Volumen 11, número 1: 1998

On pseudo-isotopy classes of homeomorphisms of $\#_p(S^1 \times S^n)$.

Alberto CAVICCHIOLI and Friedrich HEGENBARTH

Abstract

We study self-homotopy equivalences and diffeomorphisms of the (n+1)-dimensional manifold $X = \#_p(\mathbf{S}^1 \times \mathbf{S}^n)$ for any $n \geq 3$. Then we completely determine the group of pseudo-isotopy classes of homeomorphisms of X and extend to dimension n well-known theorems due to F. Laudenbach and V. Poenaru [10],[12] and J.M. Montesinos [14].

1 Introduction

Through the paper we work in the piecewise-linear (resp. C^{∞} -differentiable) category, so we shall omit the prefix PL (resp. DIFF). Therefore the term *homeomorphism* means either PL homeomorphism or diffeomorphism.

Let M^{n+1} be a closed connected oriented (n+1)-manifold. Following [3], [19], we say that two homeomorphisms $f, g: M \to M$ are pseudo-isotopic if there is a homeomorphism $F: M \times I \to M \times I$ (I = [0, 1]) such that F(x, 0) = f(x) and F(x, 1) = g(x) for all $x \in M$.

Let us consider the following groups:

1991 Mathematics Subject Classification: 57N37, 57N65, 57R65. Servicio Publicaciones Univ. Complutense. Madrid, 1998. Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. and partially supported by the M.U.R.S.T. of Italy within the projects "Geometria reale e complessa" and "Topologia".

 $\operatorname{Aut}(M)$ (resp. $\operatorname{Aut}_0(M)$) the group of (resp. orientation-preserving) self-homeomorphisms of M;

 $\mathcal{D}(M)$ (resp. $\mathcal{D}_0(M)$) the group of pseudo-isotopy classes of (resp. orientation-preserving) homeomorphisms of M;

 $\mathcal{E}(M)$ (resp. $\mathcal{E}_0(M)$) the group of homotopy classes of (resp. orientation-preserving) homotopy self-equivalences of M;

Aut(Π_1) the group of automorphisms of the fundamental group $\Pi_1 = \Pi_1(M)$ of M;

 $\operatorname{Out}(\Pi_1)$ the outer automorphism group of Π_1 , i.e. automorphisms modulo inner automorphisms.

We have natural maps (base points are not required to be fixed)

$$\operatorname{Aut}(M) \to \mathcal{D}(M) \to \mathcal{E}(M) \to \operatorname{Out}(\Pi_1)$$

$$\operatorname{Aut}_0(M) \to \mathcal{D}_0(M) \to \mathcal{E}_0(M) \to \operatorname{Out}(\Pi_1).$$

In [3], [7], [9] it was studied the pseudo-isotopy classes of homeomorphisms (and self-equivalences) of the manifold $M^{n+1} = S^1 \times S^n$ for $n \geq 2$. There it was shown that two homeomorphisms of $S^1 \times S^n$ are homotopic if and only if they are pseudo-isotopic (resp. isotopic for the case n = 2). Hence the natural map

$$\mathcal{D}\left(\mathbf{S}^1 \times \mathbf{S}^n\right) o \mathcal{E}\left(\mathbf{S}^1 \times \mathbf{S}^n\right)$$

is an isomorphism for any $n \geq 2$.

We summarize the results proved in the quoted papers by the following statement.

Theorem 1. ([3],[7],[9])

If n > 2, then

$$\mathcal{D}\left(\boldsymbol{S}^{1}\times\boldsymbol{S}^{n}\right)\underset{\boldsymbol{i}\boldsymbol{s}\boldsymbol{o}}{\simeq}\mathcal{E}\left(\boldsymbol{S}^{1}\times\boldsymbol{S}^{n}\right)\underset{\boldsymbol{i}\boldsymbol{s}\boldsymbol{o}}{\simeq}\boldsymbol{Z}_{2}\oplus\boldsymbol{Z}_{2}\oplus\boldsymbol{Z}_{2}$$

By Theorem 1, it follows that there are at most two non equivalent n-knots in the (n+2)-sphere with diffeomorphic complements, $n \geq 2$ (see [3], [7], [9]).

The aim of our paper is to extend Theorem 1 for the (n+1)-dimensional manifold $X = \#_p(\mathbf{S}^1 \times \mathbf{S}^n)$, $n \ge 2$, $p \ge 1$, i.e. the connected sum of p copies of $\mathbf{S}^1 \times \mathbf{S}^n$.

More precisely, we prove the following result

Theorem 2. If $X = \#_p(S^1 \times S^n)$, $n \geq 2$, $p \geq 1$, then we have short exact sequences

$$0 \to \bigoplus_{p+1} \mathbb{Z}_2 \to \mathcal{D}(X) \to \mathrm{Out}(\Pi_1) \to 0,$$

$$0 \to \underset{p}{\oplus} \mathbb{Z}_2 \to \mathcal{D}_0(X) \to \mathrm{Out}(\Pi_1) \to 0,$$

where $\Pi_1 = \Pi_1(X) \simeq \underset{p}{*} \mathbf{Z}$ is the free group with p generators, $p \geq 1$.

Observe that the group $\mathcal{D}(X)$ (resp. $\mathcal{D}_0(X)$) is not a direct sum of the other two terms of the sequence for p > 1. Indeed, diffeomorphisms of X, which permute the p summands $S^1 \times S^n$, also permute the p rotations along n-spheres (compare section 4).

As a consequence of Theorem 2, we completely determine the group $\mathcal{D}_0(X)$ of X as follows:

Theorem 3. If $X = \#_p(S^1 \times S^n)$, $n \geq 2$, $p \geq 1$, then the group $\mathcal{D}_0(X) \underset{iso}{\simeq} \mathcal{E}_0(X)$ is generated by sliding 1-handles, twisting 1-handles, permuting 1-handles and rotations.

The case n=2 in the statement of Theorem 3 was proved by F. Laudenbach (see [11]) and J.M. Montesinos (see [14]). The definitions of the above generators can be found in [10] and [12]. Because all these generators extend to the (n+2)-handlebody $Y=\#_p\left(\mathbf{S}^1\times D^{n+1}\right)$, i.e. the boundary connected sum of p copies of $\mathbf{S}^1\times D^{n+1}$, we prove, following [14], other two consequences of Theorem 3 about handle presentations of manifolds.

Corollary 4. Let Y be the handlebody $\#_p\left(S^1\times D^{n+1}\right)$ with boundary $\partial Y=X=\#_p\left(S^1\times S^n\right),\ n\geq 2,\ p\geq 1.$ Given a connected compact (n+2)-manifold N^{n+2} with boundary $\partial N\simeq X$, the smooth closed (n+2)-manifold $M=N\cup_h Y$ obtained by gluing N and Y via an arbitrarily chosen diffeomorphism $h:\partial N\to\partial Y$ is independent of the way of pasting the boundaries together.

In particular, the closed (n+2)-manifold $M = Y \cup_h Y$ is diffeomorphic to the (n+2)-sphere S^{n+2} .

Corollary 5. Each closed orientable (n+2)-manifold M^{n+2} , $n \geq 2$, with handle presentation

$$M^{n+2} = H^0 \cup \lambda_1 H^1 \cup \ldots \cup \lambda_{n+1} H^{n+1} \cup H^{n+2}$$

is completely determined by

$$H^0 \cup \lambda_1 H^1 \cup \ldots \cup \lambda_n H^n$$
.

Here Hi represents an arbitrary handle of index i.

Using Corollary 4, we prove an extension to dimension n of a well-known result due to F. Laudenbach and V. Poenaru (see [12]).

Corollary 6. Let M^{n+2} be the smooth closed (n+2)-manifold, $n \geq 2$, obtained by gluing $\#_p\left(S^1 \times D^{n+1}\right)$ to $\#_p\left(S^n \times D^2\right)$, $p \geq 1$, via an arbitrary diffeomorphism of their boundaries. Then M is diffeomorphic to S^{n+2} .

Proof. Set $Y = \#_p\left(S^1 \times D^{n+1}\right)$ and $Z = \#_p\left(S^n \times D^2\right)$ for $n \geq 2$ and $p \geq 1$.

Consider a diffeomorphism $h: \partial Y \to \partial Z$ and the smooth closed (n+2)-manifold $M=Y\cup_h Z$.

One has canonical identifications

$$\partial Y \xrightarrow{\alpha} X = \#_p \left(S^1 \times S^n \right) \xleftarrow{\beta} \partial Z$$

which will be given, one for all. It is obvious that $Y \cup_{\beta^{-1} \circ \alpha} Z = S^{n+2}$.

Since the manifold $M = Y \cup_h Z$ is independent of the way of pasting the boundaries together (see Corollary 4), it follows that $M = Y \cup_h Z$ is diffeomorphic to $Y \cup_{\beta^{-1} \circ \alpha} Z = S^{n+2}$.

2 Homotopy equivalences and pseudo-isotopies of $X = \#_p(S^1 \times S^n)$

In this section we prove that the group $\mathcal{D}(X)$ of pseudo-isotopy classes of homeomorphisms of $X = \#_p(S^1 \times S^n)$, $n \geq 3$, is isomorphic to $\mathcal{E}(X)$. For this, we use the following results proved in [4] and [5].

Theorem 7. Let M^{n+1} , $n \geq 4$, be a closed connected PL (n+1)-manifold of the same homotopy type as $X = \#_p(S^1 \times S^n)$. Then M is PL homeomorphic to X.

Theorem 8. Any homotopy self-equivalence of $X = \#_p(S^1 \times S^n)$, $n \geq 3$, is homotopic to a PL homeomorphism.

Theorem 7 extends the analogous result proved in [9] for p=1 and Theorem 8 represents an extension of Lemma 16.2 of [18], p=1 and n=3.

In order to prove our result we need the following proposition.

Proposition 9. If $X = \#_p(S^1 \times S^n)$, $n \geq 3$, $p \geq 1$, then any PL homeomorphism $f: X \to X$, which is homotopic to the identity, is pseudo-isotopic to the identity.

Proof. Let Y be the (n+2)-handlebody, i.e. Y is the boundary connected sum $Y = \#_p(S^1 \times D^{n+1})$. Obviously we have $\partial Y = X$. As shown in [4], Proposition 3.1, the homeomorphism $f: X \to X$ extends over Y. To make the reading clear, we sketch the construction and refer to [4] for more details.

Form the closed (n+2)-manifolds $M = Y \cup_{Id} Y$ and $N = Y \cup_f Y$. Obviously M is PL homeomorphic to $\#_p(S^1 \times S^{n+1})$. Furthermore N is homotopy equivalent to M since f is homotopic to the identity.

Let $i_1: Y \to M$ and $j_1: Y \to N$ (resp. $i_2: Y \to M$ and $j_2: Y \to N$) be the canonical inclusions of Y into the first (resp. second) copy of it. For simplicity we identify $Y = i_1(Y) \subset M$ with $Y = j_1(Y) \subset N$ so that $M \cap N = Y$.

Note that

$$f = (j_2|_X)^{-1} \circ j_1|_X.$$

Because $n \geq 3$. Theorem 7 implies that there is a PL homeomorphism

$$h: M^{n+2} \to N^{n+2}.$$

By the tubular neighborhood theorem and the Whitney embedding theorem we may assume that h is the identity on the first summand $Y = i_1(Y)$. Then the restriction of h to the second copy $i_2(Y)$ of Y in M provides the required extension of the map f. Thus, let $g: Y \to Y$ be

a PL homeomorphism which extends f to Y. One has the commutative diagram

$$\Pi_{1}(X) \xrightarrow{f_{\bullet}} \Pi_{1}(X)$$

$$\downarrow i_{\bullet} \downarrow \qquad \qquad \downarrow i_{\bullet}$$

$$\Pi_{1}(Y) \xrightarrow{g_{\bullet}} \Pi_{1}(Y)$$

where the inclusion-induced homomorphism $i_*: \Pi_1(X) \to \Pi_1(Y) \simeq \underset{p}{*} \mathbf{Z}$ is bijective. Since $f_* = \text{identity}$, it follows that $g_* = \text{identity}$.

Let S_i^1 be the canonical *i*-th S^1 -factor of $Y = \#_p\left(S^1 \times D^{n+1}\right)$ for $i=1,2,\ldots,p$. Then the 1-sphere $\Sigma_i^1 = g\left(S_i^1\right)$ is homotopic to S_i^1 because g_* = identity. Hence they are also isotopic as $\dim Y \geq 5$. Then we isotope g to a map, also named g, which sends the 1-dimensional graph $G = \bigvee_{i=1}^p S_i^1$ (one-point union) in Y to itself via the identity. Then we can also adjust the map g so that it is the identity on a regular neighborhood of G in Y. Moreover we may choose these isotopies keeping a collar of the boundary $X = \partial Y$ fixed. In other words, there exist two regular neighborhoods V and W of G in Y which satisfy the following properties:

- 1) $V \subset \operatorname{int} W \subset \operatorname{int} Y$
- 2) $g|_V = identity$
- 3) the previous isotopies are fixed outside W.

By the regular neighborhood collaring theorem (see [16], p. 36), the complement $Y \setminus \text{int } V$ can be identified with $X \times I$ where $\partial Y = X = X \times 0$ and $\partial V = X \times 1$ (I = [0, 1]). Then the restriction map

$$g|: X \times I \to X \times I$$

is a pseudo-isotopy between $g|_{X\times 0}=f$ and $g|_{X\times 1}=$ identity (use 2) above). Thus the homeomorphism $f:X\to X$ is pseudo-isotopic to the identity as claimed.

Corollary 10. If $X = \#_p(S^1 \times S^n)$, $n \geq 3$, $p \geq 1$, then the natural map

$$\mathcal{D}(X) \to \mathcal{E}(X)$$

_

is an isomorphism.

Proof. By Proposition 9 the map of the statement is injective. It is also surjective because each homotopy self-equivalence of X is homotopic to a PL homeomorphism by Theorem 8.

Theorem 11. If $X = \#_p(S^1 \times S^n)$, $n \geq 3$, $p \geq 1$, then we have the following exact sequence

$$0 \longrightarrow \operatorname{Ker} \theta_0 \simeq \underset{p}{\oplus} \, \mathbf{Z}_2 \longrightarrow \mathcal{D}_0(X) \simeq \mathcal{E}_0(X) \xrightarrow{\theta_0} \operatorname{Out}(\Pi_1) \longrightarrow 0,$$

i.e. any two orientation-preserving diffeomorphisms $f, g: X \to X$ with

$$f_{\star} = g_{\star} : \Pi_1 \to \Pi_1$$

are pseudo-isotopic provided certain obstructions

$$\alpha_i \in \Pi_1 (SO(n+1)) \simeq \mathbb{Z}_2$$

vanish, $1 \le i \le p$.

In order to prove Theorem 11 we need the following lemma.

Lemma 12. Let $f, g: X \to X$ be two degree one maps.

If
$$f_* = g_* : \Pi_1 \to \Pi_1$$
, then $f_* = g_* : \Pi_q \to \Pi_q$ for all $q \le n$.

Proof. We observe that $\Pi_i(X) = 0$ for 1 < i < n, hence $f_* = g_* : \Pi_q \to \Pi_q$ for all q < n. By [12], p. 341, the Poincarè duality and the relation $\deg(f) = \deg(g) = 1$, we have the following commutative diagrams

where $\tilde{f}, \tilde{g}: \tilde{X} \to \tilde{X}$ are the liftings of f, g respectively.

Since the hypothesis $f_* = g_* : \Pi_1 \to \Pi_1$ directly implies $f_*^* = g_*^*$, it follows that $\tilde{f}_* = \tilde{g}_* : H_n(\tilde{X}; \mathbf{Z}) \to H_n(\tilde{X}; \mathbf{Z})$. Then the Hurewicz isomorphism

$$H_n(\tilde{X}; \mathbf{Z}) \simeq \Pi_n(\tilde{X}) \simeq \Pi_n(X)$$

implies that $f_* = g_* : \Pi_n \to \Pi_n$ as required.

Proof of Theorem 11. Here we prove that the sequence

$$\bigoplus_{p} \mathbb{Z}_2 \to \mathcal{D}_0(X) \to \mathrm{Out}(\Pi_1) \to 0$$

is exact. The injectivity of the term $\bigoplus_p \mathbb{Z}_2$ into $\mathcal{D}_0(X)$ will follow from realizations of obstructions in section 4.

Suppose that $f: X \to X = \#_p(S^1 \times S^n)$, $n \ge 3$, is an orientation-preserving diffeomorphism such that $\theta_0(f) = 1$. We can choose a representative (also named f) in the class of f which preserves the base point of X and $f_* = \text{identity}$ on $\Pi_1(X)$. Lemma 12 implies that $f_* = \text{identity}$ on $\Pi_q(X)$ for all $q \le n$. By Proposition 9 it is enough to show that f is homotopic (and hence pseudo-isotopic) to the identity $\text{Id}_X: X \to X$.

We attempt to build up a homotopy $F: X \times I \to X$ between f and Id_X in steps, using a filtration of X by subcomplexes.

Consider the handle presentation

$$X = D^{n+1} \cup_{\chi} \bigcup_{i=1}^{p} \left(D_i^1 \times D_i^n \right) \cup_{\psi} \bigcup_{i=1}^{p} \left(D_j^n \times D_j^1 \right) \cup_{g} B^{n+1}$$

where D, B are (n + 1)-cells and χ , ψ are embeddings

$$\chi: \bigcup_{i=1}^{p} \left(\partial D_{i}^{1}\right) \times D_{i}^{n} \longrightarrow \partial D^{n+1} = S^{n}$$

$$\psi: \bigcup_{j=1}^p \left(\partial D_j^n\right) \times D_j^1 \to \partial \left(D^{n+1} \cup_{\chi} \bigcup_{i=1}^p \left(D_i^1 \times D_i^n\right)\right).$$

Our filtration starts with D^{n+1} , then we successively add $D_i^1 \times 0$, $D_i^1 \times D_i^n$, $D_i^n \times 0$, $D_i^n \times D_i^1$ and finally B^{n+1} .

Now we regard f as a diffeomorphism of $X \times 1$ and seek to extend f on $X \times 1$ and the identity Id on $X \times 0$ to a map $F: X \times I \to X$, where I = [0, 1].

Step 1. By the disc theorem $f|_{D^{n+1}}$ and $\operatorname{Id}|_{D^{n+1}}$ are homotopic. Thus we choose a homotopy and define it

$$F|_{D^{n+1}\times I}:D^{n+1}\times I\to D^{n+1}\subset X.$$

Step 2. We next define F on $D_i^1 \times I$. Now $F|_{\partial(D_i^1 \times I)}$ is already given: on $\partial D_i^1 \times I \subset D^{n+1} \times I$ by Step 1, on $D_i^1 \times 0$ by the identity and on $D_i^1 \times 1$ by f.

Because $f_* = \text{identity on } \Pi_1(X)$, we can extend to some map

$$D_i^1 \times I \to X$$
.

Indeed, let S_i^1 be the *i*-th S^1 -factor of $X = \#_p(S^1 \times S^n)$, $n \geq 3$; the condition $f_* = \text{identity on } \Pi_1 \text{ implies that the 1-sphere } f(S_i^1) \text{ is homotopic to } S_i^1 \text{ (and also isotopic as dim } X \geq 4).$

Step 3. We now extend F to $D_i^1 \times D_i^n \times I$, i.e. to a tubular neighborhood of $D_i^1 \times I$ in $X \times I$. By the tubular neighborhood theorem it suffices to find a trivialisation of the normal bundle with the desired properties. As in step 2 these turn out to be that a trivialisation is already given on the boundary $\partial (D_i^1 \times I)$. The obstruction to extending this over $D_i^1 \times I$ (since this is contractible, the bundle certainly is trivial) is an element (see [17])

$$\alpha_i \in \Pi_1 (SO(n+1)) \simeq \mathbb{Z}_2$$

(see [1], [8] for the stable homotopy of the orthogonal group, $n \geq 3$).

If $\alpha_i = 0$, then the extension of the framing and hence of F is possible.

Step 4. We now assume that steps 1,2,3 have been successfully performed, i.e. F has been already defined on

$$(D^{n+1} \cup_{\chi} \bigcup_{i=1}^{p} \left(D_{i}^{1} \times D_{i}^{n}\right)) \times I.$$

We next extend F on $D_j^n \times I$. Now $F|_{\partial(D_i^n \times I)}$ is already given:

on $\partial D_j^n \times I \subset \partial (D^{n+1} \cup_{\chi} \bigcup_{i=1}^p \left(D_i^1 \times D_i^n \right)) \times I$ by step 2, on $D_j^n \times 0$ by the identity and on $D_j^n \times 1$ by f.

Because $f_* = \text{identity on } \Pi_n(X)$ (see Lemma 12) we can extend F to some map

$$D_i^n \times I \to X$$
.

Indeed, let S_j^n (j = 1, 2, ..., p) be the j-th S^n -factor of X. The condition $f_* = \text{identity on } \Pi_n(X)$ implies that the n-sphere $f\left(S_j^n\right)$ is homotopic to S_j^n .

Step 5. We have now to extend F to $D_j^n \times D_j^1 \times I$, i.e. to a tubular neighborhood of $D_j^n \times I$ in $X \times I$. As remarked in step 3, the obstruction to extending a trivialisation given on the boundary $\partial \left(D_j^n \times I\right)$ to $D_j^n \times I$ is an element of $\Pi_n(\mathrm{SO}(2)) \simeq \Pi_n(S^1) \simeq 0$ for $n \geq 3$. Thus the extension of the framing and hence of F is possible on the whole of $\left(X \setminus \mathrm{int}(B^{n+1})\right) \times I$. Then we complete the extension of F to $X \times I$ by using the Alexander theorem.

Finally we prove that the homomorphism θ_0 is surjective. Indeed, for any $\xi \in \operatorname{Out}(\Pi_1)$ there exists $f \in \operatorname{Aut}(X)$ such that $f_* = \xi$ (see [12]). If $\deg(f) = 1$, then $[f] \in \mathcal{D}_0(X)$ and $\theta_0[f] = \xi$. Otherwise we compose f with the homeomorphism

$$r' = \#_p\left(\operatorname{Id}_{\mathbf{S}^1} \times r\right) : X \to X$$

where $r: S^n \to S^n$ is the reflection on the 1-st coordinate. Then $[f \circ r'] \in \mathcal{D}_0(X)$ and $\theta_0[f \circ r'] = \xi$. Thus the proof is completed.

In section 4 we will show that any obstructions can be realized.

3 Alternative proofs

We can give an alternative proof of Theorem 11 by applying the classical obstruction theory (compare for example with [6]).

In order to do this, we need some algebraic lemmas which are interesting by itself.

Lemma 13.

1) Let $\Lambda = \mathbf{Z}[\Pi_1]$ be the group ring of $\Pi_1(X)$. Let $e_1, e_2, \ldots, e_p \in \Pi_1(X)$ be canonical generators and let

$$\sigma=(e_1-1,e_2-1,\ldots,e_p-1)\in \bigoplus_p \Lambda.$$

Then the Λ -module $\Pi_n(X)$ is Λ -isomorphic to $(\bigoplus_p \Lambda)/\sigma \Lambda$.

2) The Λ -module $\Pi_{n+1}(X)$ is Λ -isomorphic to $(\bigoplus_{p=1}^{\Lambda} \frac{\Lambda}{2\Lambda}) \oplus (\bigoplus_{p} \mathbb{Z}_2)$, where Λ acts on \mathbb{Z}_2 via the map naturally induced by the augmentation $\epsilon : \Lambda \to \mathbb{Z}$.

Proof.

1) Let $X^{(q)}$ be the q-skeleton of the standard cellular decomposition

$$e^0 \cup pe^1 \cup pe^n \cup e^{n+1}$$

of X. Since $X^{(q)} = X^{(1)}$ for $1 \le q < n$, we have

$$\Pi_n(X) \simeq \Pi_n(\tilde{X}) \simeq H_n(\tilde{X}; \mathbf{Z}) \simeq H_n(X; \Lambda)$$

and $H_n(X;\Lambda) \simeq H^1(X;\Lambda)$ by Poincarè duality. Here \tilde{X} denotes the universal covering space of X.

To calculate $H^1(X;\Lambda)$ we consider the exact sequence

which gives the following augmented Λ-chain complex

$$0 \longrightarrow \operatorname{Hom}_{\Lambda}(\boldsymbol{Z}, \Lambda) \xrightarrow{\epsilon^{\#}} \operatorname{Hom}_{\Lambda}(\Lambda, \Lambda) \xrightarrow{i^{\#}} \operatorname{Hom}_{\Lambda}(I(\Lambda), \Lambda) \longrightarrow 0,$$

hence

$$H^1(X;\Lambda) \simeq \operatorname{coker} i^{\#} \simeq \frac{\operatorname{Hom}_{\Lambda}(I(\Lambda),\Lambda)}{\operatorname{Im} i^{\#}}.$$

As Λ -module, $I(\Lambda)$ is isomorphic to

$$\Lambda(e_1-1) \oplus \Lambda(e_2-1) \oplus \ldots \oplus \Lambda(e_p-1),$$

where

$$e_1, e_2, \ldots, e_p \in \Pi_1(X) \simeq \underset{p}{*} \mathbf{Z}$$

are canonical generators. If $\varphi \in \operatorname{Hom}_{\Lambda}(\Lambda, \Lambda)$, then $i^{\#}(\varphi)$ corresponds to

$$\sigma\varphi(1)\in \underset{p}{\oplus}\Lambda\simeq \operatorname{Hom}_{\Lambda}(I(\Lambda),\Lambda),$$

proving statement 1) of the lemma.

2) Let X^* be the CW-complex obtained from $X = \#_p\left(S^1 \times S^n\right)$ by attaching p-1 (n+1)-cells D^{n+1} along the n-spheres where the connected sum is taken. Observe that X^* is homotopy equivalent to the wedge $\bigvee_{n} \left(S^1 \times S^n\right)$.

Furthermore one can easily verify the following isomorphisms:

$$\Pi_{n+1}(X^*) \simeq \Pi_{n+2}(X^*) \simeq \underset{p}{\oplus} \mathbf{Z}_2$$

$$\Pi_{n+1}(X^*,X) \simeq \bigoplus_{p=1} \Lambda \qquad \Pi_{n+2}(X^*,X) \simeq \bigoplus_{p=1} \frac{\Lambda}{2\Lambda}.$$

Thus the homotopy exact sequence of the pair (X^*, X) yields

$$\Pi_{n+2}(X) \xrightarrow{j_*} \Pi_{n+2}(X^*) \longrightarrow \Pi_{n+2}(X^*, X)$$
$$\longrightarrow \Pi_{n+1}(X) \longrightarrow \Pi_{n+1}(X^*) \longrightarrow 0.$$

Since j_* is an epimorphism, we obtain the result.

Given a Λ -module L, we denote by $H^*(X; L)$ the cohomology of the complex $\operatorname{Hom}_{\Lambda}(C_*(\tilde{X}), L)$, where $C_*(\tilde{X}) = H_*(\tilde{X}^{(*)}, \tilde{X}^{(*-1)})$.

Lemma 14.

1) $H^n(X;\Pi_n(X)) \simeq \mathbf{Z}$

2)
$$H^{n+1}(X;\Pi_{n+1}(X)) \simeq \bigoplus_{p} \mathbb{Z}_{2}.$$

Proof.

1) By Poincarè duality, we have $H^n(X;\Pi_n(X)) \simeq H_1(X;\Pi_n(X))$ (see [18]).

Using $\Pi_n(X) \simeq (\bigoplus_n \Lambda)/\sigma \Lambda$, one obtains the following exact sequence

$$H_1(X;\Lambda) \longrightarrow H_1(X; \underset{p}{\oplus} \Lambda) \longrightarrow H_1(X; (\underset{p}{\oplus} \Lambda)/\sigma\Lambda)$$
$$\longrightarrow \mathbf{Z} \otimes_{\Lambda} \Lambda \longrightarrow \mathbf{Z} \otimes_{\Lambda} (\underset{p}{\oplus} \Lambda).$$

Now $H_1(X; \Lambda) \simeq H_1(X; \underset{p}{\oplus} \Lambda) \simeq 0$ and $\mathbb{Z} \otimes_{\Lambda} \Lambda \to \mathbb{Z} \otimes_{\Lambda} (\underset{p}{\oplus} \Lambda)$ is the null homomorphism because σ goes to zero. Hence we obtain

$$H^n(X;\Pi_n(X))\simeq \mathbb{Z}\otimes_{\Lambda}\Lambda\simeq \mathbb{Z}$$

as claimed (use also [15], Theorem 1.12).

2) We have

$$H^{n+1}(X;\Pi_{n+1}(X)) \underset{PD}{\sim} H_0(X;\Pi_{n+1}(X)) \simeq \Pi_{n+1}(X)_{\Pi_1(X)}$$

where $\Pi_{n+1}(X)_{\Pi_1(X)}$ is the maximal quotient module of $\Pi_{n+1}(X)$ (see [15], p. 266), i.e.

$$\Pi_{n+1}(X)_{\Pi_1(X)} = \frac{\Pi_{n+1}(X)}{\{\lambda x : \lambda \in \Lambda \land x \in \Pi_{n+1}(X)\}}.$$

Because this quotient module is Λ -trivial (see [15]), Lemma 13 implies that

$$H^{n+1}(X;\Pi_{n+1}(X)) \simeq \bigoplus_{p} \mathbb{Z}_2.$$

Thus the proof is completed.

Theorem 11: second proof. Let $f: X \to X = \#_p\left(S^1 \times S^n\right)$, $n \geq 3$, $p \geq 1$, be a homotopy self-equivalence of degree one such that $\theta_0(f) = 1$. As before, we can assume that f preserves the base point of X and that $f_* = (\operatorname{Id}_X)_*$ on $\Pi_q(X)$ for all $q \leq n$ (see Lemma 12). We have to study under that conditions f is homotopic to the identity Id_X . We attempt to build up a homotopy $h: X \times I \to X$ between f and Id_X in steps using a filtration of X by subcomplexes.

Let $X^{(q)}$ be the q-skeleton of the standard cellular decomposition

$$X = e^0 \cup pe^1 \cup pe^n \cup e^{n+1}.$$

Because $f_* = (\operatorname{Id}_X)_*$ on Π_1 , there is a homotopy

$$h: X^{(2)} \times I \to X$$

between $f|_{X^{(2)}}$ and $\operatorname{Id}_X|_{X^{(2)}}$. The equalities $X^{(q)}=X^{(1)}$ for $1\leq q< n$ imply that

$$H^q(X;\Pi_q(X))\simeq 0$$

for all $1 \le q < n$. Thus the first obstruction lies in

$$H^n(X;\Pi_n(X)) \simeq \mathbf{Z}$$

(see Lemma 14). Let $h: X^{(n-1)} \times I \to X$ be a homotopy between $f|_{X^{(n-1)}}$ and $\mathrm{Id}_X|_{X^{(n-1)}}$. The obstruction to extend h to $X^{(n)}$ is the homotopy class of the map

$$f \cup h \cup \mathrm{Id}_X : X \times 0 \cup X^{(n-1)} \times I \cup X \times 1 \to X,$$

i.e. for any $i = 1, 2, \ldots, p$ we have

$$\Delta_i(f, h, \mathrm{Id}_X) = \left[f \cup h \cup \mathrm{Id}_X \mid_{e_i^n \times 0 \cup \partial e_i^n \times I \cup e_i^n \times 1} \right] \in \Pi_n(X).$$

In other words, the difference cochain is defined as follows:

$$d(f, h, \operatorname{Id}_X): C_n(X) \to \Pi_n(X)$$

 $e_i^n \to \Delta_i(f, h, \operatorname{Id}_X)$

hence the obstruction is the cohomology class

$$[d(f, h, \operatorname{Id}_X)] \equiv [\sum_{i=1}^p \Delta_i] \in H^n(X; \Pi_n(X)) \simeq \mathbf{Z}.$$

Let $h': X^{(n-1)} \times I \to X$ be a homotopy of $\mathrm{Id}|_{X^{(n-1)}}$ to $\mathrm{Id}|_{X^{(n-1)}}$. It is well-known that

$$\Delta(f, h, \operatorname{Id}_X) + \Delta(\operatorname{Id}_X, h', \operatorname{Id}_X) = \Delta(f, h + h', \operatorname{Id}_X)$$

where $h + h' : X^{(n-1)} \times I \to X$ is defined by

$$(h+h')(x,t) = \left\{ egin{array}{ll} h(x,2t) & 0 \leq t \leq rac{1}{2} \ h'(x,2t-1) & rac{1}{2} \leq t \leq 1. \end{array}
ight.$$

Indeed, for each i = 1, 2, ..., p, we take a small ball in the centre of the *n*-cell e_i^n and cut off it. Next we attach to its place a spheroid representing the value in $\Pi_n(X)$ of the cochain d at e_i^n . Thus we can always choose an h' such that

$$d(\operatorname{Id}_X, h', \operatorname{Id}_X) = -d(f, h, \operatorname{Id}_X),$$

i.e. h + h' extends to a homotopy $X^{(n)} \times I \to X$ between $f|_{X^{(n)}}$ and $\mathrm{Id}_X|_{X^{(n)}}$. Now the only obstructions lie in

$$H^{n+1}(X;\Pi_{n+1}(X))\simeq \bigoplus_{p} \mathbf{Z}_{2}.$$

This proves Theorem 11.

4 Realizing obstructions

Now we are going to prove Theorem 3.

Let $\{e_i\}$, $i=1,2,\ldots,p$, be a free basis of $\Pi_1(X)\simeq *\mathbb{Z}$, where $X=\#_p\left(S^1\times S^n\right)$, $p\geq 1$, $n\geq 3$. Obviously e_i is the homotopy class of the i-th S^1 -factor S^1_i of X. As proved in [10] and [12], $\operatorname{Aut}(\Pi_1)$ is generated by sliding 1-handles, twisting 1-handles and permuting 1-handles. More precisely, for $i=2,3,\ldots,p$ (p>1) define $\phi_i\in\operatorname{Aut}(\Pi_1)$ by setting $\phi_i(e_1)=e_i,\,\phi_i(e_i)=e_1$ and $\phi_i(e_j)=e_j$ for each $j\neq i,\,j\neq 1$. Permuting the 1-handles e_i and e_j corresponds to the automorphism $\phi_i\circ\phi_j\circ\phi_i^{-1}$. It follows that $\phi_i^2=1$ and by [10], [12] there exist diffeomorphisms $f_i:X\to X$ (permuting 1-handles) such that $f_{i*}=\phi_i$. Then define $\sigma\in\operatorname{Aut}(\Pi_1)$ by setting $\sigma(e_1)=e_1^{-1}$ and $\sigma(e_i)=e_i$ for $i\neq 1$. Twisting the 1-handle e_i corresponds to the automorphism $\phi_i\circ\sigma\circ\phi_i^{-1}$. Obviously $\sigma^2=1$. Furthermore there exist diffeomorphisms of X (twisting 1-handles) which realize σ and $\phi_i\circ\sigma\circ\phi_i^{-1}$ for $i\geq 2$. Finally we define

 $\psi \in \operatorname{Aut}(\Pi_1)$, p > 1, by setting $\psi(e_1) = e_1 e_2$ and $\psi(e_i) = e_i$ for $i \geq 2$ (sliding 1-handles).

Let $\Sigma_i = S_i^n$ be the *i*-th S^n -factor of $X = \#_p(S^1 \times S^n)$, $p \ge 1$, $n \ge 3$. Following [10], we show that rotations of X parallel to Σ_i generate the obstruction subgroup

$$\operatorname{Ker} \theta_0 \simeq \underset{p}{\oplus} \Pi_1 \left(\operatorname{SO}(n+1) \right) \simeq \underset{p}{\oplus} \boldsymbol{Z}_2.$$

Let

$$\alpha: (S^1, 1) \to (SO(n+1), id)$$

be a loop representing a homotopy class of Π_1 (SO(n+1)) $\simeq \mathbb{Z}_2$ $(n \geq 3)$. Then α induces a diffeomorphism

$$h_{\alpha}: \mathbf{S}^{n} \times I \to \mathbf{S}^{n} \times I$$

defined by

$$h_{\alpha}(x,t) = (\alpha(t)x,t)$$

for all $x \in S^n$ and $t \in I = [0, 1]$. Obviously h_{α} is the identity on the boundary $\partial(S^n \times I) = S^n \times 0 \cup S^n \times 1$.

Now let M^{n+1} be a closed oriented (n+1)-manifold and let Σ^n be an oriented n-sphere embedded in M. Suppose $\varphi: \mathbf{S}^n \times I \to M$ is an orientation-preserving embedding such that $\varphi(\mathbf{S}^n \times 0) = \Sigma$. Because $h_{\alpha} = \text{identity on } \partial(\mathbf{S}^n \times I)$, one obtains a diffeomorphism

$$h^{\Sigma}_{\alpha}:M\to M$$

defined by

$$h^{\Sigma}_{\alpha}(x) = \left\{ egin{array}{ll} x & ext{if} & x \in M \backslash \operatorname{Im} \varphi \\ \varphi \circ h \circ \varphi^{-1}(x) & ext{if} & x \in \operatorname{Im} \varphi. \end{array}
ight.$$

We call the diffeomorphism h_{α}^{Σ} the α -rotation of M parallel to Σ (briefly, a rotation). Obviously the pseudo-isotopy class of h_{α}^{Σ} depends only on the homotopy (resp. isotopy) class of α (resp. Σ).

If $M^{n+1} = X = \#_p(S^1 \times S^n)$, $p \ge 1$, $n \ge 3$, then let $\Sigma_i = S_i^n$ be the *i*-th S^n -factor of X. We set

$$h_{i,\alpha} = h_{\alpha}^{\Sigma_i}$$

for $i=1,2,\ldots,p$ and $[\alpha]\in\Pi_1(\mathrm{SO}(n+1))\simeq\mathbb{Z}_2$. One can choose $h_{i,\alpha}$ to be the identity on the union $\bigcup_{i=1}^p \Sigma_i$. Because $(h_{i,\alpha})_*=$ identity on $\Pi_q(X)$ for all $q\leq n$, we have that $h_{i,\alpha}\in\mathrm{Ker}\,\theta_0,\ i=1,2,\ldots,p$. Moreover $h_{i,\alpha}\circ h_{j,\beta}=h_{j,\beta}\circ h_{i,\alpha}\ (i\neq j)$, each $h_{i,\alpha}$ commutes with the generators of $\mathrm{Aut}(\Pi_1)$ and $h_{i,\alpha}$ is pseudo-isotopic to the identity if and only if $[\alpha]=0$. Thus we have shown that the rotations $h_i=h_{i,\alpha}$ of X parallel to the n-spheres Σ_i generate $\mathrm{Ker}\,\theta_0$ if $[\alpha]$ is the generator of $\Pi_1(\mathrm{SO}(n+1))\simeq \mathbb{Z}_2$. In particular, this shows that the term $\bigoplus_p \mathbb{Z}_2$ injects into $\mathcal{D}_0(X)$.

More precisely, we can interpret our results in the following way (which is related to Lemma 5.4 of [10]):

Corollary 15. Let $X = \#_p(S^1 \times S^n)$, $p \ge 1$, $n \ge 3$, and let $f: X \to X$ be an orientation-preserving diffeomorphism such that $\theta_0(f) = 1$, i.e. $f_* = \text{identity on } \Pi_1$. Then there exist loops (obstructions)

$$\alpha_i: (S^1, 1) \to (SO(n+1), Id)$$

 $(i=1,2,\ldots,p)$ such that f is pseudo-isotopic to the product

$$h_{1,\alpha_1} \circ h_{2,\alpha_2} \circ \ldots \circ h_{p,\alpha_p}$$
.

Moreover, the pseudo-isotopy can be chosen keeping the union $\bigcup_{i=1}^{p} \Sigma_{i}$ fixed.

In other words, rotations $h_i = h_{i,\alpha}$ (i = 1, 2, ..., p) is a free basis of

$$\operatorname{Ker} \theta_0 \simeq \underset{p}{\oplus} \Pi_1 \left(\operatorname{SO}(n+1) \right) \simeq \underset{p}{\oplus} \mathbf{Z}_2$$

where $[\alpha]$ is the generator of $\Pi_1(SO(n+1)) \simeq \mathbb{Z}_2$.

5 Concluding remarks

Following [12], let $\mathcal{C}(n,\lambda)$ denote the class of smooth (n+1)-manifolds of the form

$$N^{n+1} = H^0 \cup pH^{\lambda} \cup pH^{\lambda+1}$$

such that N is contractible, $n \geq 3$, $1 \leq \lambda \leq n-1$. The h-cobordism theorem of Smale implies that if $N \in \mathcal{C}(n,\lambda)$, then N is an (n+1)-disc provided that $n \geq 5$ and $1 \leq \lambda \leq n-3$ (see for example [16]). On

the other hand C(n, n-2) contains elements with non-simply connected boundary (see [12]).

Now one might ask the following question:

$$N \in \mathcal{C}(n, n-1) \Longrightarrow N \underset{diff}{\simeq} D^{n+1}$$
.

We can apply Corollary 6 to give a positive answer in the particular case

$$H^0 \cup pH^{n-1} \simeq \#_p\left(\mathbf{S}^{n-1} \times D^2\right).$$

Indeed, we have the following result.

Proposition 16. Let N^{n+1} be the manifold obtained by attaching p handles of index n to $\#_p\left(S^{n-1}\times D^2\right)$, $n\geq 3$. If $H_{n-1}(N;\mathbb{Z})=0$, then ∂N is diffeomorphic to the n-sphere S^n .

Proof. We simply follow the proof of Lemma 5 [12], settled for n = 3. First of all, the hypothesis $H_{n-1}(N; \mathbb{Z}) = 0$ implies that N is contractible, i.e. $N \in \mathcal{C}(n, n-1)$.

Let ψ_n^i be the attaching map of the *i*-th handle $H_i^n = D_i^n \times D_i^1$ of index n, i = 1, 2, ..., p. The same argument as in [12] shows that $\psi_n^i \left(\partial D_i^n \times \frac{1}{2} \right)$ are disjoined homologically independent (n-1)-spheres embedded in

$$\partial \left(\#_p(\mathbf{S}^{n-1} \times D^2) \right) = \#_p(\mathbf{S}^{n-1} \times \mathbf{S}^1).$$

Let Σ_i^{n-1} be the *i*-th (n-1)-factor of $\#_p\left(\mathbf{S}^{n-1}\times\mathbf{S}^1\right)$. Cutting $\#_p\left(\mathbf{S}^{n-1}\times\mathbf{S}^1\right)$ along the (n-1)-spheres $\psi_n^i\left(\partial D_i^n\times\frac{1}{2}\right)$ (resp. Σ_i^{n-1}) yields a punctured n-disc P^n (resp. Q^n), where

$$P^n \simeq Q^n \simeq D^n \setminus \{2p - 1 \text{ open } n - \text{cells}\}.$$

A diffeomorphism $P^n \to Q^n$ which preserves the boundary components induces a diffeomorphism between the pairs

$$(\#_p\left(\mathbf{S}^{n-1}\times\mathbf{S}^1\right),\bigcup_i\psi_n^i(\partial D_i^n\times\frac{1}{2}))$$

and

$$(\#_p\left(S^{n-1}\times S^1\right),\bigcup_i\Sigma_i^{n-1}).$$

This implies the statement.

References

- [1] R. Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337.
- [2] W. Browder, Manifolds with $\Pi_1 = \mathbf{Z}$, Bull. Amer. Math. Soc. 72 (1966), 238-245.
- [3] W. Browder, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128 (1967), 155-163.
- [4] A. Cavicchioli-F. Hegenbarth, On the determination of PL-manifolds by handles of lower dimension, Topology and its Appl. 53 (1993), 111-118.
- [5] A. Cavicchioli-F. Hegenbarth, On 4-manifolds with free fundamental group, Forum Math. 6 (1994), 415-429.
- [6] A.T. Fomenko-D.B. Fuchs-V.L.Gutenmacher, Homotopic topology, Akadèmiai Kiadò, Budapest, 1986.
- [7] H. Gluck, The embedding of two-spheres in the four-sphere, Bull. Amer. Math. Soc. 67 (1961), 586-589.
- [8] M. A. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161-169.
- [9] R. Lashof-J.Shaneson, Classification of Knots in codimension two, Bull. Amer. Math. Soc. 75 (1968), 171-175.
- [10] F. Laudenbach, Sur les 2-sphères d' une varieté de dimension 3, Ann. of Math. 97 (1973), 57-81.
- [11] F. Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Astèrisque 12 (1974).

- [12] F. Laudenbach-V. Poenaru, A note on 4-dimensional handlebodies, Bull. Soc. Math. France 100 (1972), 337-344.
- [13] R.E. Mosher-M.C. Tangora, Cohomology operations and applications in homotopy theory, Harper-Row Publ., New York-Evanston-London, 1968.
- [14] J.M. Montesinos, Heegaard diagrams for closed 4-manifolds, Geometric Topology, Proceedings of the 1977 Georgia Topology Conference (1979), Academic Press, 219-238.
- [15] J. Rotman, An introduction to homological algebra, Academic Press, New York-San Francisco-London, 1979.
- [16] C.P. Rourke-B.J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag Ed., Berlin-Heidelberg-New York, 1972.
- [17] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, New Jersey, 1951.
- [18] C.T.C. Wall, Surgery on compact manifolds, Academic Press, London-New York, 1970.
- [19] C.T.C. Wall, Classification problems in differential topology I, II, Topology 2 (1963), 253-272; III, Topology 3 (1965), 291-304; IV, Topology 5 (1966), 73-94.
- [20] C.T.C. Wall, Classification of (n-1)-connected (2n)-manifolds, Ann. of Math. 75 (1962), 163-189.

Dipartimento di Matematica, Università di Modena, Via Campi 213/B, Modena, Italy.

e-mail: cavicchioli@dipmat.unimo.it

Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italy.

e-mail: hegenbarth@vmimat.mat.unimi.it

Recibido: 9 de Septiembre de 1997