^* = \phi$, and γ^* is a generator of $H_1(V) \cong \mathbb{Z}$.
- (3) There exists an annulus A in F with $\partial A = c_1 \cup c_2$, $[c_i] = 1$ in $\pi_1(F)$, and $intA \cap \Gamma(F) = \phi$.

Proof. If γ^* satisfies (1), the lemma is proved by [Y, Lemma (4,4)]. If γ^* satisfies (2), the proof is easy.

Suppose γ^* satisfies (3). The surface A^* is an embedded torus in S^3 , and γ^* is a simple closed curve on A^* . Since $[c_i] = 1$ in $\pi_1(F)$, there exist disks D_i in F with $\partial D_i = c_i$ (see [E, Theorem 1.7]). Let $D = D_i$ with $A \cap D_i = c_i$. Let V_1, V_2 be the closures of the components of $S^3 \setminus A^*$ with $V_1 \cup V_2 = S^3$, $\partial V_i = A^*$, and $V_1 \supset F^* \cup D^*$. By the solid torus theorem (see [R] p107), either V_1 or V_2 is a solid torus. In general, D^* is an immersed disk. By Dehn's lemma, there exists a non-singular disk E with $int E \cap A^* = \phi$ and $\partial E = \gamma^*$.

Case 1) V_1 is a solid torus.

Move T by an ambient isotopy of S^4 , then we may assume that V_1 is a standard solid torus. And V_2 is a standard solid torus, too. We have $\gamma^* = \partial E \subset \partial V_1$, $E \subset V_1$. Then γ^* is a meridian of V_1 and a preferred longitude of V_2 . We have $\partial A = c_1 \cup c_2$, $\partial V_2 = A^*$, $intV_2 \cap F^* = \phi$, and $[\gamma^*] = \pm 1$ in $H_1(V_2) \cong \mathbf{Z}$. Using Lemma 3.1 (2), we can prove the lemma in Case 1).

Case 2) V_2 is a solid torus.

Let l be a preferred longitude of ∂V_2 , m a meridian of ∂V_2 . We express $\gamma^* = pl + qm$ where (p,q) is a pair of relatively prime integers. Since $\gamma^* = \partial E \subset \partial V_1$, then $E \subset V_1$ and $[\gamma^*] = 0$ in $H_1(V_1)$. Hence

|p|=1 and q=0. We have $\partial A=c_1\cup c_2$, $\partial V_2=A^*$, $int V_2\cap F^*=\phi$, and $[\gamma^*]=\pm 1$ in $H_1(V_2)\cong \mathbb{Z}$. Using Lemma 3.1 (2), we can prove the lemma in Case 2).

We will define a symmetry-spun torus in S^4 (see [T]). Let $D^2 \times S^1$ be a solid torus, and K a knot in $D^2 \times S^1$. Let $\tilde{p_b}: D^2 \times S^1 \longrightarrow D^2 \times S^1$ be the b-fold cyclic cover given by $(x,\theta) \mapsto (x,b\theta)$ for $b \in \mathbb{Z} \setminus \{0\}$. Let $\tilde{r_\phi}: D^2 \times S^1 \longrightarrow D^2 \times S^1$ be the rotation map given by $(x,\theta) \mapsto (x,\theta+\phi)$ for $\phi \in S^1$. Let $\tilde{i_\theta}: D^2 \times S^1 \longrightarrow D^2 \times S^1 \times \theta \subset D^2 \times S^1 \times S^1$ be the inclusion map $(x,\phi) \mapsto (x,\phi,\theta)$. Let a,b be integers satisfying $b \neq 0$. We define an embedded torus $T^a(K_b)$ in $D^2 \times S^1 \times S^1$, which satisfies

$$T^a(K_b) \cap D^2 \times S^1 \times \theta = \tilde{i}_{\theta} \tilde{r}_{a\theta/b} (\tilde{p}_b^{-1}(K)).$$

And we identify $D^2 \times S^1 \times S^1$ with a regular neighborhood of a standard torus in S^4 . Then the torus $T^a(K_b)$ is called a *symmetry-spun torus* in S^4 .

Let T be a torus in S^4 , $\alpha: S^1 \longrightarrow I \times S^1$ an immersion. Suppose $T^* = \alpha(a,b)$ where (a,b) = 1, and $b \neq 0$. Then there exists a knot $\tilde{\alpha}$ in $D^2 \times S^1$ such that T is ambient isotopic to $T^a(\tilde{\alpha}_b)$.

Remark. Let T be as above. There exists a symmetry-spun torus $T^a(\tilde{\alpha}_b)$ in S^4 such that $(T^a(\tilde{\alpha}_b))^* = \alpha(a,b)$ and T is ambient isotopic to $T^a(\tilde{\alpha}_b)$.

Lemma 3.2. Let T be a torus in S^4 , and α an immersion from S^1 to $I \times S^1$ with $T^* = \alpha(a,b)$ where (a,b) = 1, and $b \neq 0$. Let $\tilde{\alpha}$ be a knot in $D^2 \times S^1$ obtained from as above. If $\tilde{\alpha}$ is a trivial knot in S^3 , then T can be moved to the standard position by an ambient isotopy of S^4 .

Proof. We may assume that T is ambient isotopic to $T^a(\tilde{\alpha}_b)$. By [T,Theorem~8], then there exists a homeomorphism $f:S^4\longrightarrow S^4$ with $f(T^a(\tilde{\alpha}_b))=T^0(\tilde{\alpha}_1)$ or $T^1(\tilde{\alpha}_1)$. We easily check that $T^0(\tilde{\alpha}_1)$ and $T^1(\tilde{\alpha}_1)$ can be moved to the standard position by an ambient isotopy of S^4 . Then there exists a solid torus V in S^4 with $\partial V=T^0(\tilde{\alpha}_1)$ or $T^1(\tilde{\alpha}_1)$. Hence $\partial f^{-1}(V)=T^a(\tilde{\alpha}_b)$, and $f^{-1}(V)$ is a solid torus. By [H-K, Theorem~1.7], $T^a(\tilde{\alpha}_b)$ can be moved to the standard position by an ambient isotopy of S^4 .

4 Main Theorem

Theorem 4.1. Let T be a torus in S^4 with p|T in general position. If $\Gamma(T^*)$ consists of one simple closed curve, then T can be moved to the standard position by an ambient isotopy of S^4 .

Proof. We distinguish four cases according to the position of $\Gamma(T)$. See Figure 2.

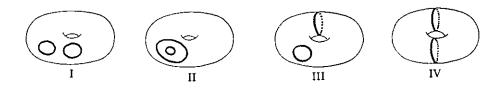


Figure 2

If the position of $\Gamma(T)$ is either I or II, then T can be moved to the standard position by Lemma 3.1. The case III cannot happen by Lemma 2.3. We will consider the case IV. Let A_1, A_2 be the closures of the components of $T \setminus \Gamma(T)$, and $\gamma^* = \Gamma(T^*)$. Then $T_i = p(A_i)$ is an embedded torus, and $T_1 \cap T_2 = \gamma^*$. By the solid torus theorem, there exist solid tori V_1, V_2 with $\partial V_i = T_i$. We distinguish two cases: (1) $T_i \subset V_j$ or (2) $V_i \cap T_j = \gamma^*$ ($\{i, j\} = \{1, 2\}$).

Case 1) $T_1 \subset V_2$ or $T_2 \subset V_1$.

We may assume $T_1 \subset V_2$. Move T by an ambient isotopy of S^4 , and we suppose that V_2 is a standard solid torus.

(1-i) $[\gamma^*]=0$ in $H_1(V_2)$.

The simple closed curve γ^* is a meridian of V_2 . Let $V = S^3 \setminus int V_2$. Then A_2 is an annulus satisfying $\partial A_2 = c_1 \cup c_2$, $\partial V = A_2^*$, $int V \cap F^* = \phi$, and $[\gamma^*]$ is a generator of $H_1(V) \cong \mathbb{Z}$. By Lemma 3.1 (2), γ^* can be cancelled.

(1-ii) $[\gamma^*] \neq 0$ in $H_1(V_2)$.

Let N be a regular neighborhood of γ^* in V_2 , $A = cl(\partial N \cap int V_2)$, and a_0, a_1 the components of ∂A . Then A is an annulus, and $[a_i] \neq 0$ in $H_1(V_2)$. Cut V_2 by a meridian disk. We obtain Figure 3 (1) by Lemma

2.1. In Figure 3 the curve γ^* is coiled four times to a preferred longitude of V_2 . Let $V = \overline{V_2 \setminus N}$, and $B = T_1 \setminus intN$. Then V is a solid torus, and B is an annulus. Let b_0, b_1 be the components of ∂B , then $[b_i] \neq 0$ in $H_1(V)$. We obtain Figure 3 (2) or (3) by Lemma 2.1. By Lemma 3.1 (2), we cancel γ^* of Figure 3 (2). We see in Figure 3 (3) that T^* is an immersed torus $T_1(a,b)$ with (a,b)=1, $b\neq 0$. By Lemma 3.2, T can be moved to the standard position. We completed the proof in Case 1).

Case 2) $V_1 \cap T_2 = \gamma^*$ or $V_2 \cap T_1 = \gamma^*$.

If $V_2 \supset V_1$ or $V_1 \supset V_2$, then we can use the method of Case 1). Therefore, we may assume $V_1 \cap V_2 = \gamma^*$. Let N be a regular neighborhood of γ^* in S^3 , and $W = V_1 \cup N \cup V_2$. Then ∂W is a torus.

(2-i)
$$[\gamma^*] = 0$$
 in $H_1(W)$.

We denote $\gamma^* = p_i l_i + q_i m_i \in H_1(\partial V_i)$ where l_i is a preferred longitude of ∂V_i and m_i is a meridian of ∂V_i . We calculate $H_1(V_1 \cup V_2)$ in a similar way to Lemma 2.2. Since $H_1(W) \cong \mathbb{Z}$ and $[\gamma^*] = 0$ in $H_1(W)$, we have $p_j = 0, |p_i| = 1$ where $\{i, j\} = \{1, 2\}$ (see Remark after Lemma 2.2). Moreover, we get $|q_j| = 1$, and $\gamma^* = \pm l_i + q_i m_i$. Since γ^* is a boundary of a meridional disk of ∂V_j , V_i is a standard solid torus and $\gamma^* = \pm l_i$. By Lemma 3.1 (2), γ^* can be cancelled.

(2-ii)
$$[\gamma^*] \neq 0$$
 in $H_1(W)$.

Suppose that W is a solid torus. Let $A_i = V_i \cap \partial N$, and a_0^i, a_1^i be the components of ∂A_i . Then A_i is an annulus, and $[a_i^k] \neq 0$ in $H_1(W)$. Cut W by a meridional disk D. Using Lemma 2.1, we get Figure 4 (1). Drawing the picture of $T^* \cap N \cap D$, then we get Figure 4 (2). Then we see $T^* \cap D$ in Figure 4 (3). Moreover, γ^* satisfies Lemma 3.1 (2). Thus γ^* can be cancelled.

Suppose that W is not a solid torus. Let $V=S^3\setminus intW$. By the solid torus theorem, V is a solid torus. We find an annulus A with $N\supset A\supset \gamma^*$, $\partial N\supset \partial A$, $A\cap (V_1\cup V_2)=\gamma^*$, and $a_i\in J_i$ where J_1 and J_2 are components of $\partial N\setminus (intV_1\cup intV_2)$ and a_1,a_2 are the components of ∂A . Let N_i be the closure of the component of $N\setminus A$ with $N_i\cap intV_i\neq \phi$. Then $V_i\cup N_i$ is a solid torus. Let $Z_1=V_1\cup N_1,\ Z_2=V_2\cup N_2$ and $Z_3=V$. Then Z_i is a solid torus, $Z_i\cap Z_j=\partial Z_i\cap \partial Z_j$ is the annulus, and $S^3=Z_1\cup Z_2\cup Z_3$. By Lemma 2.2 and the fact that W is not a solid torus, we have that Z_1 and Z_2 are standard tori. Let $W_1=V_1$, and $W_2=S^3\setminus intV_2$. Then W_i is a solid torus, $\partial W_i=\partial V_i=T_i$, and $W_2\supset W_1$. We can reduce the argument to Case 1).

This completes the proof of Theorem 4.1.

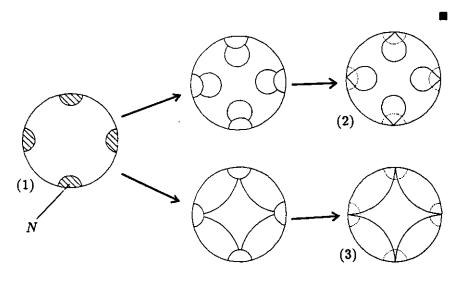


Figure 3

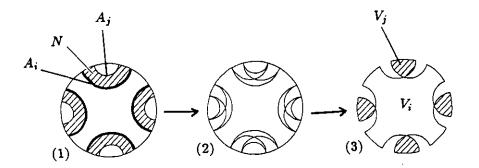


Figure 4

Acknowledgement. The author would like to express her sincere gratitude to Professor Yukio Matsumoto for his valuable advice and encouragement.

References

- [C-S] J. S. Carter and M. Saito, A Seifert Algorithm for knotted surfaces, preprint.
- [E] D.B.A. Epstein, Curves on 2-manifolds and isotopies, Acta. Math. 115 (1966), 83-107.
- [J-S] W. H. Jaco and P. B. Shalen, Seifert fiberd spaces in 3-manifolds, Mem. Amer. Math. Soc. Number 220, (1979).
- [H-K] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979), 233-248.
- [R] D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, Calif., 1976.
- [T] M. Teragaito, Symmetry-spun tori in the four-sphere, Knots 90, 163-171.
- [Y] T. Yajima, On simply knotted spheres in R⁴, Osaka J. Math. 1 (1964), 133-152.

Akiko Shima

Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba Meguro-ku Tokyo,153,Japan e-mail: shima@ms.u-tokyo.ac.jp

Recibido: 16 de Enero de 1997