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On pseudo-isotopy classes of homeomorphisms
of #, (8" x 8").

Alberto CAVICCHIOLI and Friedrich HEGENBARTH

Abstract

We study sel-homotopy equivalences and diffeomorphisms of
the (n + 1)-dimensional manifold X = #, (§' x §") for any n > 3.
Then we completely determine the group of pseudo-isotopy classes
of homeomorphisms of X and extend to dimension n well-known
theorems due to F. Laudenbach and V. Poenaru [10},{12] and J.M.
Montesinos [14].

1 Introduction

Through the paper we work in the piecewise-linear {resp. C°°-
differentiable) category, so we shall omit the prefix PL (resp. DIFF).
Therefore the term homeomorphism means either PL homeomorphism
or diffeomorphism.

Let M™ ! be a closed connected oriented (n+ 1)-manifold. Following
[3] , {19], we say that two homeomorphisms f,g : M — M are pseudo-
isotopic if there is a homeomorphism F : M x I — M x I (I = [0,1])
such that F(z,0) = f(z) and F(z,1) = g{z) forall z € M.

Let us consider the following groups:
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Aut(M ) (resp. Autg(M)) the group of (resp. orientation-preserving)
self-homeomorphisms of M;

D(M) (resp. Do(M)) the group of psendo-isotopy classes of (resp.
orientation-preserving) homeomorphismns of M

E(M) (resp. £y(M) ) the group of homotopy classes of (resp. orientation-
preserving) homotopy self-equivalences of M

Aut(Il;} the group of automorphisms of the fundamental group I1; =
I (M) of M;

Out(Il,) the outer automorphism group of I1y, i.e. automorphisms
module inner automorphisms.

We have natural maps (base points are not required to be fixed)

Aut(M) — D(M) = £(M) — Out(IT,)

Autg(M) — Do(M) — E(M) — Out(ll).

In [3], [7], 19] it was studied the pseudo-isotopy classes of homeomor-
phisms (and self-equivalences) of the manifold M"! = 8 x 8" for
n > 2. There it was shown that two homeomorphisms of §' x S” are
homotopic if and only if they are pseudo-isotopic (resp. isotopic for the
case n = 2}. Hence the natural map

D(Slxs’")—n‘,‘(slxs“)

is an isomorphism for any n > 2,
We summarize the results proved in the quoted papers by the fol-
lowing statement.

Theorem 1. ({3],[7],[9])
If n > 2, then

D(SlXgn)i?og(slxsn)_’_‘.:Zg@ZgEBZQ

80

By Theorem 1, it follows that there are at most two non equivalent
n-knots in the (n + 2)-sphere with diffeomorphic complements, n > 2
(see 3], [7], [91).

The aim of our paper is to extend Theorem 1 for the (n + 1)-
dimensional manifold X = #, (Sl X S“), n =2 p>1 te the con-

nected sum of p copies of §* x $™.
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More precisely, we prove the following result

Theorem 2. If X = #, (.‘3'1 X S"), n>2 p>1, then we have short
exact sequences

0 & Zys— D(X) — Out(IT;) — 0,
ptl

0= Zy— Do(X)— Out(ll}) — 0,
P
where [T =TI (X)) ~ ;Z is the free group with p generators, p > 1.

Observe that the group D(X) (resp. Do(X) ) is not a direct sum of
the other two terms of the sequence for p > 1. Indeed, diffeomorphisms
of X, which permute the p summands S§! x §*, also permute the p
rotations along n-spheres (compare section 4).

As a consequence of Theorem 2, we completely determine the group
Do(X) of X as follows:

Theorem 3. If X = #, (Sl x s") n>9 p> 1, then the group

Do(X) ~ Eo(X) is generated by sliding 1-handles, twisting 1-handles,
180

permuling 1-handles and rotations.

The case n = 2 in the statement of Theoremn 3 was proved by F.
Landenbach (see [11]) and J.M. Montesinos (see [14]). The definitions
of the above generators can be found in [10] and [12|. Because all these

generators extend to the (n -+ 2)-handlebody ¥ = #, (SI X D""‘l), ie.
the boundary connected sum of p copies of §! x D™, we prove, following

[14], other two consequences of Theorem 3 about handle presentations
of manifolds.

Corollary 4. Let ¥V be the handlebody #, (sl x D"“*‘l) with boundary

Y = X = #, (Sl XS"), n>2 p2>1. Given a connected com-
pact (n + 2)-manifold N™2 with boundary 8N ~ X, the smooth closed
(n + 2)-manifold M = N ULY obtained by gluing N and Y via an arbi-
trarily chosen diffeomorphism h : 8N — 8Y is independent of the way
of pasting the boundaries together.

In particular, the closed (n4-2)-manifold M = YU, Y is diffeomorphic
to the (n + 2)-sphere §"2,
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Corollary 5. Fach closed orientable (n + 2)-manifold M™2, n > 2,
with handle presentation

M2 = gOUMHT U, U HMEU P2
15 completely defermined by
HOUMH'U...UMHE™

Here H' represents an arbitrary handle of indez 1.

Using Corollary 4, we prove an extension to dimension n of a well-
known result due to F. Laudenbach and V. Poenaru (see [12]).

Corollary 6. Let M™?2 be the smooth closed (n-2)-manifold,
n > 2, obtained by gluing #, (Sl X D"’H) to #p (S™ x D%, p>1, vie

an arbitrary diffeomorphism of their boundaries. Then M 1is diffeomor-
phic to S"2.

Proof. Set Y = #, (Sl X D”H) and Z = #, (8" x D?) for n > 2 and
p>1

Consider a diffeomorphism h : 8¥ — 8Z and the smooth closed
(n + 2)-manifold M =Y U} Z.

One has canonical identifications

ayﬁqxz#p(slxs")f—az

which will be given, one for all. It is obvious that Y Ug-1,, Z = s,

Since the manifold M = Y Uy, Z is independent of the way of pasting
the boundaries together (see Corollary 4}, it follows that M = Y U, Z
is diffeomorphic to ¥ Ug-104 Z = s,

2 Homotopy equivalences and pseudo-isotopies
of X = #,(8' x §7)

In this section we prove that the group D(X) of pseudo-isotopy classes of
homeomorphisms of X = #, (S1 X S"), n > 3, is isomorphic to £(X).
For this, we use the following results proved in [4] and [5}.
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Theorem 7. Let M™', n > 4, be a closed connected PL (n + 1)-

manifold of the same homotopy type as X = #, (31 X S") Then M s
PL homeomorphic to X.

Theorem 8. Any homotopy self-equivalence of X = #, (Sl X S"),
n > 3, is homotopic to e Pl homeomorphism.

Theorem 7 extends the analogous result proved in [9] for p = 1 and
Theorem 8 represents an extension of Lemma 16.2 of (18], p = 1 and
n=3.

In order to prove our result we need the following proposition.

Proposition 9. If X = #, (sl x s") n>3,p>1, then any PL
homeomorphism f : X — X, which i3 homotopic to the identity, is
pseudo-isotopic to the identity.

Proof. Let ¥ be the (n + 2)-handlebody, i.e. Y is the boundary con-
nected sum Y = 4, (Sl X D""H). Obviously we have 8Y = X. As
shown in [4], Proposition 3.1, the homeomorphism f : X — X extends
over Y. To make the reading clear, we skecth the construction and refer
to [4] for more details.

Form the closed (n + 2)-manifolds M =¥ UgY and N =Y Uy Y.
Obviously M is PL homeomorphic to #, (S1 x §*1). Furthermore N
is homotopy equivalent to M since f is homotopic Lo the identity.

leti;:Y = Mandj;:Y — N (resp. ip: Y — M and jo: Y — N)
be the canonical inclusions of Y into the first (resp. second) copy of it.
For simplicity we identify ¥ = #1(Y) C M with Y = j;(Y) C N so that
MNON=Y.

Note that

7= Galx) e slx-

B MTHy N2

By the tubular neighborhood theorem and the Whitney embedding
theorein we may assume that 2 is the identity on the first summand
Y = i;(Y). Then the restriction of & to the second copy i2(¥Y) of ¥ in
M provides the required extension of the map f. Thus,let g: ¥ — Y be
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a PL homeomorphism which extends f to Y. One has the commutative
diagram

mx) £ mex)

ie | | ia

IL(Y) oo Hi(Y)
where the inclusion-induced homomorphism 7, : II; (X} — IT1(Y) ~ ;Z

is bijective. Since f, = identity, it follows that g, = identity.
Let S} be the canonical i-th §'-factor of Y = #p (S’l X D"H) for

i=1,2,...,p. Then the l-sphere &! = ¢ (S,l) is homotopic to S} be-
cause g, = identity. Hence they are also isotopic as dimY > 5. Then we
isotope g to a map, also named g, which sends the 1-dimensional graph
G = V?_,8} (one-point union) in ¥ to itself via the identity. Then we
can also adjust the map g so that it is the identity on a regular neigh-
borhood of G in Y. Moreover we may choose these isotopies keeping a
collar of the boundary X = 8Y fixed. In other words, there exist two
regular neighborhoods V and W of & in Y which satisfy the following
properties:

DV CintW Cinty

2) glv = identity

3) the previous isotopies are fixed outside W.

By the regular neighborhood collaring theorem (see [16], p. 36), the
complement Y\ int V can be identified with X x 7 where 8Y = X = X x0
and 8V = X x 1 (I = [0, 1]). Then the restriction map

gl X xTI—XxI

is a pseudo-isotopy between glxxo = f and g|xx1 = identity (use 2)
above). Thus the homeomorphism f : X — X is pseudo-isotopic to the
identity as claimed.

Corollary 10. If X = 4, (Sl X S"), n >3, p>1, then the natural
map
D(X) — E(X)
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18 an isomorphism.

Proof. By Proposition 9 the map of the statement is injective. It is also
surjective because each homotopy self-equivalence of X is homotopic to
a PL homeomorphism by Theorem 8.

n
Theorem 11. If X = #, (Sl X S"), n =3 p>1, then we have the
following exzact sequence

0-— Kerfy =~ @& Zs — Dy(X) = E(X) P, Out(Tl;) — 0,
P

i.e. any two orientation-preserving diffeomorphisms f,g: X — X with
fi=g I =1L
are pseudo-isolopic provided certain obsiructions
a; €I, (SO(n+ 1)) >~ Z2

vanish, 1 <i <p.
In order to prove Theorem 11 we need the following lemma.

Lemma 12, Let f,g: X — X be two degree one maps.
If fo=g¢: 11} = 11y, then fo = go : Iy = g for all g < n.

Proof. We observe that Ili(X)=0 for 1 <i<n,  hence
fr = g : Iy = Tl for all ¢ < n. By [12], p. 341, the Poincare
duality and the relation deg(f) = deg(g) = 1, we have the following
commutative diagrams

HolX:Z) — Ha(X;2) = HNX;2) = HM)X;Z)
fil 13 £l 15
Ho(X;Z) — Ha(X; 2) P—:D. HYX;Z2) — HNX:Z)
HNX;Z) = HMX;Z) - H'(I;z[M]) — H'(;2]L)
g Ly £4 N
HNX;2) — HMX;2) = H'(I;Z[M)) — H'(;Z]0)

where f,§: X — X are the liftings of f, g respectively.
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Since the hypothesis f, = g, : HI; — TI; directly implies f}! = g%,
it follows that f, = ga : Hn()E';Z) — Hn()E’;Z). Then the Hurewicz
isomorphism ) )

Ho(X; Z) = Tp(X) = [Ta(X)

implies that f, = g, : II, — Il,, as required.

Proof of Theorem 11. Here we prove that the sequence
&pZo — Do(X) — Out(l;) - 0

is exact. The injectivity of the term @,Z9 into Dp(X) will follow from
realizations of obstructions in section 4.

Suppose that f : X — X = #p(sl x 8™), n > 3, is an orientation-
preserving diffeomorphism such that 8g(f) = 1. We can choose a repre-
sentative (also named f) in the class of f which preserves the base point
of X and f, = identity on I,(X). Lemma 12 implies that f, = identity
on II4(X) for all ¢ < n. By Proposition 9 it is enough to show that f is
homotopic (and hence pseudo-isotopic) to the identity Idy : X — X.

We attempt to build up a homotopy F : X x I — X between f and
Idx in steps, using a filtration of X by subcomplexes.

Consider the handle presentation

P P
X = D"y, | (D,.1 x D;‘) uy | (D;.‘ x D}) u g™t
i=1 7=1
where D, B are (n + 1)-cells and x, % are embeddings

p
x: (BD}) x DP — gD = &
i=1

¥ 0 (aD;?) x D} — 8 (D"“H Uy O (Dil x D;')) .
i=1 i=1

Our filiration starts with D™, then we successively add
D} x 0, D} x D}, D? x 0, DT x D} and finally B™+.

Now we regard f as a diffeomorphism of X x 1 and seek to extend f
on X x 1 and the identity Id on X x 0 to a map F : X x I — X, where
I={0,1}.
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Step 1. By the disc theorem f|pn+: and Id|pn+1 are homotopic. Thus
we choose a homotopy and define it

Flpntiyg : D" x 1 — D™ ¢ x.

Step 2. We next define F on D} x I. Now Fl&(D.'xI) is already given:
on 8D} x I ¢ D™ x I by Step 1, on D} x 0 by the identity and on
D} x1byf.

Because f, = identity on II;(X), we can extend to some map

D}xI—X.

Indeed, let S} be thei-th Sl factor of X = #p (S’l X S"), n > 3; the con-

dition f. = identity on II; implies that the 1-sphere f(S}) is homotopic
to S} (and also isotopic as dim X > 4).

Step 3. We now extend F to D} x DPx 1, i.e. to a tubular neighborhood
of D! x I in X x I. By the tubular neighborhood theorem it suffices
to find a trivialisation of the normal bundle with the desired properties.
As in step 2 these turn out to be that a trivialisation is already given on
the boundary 8 (Dl x I). The obstruction to extending this over DixI
(since this is contractible, the bundle certainly is trivial) is an element
(see [17])
a; €; (SO(n+ 1)) >~ Zo

(see [1], [8] for the stable homotopy of the orthogonal group, n > 3).
If ; = 0, then the extension of the framing and hence of F is
possible,

Step 4. We now assume that steps 1,2,3 have been successfully per-
formed, i.e. F has been already defined on

p
(oo J (v x DF)) x 1.
i=1
We next extend £ on D} x I. Now F[a(p;;x,) is already given:
on 8D} x IC (o, U (D1 X D")) x I by step 2, on D] x 0 by

the identity and on D x 1 by f.

153
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Because f, = identity on II,,(X) (see Lemma 12) we can extend F
to some map

D} x I — X.

Indeed, let 87 ( = 1,2,...,p) be the j-th §"-factor of X. The condition
f+ = identity on I,,(X) implies that the n-sphere f (S}’) is homotopic
to S7.
Step 5. We have now to extend F to D} x D} x I, i.e. to a tubular
neighborhood of D} x I in X x I. As remarked in step 3, the obstruction

to extending a trivialisation given on the boundaryB(D;-‘ X I)

to D} x I is an element of I1, (SO(2)) =~ M,(S') ~ 0 for n > 3. Thus
the extension of the framing and hence of F is possible on the whole of
(X\int(B"*1)) x I. Then we complete the extension of F to X x [ by
using the Alexander theorem.

Finally we prove that the homomorphism 6y is surjective. Indeed,
for any £ € Out(Il;) there exists f € Aut(X) such that f, = £ (see [12]).
If deg(f) = 1, then [f] € Do(X) and 8y[f] = £. Otherwise we compose
f with the homeomorphism

= #p (Idsx xr) X =X

where r:8" — 8" is the reflection on the l-st coordinate. Then
[f or’] € Do(X) and 6y|f o #'] = £. Thus the proof is completed.

In section 4 we will show that any obstructions can be realized.

3 Alternative proofs

We can give an alternative proof of Theorem 11 by applying the classical
obstruction theory (compare for example with [6]).

In order to do this, we need some algebraic lemmas which are inter-
esting by itself,
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Lemma 13.
1) Let A = Z[Il)] be the group ring of II)(X). Let ey, eg, ...,
ep € I11(X) be canonical generators and let

og=(e1—lea—1,...,ep~1) € BA.
P

Then the A-module H,(X) is A-isomorphic to (® A)/cA.
P

2) The A-module 11,11 (X) is A-isomorphic lo (Gal %) B (b Z2),
P P

where A acts on Zo via the map naturally induced by the augmentation
€e:A— Z.

Proof.
1) Let X@ be the g-skeleton of the standard cellular decomposition

U pel Upe™U et
of X. Since X@ = X for 1 < g < n, we have
I (X) ~ Ta(X) = Ho(X; Z) = Hp(X;A)

and Hn(X;A) ~ HY(X;A) by Poincare duality. Here X denotes the
universal covering space of X.
To caleulate H1(X;A) we consider the exact sequence

0 — H (f(l), j{'(o)) — Hyg ();;(0)) — Hy (X~(1)) — 0
iso | iso | iso |
0 — I(A) -5 A - z — 0,

which gives the following augmented A-chain complex

0 — Homa(Z, A) =5 Homa (A, A) <% Homy (7(A), A) — 0,

hence
Homp (J(A),A)

— Imi*

HY(X;A) ~ cokeri# ~
As A-module, I(A) is isomorphic to

Aley — 1) D Ale2—- 1) ... ® Alep — 1),

155
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where
e1,€e2,...,ep € I (X) ’l’;I;Z

are canonical generators. If ¢ € Homa(A, A), then i*(p) corresponds to

op(l) € %A ~ Homp (I{A), A),

proving statement 1) of the lemma.

2) Let X* be the CW-complex obtained from X = #, (Sl X S")

by attaching p — 1 (= + 1)-cells D™ along the n-spheres where the
connected sum is taken. Observe that X * is homotopy equivalent to the

wedge \pf (Sl % S")

Furthermore one can easily verify the following isomorphisms:
H11+1(X*) = Hn-l—?(X*) = E‘E Zs

A
1T X" X))~ n * ~ —
n+1( » ) p?lA 1§ +2(X !X) p@l 2A

Thus the homotopy exact sequence of the pair (X*, X) yields
Hn+2(X) 2 Hn+2(X*) — nn+2(X*, X)
— 1 (X)) — Mgt (X*) — 0.

Since j, is an epimorphism, we obtain the result.
|

Given a A-module L, we denote by H*(X;L) the cohomology of the
complex Homa(C.(X), L), where C,(X) = H‘(X(*),X(“‘l)),

Lemma 14.
1) HYX; (X))~ Z

2) HYWY X (X)) > & Zo.
P
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Proof.

1) By Poincaré duality, we have H"(X;IL,(X)) ~ H(X;T,(X))
(see [18]).

Using Ip(X) >~ (EE A)/aA, one obtains the following exact sequence

Hy(X;A) — Hl(X;GpBA) — Hl(X;@A)/W\)

-—+Z®AA~—+Z®A(63A).

Now Hi(X;A) = Hi(X;®A)~0and Z@s A — Z @4 (@A) is the null
r P
homomorphism because o goes to zero. Hence we obtain
HY X Mp(X) 2 Z @A A= Z

as claimed (use also {15}, Theorem 1.12).
2) We have

H™ (X T (X)) 5 Ho(X;Mnt1 (X)) 2 Hngs (X )

where Ty +1(X)y1,(x) is the maximal quotient module of Ily41(X) (see
[15], p. 266), i.e.

l-['r:+l (X)
{Xz: 2 € Araedl, (X))}

M1 (X )nyxy =

Because this quotient module is A-trivial (see [15]), Lemma 13 implies
that
H™H(X T (X)) = & Zo.
p

Thus the proof is completed.

Theorem 11: second proof. Let f: X — X =4, (Sl X S"), n >3,
p = 1, be a homotopy self-equivalence of degree one such that 85(f) = 1.
As before, we can assume that f preserves the base point of X and that
fo = (Idx). on Iy(X) for all ¢ < n (see Lemma 12}, We have to study
under that conditions f is homotopic to the identity Idx. We attempt
to build up a homotopy h : X x I — X between f and Idy in steps
using a filtration of X by subcomplexes.

B

7
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Let X (@ be the g-skeleton of the standard cellular decomposition
X =P upel Upe® U™t
Because f, = (Idx). on II;, there is a homotopy
R:Xx®x1 X

between f|y (2 and Idx|y@.
The equalities X{@ = X for 1 < g < n imply that

HI(X;Ty(X)) =0
for all 1 < ¢ < n. Thus the first obstruction lies in
HM(X;Mp(X)~ Z

(sec Lemma 14). Let h : X 1) x I — X be a homotopy between
fixm-1 and Idx |ym-1). The obstruction to extend A to X® is the
homotopy class of the map

FURUIdy : X x0UX® D xruXx x1— X,
i.e. for any i =1,2,...,p we have
B8i(f,h,1dx) = [FURUTAx lepxousepxiverx1| € Tn(X).
In other words, the difference cochain is defined as follows:

d(f,h,Idx) : Cup(X) — T1u(X)
el — Aqy(f, h,1dx)

hence the obstruction is the cohomology class
P
[d(f, b, Tdx)] = [ A € B (X TT(X)) > Z.
i=1

Let &' : X1 5 7 — X be a homotopy of Id | ye-n to Td | ye-n. It is
well-known that

A(fa h,Idx) + A(Idx, hra IdX} = A(f: h -+ hll ldX)
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where i + A’ : X"~ x | — X is defined by

: _J h(=,2t) 0<t<3
Indeed, for each i = 1,2,...,p, we take a small ball in the centre of

the n-cell el and cut off it. Next we attach to its place a spheroid
representing the value in II,(X) of the cochain d at e. Thus we can
always choose an ' such that

d(ldx,h', 1dx) = —d(f, h,1dx),

ie. h+ h' extends to a homotopy X™ x I — X between f|y( and
Idx | x(ny. Now the only obstructions lie in

HY (X Ty (X)) 9 Z2.

This proves Theorem 11.

4 Realizing obstructions

Now we are going to prove Theorem 3.
Let {e;},i=1,2,...,p, be a free basis of II;(X) :Z, where

X =+#p (Sl X S"), p > 1, n > 3. Obviously e; is the homotopy class of

the i-th §'-factor S} of X. As proved in [10] and [12], Aut(Il;) is gener-
ated by sliding 1-handles, twisting 1-handles and permuting i-handles.
More precisely, for i = 2,3,...,p (p > 1) define ¢; € Aut(Il;) by setting
pi(e)) = ei, ¢ilei) = e and pile;) = ¢; foreach j # 4, j # L. Permutmg
the 1-handles e; and e; corresponds to the automorphism ¢; 0 ¢; © ¢

It follows that ¢? = 1 and by [10], [12] there exist dlffeomorphisms
fi 1 X — X (permuting 1- hand!es) such that f;, = ¢;. Then define
o € Aut(Tl;) by setting o(e1) = e} ! and o(e;) = e; for i # 1. Twisting
the 1- handle e; corresponds to the automorphism ¢;0 0 0 ¢>.l . Obvi-
ously o2 = 1. Furthermore there exist diffeomorphisms of X (twisting
1-handles) which realize o and ¢;00 0 ¢,-_1 for i > 2. Finally we define
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¥ € Aut(l1), p > 1, by seiting ¥(e1) = eje and ¥(e;) = e; for i > 2
(sliding 1-handles).

Let £; = S7 be the i-th S™-factor of X = #, (S1 X S"), p>1,n2>3.
Following |10}, we show that rotations of X parallel to ¥; generate the
obstruction subgroup

Ker@g~ @ Tl; (S0(n + N))~adZs.
p F

Let
a: (81, 1) = (SO(n + 1),id)

be a loop representing a homotopy class of I1; (SO(n + 1)) =~ Z5 (n > 3).
Then o induces a diffeomorphism

ha : 8" xI > 8"x1I

defined by

hal(z,t) = (a(t)z, t)
for all z € 8™ and t € I = [0,1]. Obviously kg is the identity on the
boundary 8(S" x I) = 8" x 0US™ x 1.

Now let M™! be a closed oriented (n -+ 1)-manifold and let &™ be
an oriented n-sphere embedded in M. Suppose p : S* x [ — M is an
orientation-preserving embedding such that ¢(S"™ x 0) = X. Because
hq == identity on 8(8™ x I), one obtains a diffeomorphism

RZ:M — M
defined by

P B if z € M\Imeyp
halz) = { wohopiz) if z € Imo.

We call the diffeomorphism kY the a-rotation of M parallel to & (briefly,
a rotation). Obviously the pseudo-isotopy class of AL depends only on
the homotopy (resp. isotopy) class of o (resp. X}.

If M™H = x = #,,(Slxs‘"),p >1,n > 3, then let ; = 87 be
the i-th 8™-factor of X. We set

hig = hZi
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for i = 1,2,...,p and |o] € I (80(n + 1)) ~ Z2. One can choose
hi o to be the identity on the union U}_ T;. Because (hiq)s = identity
on 1I,(X) for all ¢ < n, we have that hjo € Kerfy, i = 1,2,...,p.
Moreover hiq © hjg = hjg 0 hiq (i # J), each h; o commutes with the
generators of Aut(Il;) and h;, is pseudo-isotopic to the identity if and
only if [a] = 0. Thus we have shown that the rotations h; = hiq of
X parallel to the n-spheres L; generate Kerfy if [a] is the generator
of ; (SO(n + 1)) ~ Z3. In particular, this shows that the term EE Z
injects into Dg(X).

More precisely, we can interpret our results in the following way
{(which is related to Lemma 5.4 of {10}):

Corollary 15. Let X = #, (Sl X S"), p2>l,n>3, andletf: X - X
be an orieniation-preserving diffeomorphism such that 0o(f) = 1, i.e.
fe = identity on II,. Then there exist loops (obstructions)

a;: (8t 1) = (80(n + 1),1d)
(i=1,2,...,p) such that f is pseudo-isotopic to the product
hig,oh2a,0...0 hp,a,,-

Moreover, the pseudo-isolopy can be chosen keeping the union Uf=IEi
fized.

In other words, rotations h; = hig (i=1,2,...,p) i a free basis of

Kerfg~ &I, (SO(n+ 1))~ @ Z»
P P

where [a) is the generator of [T} (SO(n + 1)) = Z».

5 Concluding remarks

Following [12], let C(n, \) denote the class of smooth (n + 1)-manifolds
of the form
Nn-i—l — HO UpHAUpH/\-F]

such that N is contractible, n 23, 1 <X <n -1 The h-cobordism
theorem of Smale implies that if N € C(n, A}, then N is an (n + 1)-disc
provided that n > 5 and 1 € A < n — 3 (see for example [16]). On
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the other hand C(n,n —2) contains elements with non-simply connected
boundary (see [12]).
Now one might ask the following question:

N €C{n,n—1)== N ~ D"t

dif f

We can apply Corollary 6 to give a positive answer in the particular case
HOUpH™™ = #, (5" x D?).

Indeed, we have the following result.

Proposition 16. Let N"! be the manifold obtained by attaching 2
handles of index n to #, (S""l X DQ), n>3 IfHo 1(N;Z)=0, then
AN 1is diffeornorphic to the n-sphere S™.

Proof. We simply follow the proof of Lemma 5 [12], settled for n = 3.
First of all, the hypothesis Hp-1(N;Z) = 0 implies that N is con-
tractible, ie. N € C(n,n — 1).

Let ¢} be the attaching map of the i-th handle H = DP x D}
of index n, i = 1,2,...,p. The same argument as in {12| shows thal

3 (BD? X %) are disjnined homologically independent (n — 1)-spheres
embedded in

8 (#p(8"7" x D¥)) = #,(s" x §%).

Let £F"! be the i-th (n— 1)-factor of #, (S"_1 X Sl). Cutting
#p (.‘3'"_l X Sl) along the (n — 1)-spheres ¢} (dD:‘ X %) (resp. £77h)
yields a punctured n-disc P" (resp. Q™), where
P" ~ Q" ~ D™\ {2p — lopenn — cells}.
A diffeomorphism P™ — Q" which preserves the boundary compo-
nents induces a diffeomorphism between the pairs
(gn-1, gl i(ap" x L
(#p\ X A Jvn(@D} x 2))
i

and
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(#e (5771 x 81), Uz,
i
This implies the statement.
]
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