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A multiplier theorem for the Hankel transform.

Rafal KAPELKO

Abstract

Riesz function technique is used to prove a multiplier theorem
for the Hankel transform, analogous to the classical Hormander-
Mihlin multiplier theorem [6].

The celebrated Hérmander-Mihlin multiplier theorem [6] says that if
a function m on R™ satisfies the following condition

sup R~ / R DYm(z)|?de < oo 1
R S [P0 (1)

for some integer ko > § then the operator T, defined by (ng)h =myg
is bounded on every LF{R™), 1 < p < oo.

Restriction of the theorem to the set of radial functions on R™ gives
the multiplier theorem on spaces LP(R;,z%%t!dz), 1 < p < oo with
o= "—;—2 The ordinary Fourier transform on K”® has to be replaced by
the Hankel transform

o~

fp =2+ 1) [ 1@ w0 alaye™ e, @)

where J, is the Bessel function of the first kind of order o.
The assumption (1) gets even the simpler form

1

2R 2
sup (/ lzkm(k)(:r.)|2—1—dx) < 00,
R T

R>0
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where £ =10,1,2,..., ko and kg > o + 1.

It is quite natural to expect that the multiplier theorem should have
an extension to all values o > 1 of the real parameter. However the
exact repetition of the Hérmander proof does not lead to effect, mainly
because the Hankel transform of the derivative of a function has no
representation in terms of the transformation of the function. In order
to omit this difficulty there were developed two technics in the literature.

The first one, [2], is indirect, uses a relation between the Jacobi
polynomials and the Bessel functions but the result obtained there is

weaker then expected. The proof goes under stronger assumption

2R
sup B! |25 mike) (2)[2e~ dx < oo, ko = [a] + 2.
R>0 R

The second one, [4], developes the original Hérmander’s technique
but instead of the ordinary derivative of a function it makes use of the
powers of a Sturm-Liouville operator. The result is like the Hérmander
one, but kg > & + 1 must be an even number.

The aim of the note is to prove the multiplier theorem in full gen-
erality. We assume that kg is the least integer greater than a + 1. In
fact ko may be a real number if one uses the Weyl fractional derivatives
instead of ordinary derivatives. The main idea is based on the fact that
the Hankel transform of Riesz function R (z?) has especially simple
form. Then we follow the arguments of Gosselin and Stempak [4].

For a bounded function m on R, we define the multiplier operator
Trm by (Trmg)” = m§, where ~ denotes the Hankel transform (2).

Theorem 1. Fix @ > 1 and let k; denote the least integer greater than
a + 1. Assume that a bounded function m on R, satisfies

R>0

1
2R 2
sup (/ |mkm(k)(:c)|2}-da:) < 00,
R T

where k = 0,1, ..., ko. Then the operator 1}, is of weak-type (1,1) and,
consequently is bounded on every LP(R,,z**tldz), 1 < p < oo.

In the proof we use the notion of the generalized convolution

[rg(=) = /000 fW)Tig(z)y* ' dy,
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where 7% is the generalized translation operator
Tig(2) = b(@) [ ol(z,)o) sin® ()d,

(z,9)g = (#?+ 4% - mecosﬂ)%, bla) = w"é'l"(a-l- 1) (F(a + %)) " and
f, g are suitable functions on the half-line (cf [5]}.

As usual we use C with subscripts or without subscripts for a con-
stant which is not necessarily the same at each occurence.

Proof. The main idea of the proof is based on the fact that the Hankel
transform of the function

Ris) = (- <8

has a very simple form

~

a+kg
R(”") = [{o+ 1)2r’+k0—1 (?) Jatko (\/E'c) (3)

{cf. {7, §4 Theorem 4.15]).

As usual we cut the function m into small pieces by using a fixed
bump function. Let ¥ € C§°(R4) with support in (1,2) such that
v, ¥(2772) = 1 and mj(z) = m(z)¥(272). Define new family of
functions h(z) = m(z?), h;(z) = m;(z?). First using (3) and applying
the method of {4], we will obtain the theorem for h. More precisisely we
will prove

I Tudlly < Capllgll (4)

Then we will show how to deduce the thesis for the function m from the
thesis for the function h.
For h; we write the reproducing formula

hi(z) = - ‘/.21“ m(.k")(u) (u - mz)ko_] du
J - F(ku) 27 7 + )

By (3) we have

i1

Rii() = I{e 4 1)27 ke /2

atkg
m™ (u) (l?) Jorko (Vaz)du.
(5)
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Then Ty = 3%, Th, where Ty.g = h; + g and g € L'(R,,22°*!dz). In
order to prove (4) it is sufficient to establish (cf. [4, p.659] and [1, p.75])
that

(=0}

/I‘x—yo|>2ly*ynl

=00

TYhi(x) - Tgoﬁj(m)j 22tz <0, (6)

with €' > 0 independent of y, y, 0.
An application of Leibniz formula yields

1

([:H‘ ]mgko)(:r:”?dz) : < C(?j)-;mko, -

where C does not depend on j, and ky = @+ 1+ ¢ for an € > 0. We
prove the following estimates:

ftm ()2 de < C(VT 1), (8)
/000 |7zj(m)|:c2°+1d2: <C. (9)

To prove (8) observe that by definition, Flj(z) coincides with the Hankel
transform of the function

o Dla+1) (ko) 2
iy} = mxl\/ﬁ,m](y)mj (¥%),

with respect to the measure d,u(z) = gto+3+2,
Now Schwartz’ inequality, the Plancherel formula applied to # ; and

(7) give
© © 3
(/; Ihj($)|1($m+l+7+()zd’5) (_[ Fﬁd”)

W=

m o~
f |hj(x)|z2>t de
i

1A

o % 1
— h".E 2£4n+3+2rdz) t—t’_____
(] fs()] =
it %

= Cowl| [ @R rap) e

Ko ” i \/z—g

< C()etits(9iyi—heme = (VI L
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To prove (9) we use (8). Now changing the variable y = z4/% in (5) we
get

2%
J

But Schwarz’ inequality and (7) yield

341
|hj(z)|z*2t de < C * (o) () [uko=1g vz J Ny
j <05 m; (u)|u u A | a+ko(y)|;&1k—n Y.

27

PR
-/2)'

Since Joik, () is 221F asymptotically at 01 we have

2i+1

H
[m{) (w}uke~Tdu < Cy (/ Imf—"°’(u)|2d“) @) <

¥
fo Ihi(2)|z?Hdz < Cs.

Also, by (8)

f hi(@)a®*ldz < Ca+ [ [hj(e)ls?Hdz < C.
i

Finally, to get (6) we use inequality (8) with estimates of Gosselin and
Stempak (cf. [4, p.661])

_[ Tgﬁj(m) - T;’“sz (z)’32“+1dm
|z—wo] 2ly—pol T ¢ )
S Il thi@)z® dz + 30 [hy(z) |zt de
< Ci{l+ 279 (V2ily — yol) 5,

which will work for v/27|y — yo| > 1.
Since h; has support in (0, vV2711) it follows from [4, Corollary 2.2]
and (9) that

/I.r—on 2ly—vol

< ||Tgh; - T2hslIL1 (R o201 45
S C V2 y = yol Al (ry 220+ 142)
<V2CCiV2ly - o,

TVh;(z) — Tgoﬁj(m)] g2ty

which will be enough whenever v2/{y — yg| < 1.



286 Rafal Kapelko

This completes the proof of (6) and, consequently for the function
h. The result for the function m follows than from the lemma below.
Lemma 1. For a > 0 the transformation £ — 2% of [0, 00} induces
the isomorphism m(x) — m(z®) of the space of all functions for which

' 2R 1 7
[1m|]2,x, = sup f |e*m®) (2)|2—dz | < oo
R>0 \/R x

fork=10,1,2,..., ko
Proof. This is a simple consequence of fact that space ||m||zx, is
invartant under multiplication by z® and Lebniz formula.

Remark. The method of Riesz function works when we use the Weyl
fractional derivatives instead of ordinary derivatives.

A function f on K, has the Weyl fractional derivative of order v > 0
if there exists a measurable function g on Rs such that

10) = 5y [ =210

for almost all z > 0. The function g is unique up to a set of measure
zero. It is denoted f() and called v-fractional derivative of order v.

The problem is that for a positive integer v there exist smooth func-
tions in the ordinary sense but not in the Weyl sense.

Theorem 2. Let m be a bounded function on R, satisfies the condition

2R 1 3
sup / et ()2 =dz | < oo,
R>0 R T

where v > a + 1, m(¥) is the Weyl fractional derivative. Then the
operator T, is of weak-type (1,1) and, consequently is bounded on every
LP(Ry,z%%dz), 1 < p < oo.

Proof. As in the proof of Theorem 1 we define h(z) = m(z?) and
obtain the theorem for function A. To do this we don’t work with bump
functions and define

] 2J+1 ( ) 2 v—1
hi{z) = 0 /;” m\" (u) (u — )+ du.
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Clerly Ty = 3.7, Th, where T g = Ej * g. The rest is the exact repe-
tition of the proof of Theorem 1. Finally the result for the function m
follows from lemma below.

Lemma 2. For o > 0 the transformation ¢ — x* of [0, o0} induces
the isomorphism m{z) — m(z*) of the space of all function for which

L

R 1 z
Hml|z, = sup / le*m®)(z)[2=dz | < oo.
R>0\J/E z
Proof. The lemma is a modification of [3, Proposition 3.9]. The only
difference is the norm {|.|J{,.2,1 is changed into the norm ||.|[2,, and the
proof is essentially the same.
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