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P-convexity of Musielak-Orlicz function spaces
of Bochner type.

Pawel KOLWICZ* and Ryszard PLUCIENNIK**

Abstract

It is proved that the Musielak-Orlicz function space Lg(, X)
of Bochner type is P-convex if and only if both spaces La(u, i)
and X are P-convex. In particular, the Lebesgue-Bochner space
LP(p, X) is P-convex iff X is P-convex.

1 Introduction

Relationships between various kinds of convexities of Banach spaces and
the reflexivity of them were developed by many authors. The earliest
result concerning that problem was obtained by D. Milman in 1938 (see
|17]). Milman proved that every uniformly convex Banach space is re-
fiexive. D. Giesy {3] and R.C. James [9] raised the question whether
Banach spaces which are uniformly non-I} with some positive integer
n > 2 (i.e. B-convex spaces) are reflexive. Although there were some
affirmative results in particular cases, the answer in general case was
negative [10]. In 1970 C.A. Kottman [14] introduced a slightly stronger
than B-convexity geometric property implying reflexivity and called it P
-convexity. Ye Yining, He Miaohong and R. Pluciennik [22] proved that
for Orlicz spaces reflexivity is equivalent to P-convexity. The same re-
sult for Musielak-Orlicz sequence and function spaces were obtained by
Ye Yining and Huang Yafeng [23] and by P. Kolwicz and R. Pluciennik
[11] respectively.
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In this paper we consider Musielak-Orlicz function spaces of Bochner
type La(p, X). The question of whether or not a geometrical property is
inherited from X into La(u, X) is oné of the fundamental problems here.
Considerations of that type for various kinds convexities for LP(u, X)
were done by many authors ( see for instance [4}, [5], [15], [16], [19],
[20], [21]). In [12] it is proved that the Orlicz-Bochner function space
La(p, X) is P-convex iff both Ly(g) and X are P-convex. We showed
that the same fact is true in the case of Musielak-Orlicz sequence spaces
of Bochner type (see [13]). Although such result was expected, the proof
turned out to be nontrivial and essentially different from the previous
one in the case of Orlicz-Bochner spaces. Moreover, our result presented
below-and the main result from [13] have some interesting consequences.
For example, using this result in the case X = R, we get immediately the
characterization of P-convexity of Musielak-Orlicz spaces of real valued
functions and sequences. Such characterization was proved in a very
long and complicated way in the paper [11] and [23]. It is worth to
mention that some similar criteria for B-convexity of Musielak-Orlicz
spaces of Bochner type were obtained in [1].

Denote by A, R and R, the sets of natural, real and positive real
numbers, respectively. Let (T, X, 1) be a measure space with a & —finite,
complete and non-atomic measure u. Denote by L9 = LO(T) the set of
all g-equivalence classes of real valued measurable functions defined on
T.

A function ® : T x R — [0,00) is said to be a Musielak-Orlicz
function if ®(-,u) is measurable for each u € R, ®{t,u) = 0 iff u = 0

and ®(t,-) is convex, M&Mgntmﬂmmumo_md_ﬂt—uz — 0 as

u — 0 for p-a.e. t € T. Define on L0 a convex modular I3 by

fe(@) = [@(t2()) dp
. T

for every z € L°. By the Musielak-Orlicz ;space L3 we mean
La = {z € LY : I3(cz) < oo for some ¢ > 0},

equippe& with so called Luzemburg norm defined as follows

Izl = 1nf{e >0: I (6) < 1}
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For every Musielak-Orlicz-function ® we define complementary func-
tion in the sense of Young ®* : T x R — [0, 00) by the formula

d*(¢,v) = il;](:;{u [v] — ®(t,u)}

foreveryve R and t € T.

We say that Musielak-Orlicz-function & sotisfies the Ag-condition
(write @ € Asg) if there exist a constant k¥ > 2 and a measurable non-
negative function f such that Is(f) < oo and

®(t, 2u) < kB(t, ) (1)

for p-a.e. t €T and every u > f(t).
For more details we refer to [18].

Now let us define the type of spaces to be considered in this paper.
For a real Banach space (X, ||| x), denote by LT, X), or just LY(x),
the family of strongly measurable functions f : T — X identifying
functions which are equal p—almost everywhere in T. Define a new
modalar I3 : L(X) — (0,00) by the formula

Ta(f) = [ B (2, 17 (8) 1)
T

for every f € LO(X). Let

La(w X) = {5 € L2X) s £ ()lx € Lo}
Then La(u, X) becomes a Banach space with the norm

£ =1IF Ol xlle

and it is called a Musielak-Orlicz space of Bochner type.

Linear normed space X is called P-convez if there exist € > 0 and
n €N such that for all 1, z2,...zn € S(X)

i;e};ngggn i — x5l x <2(1—c¢),

where S(X) denotes the unit sphere of X.
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The notion of P-convexity can be characterized as follows.

Lemma 1. A Banach space X is P—convez iff there ezist no € N and
60 > 0 such that for any elements z,z, ..., 2y, € X \ {0} integers iq, jo
can be found such that

o leilg Mool () 2omin (ool iz,
2 T Tealx tHlealx )

For the proof see [12] or {13].

Lip — Tjo

2

2 Auxiliary lemmas

To prove the main result, we need the following.

Lemma 2. Assume that ® and ®* satisfy the Ao-condition. Then for
every ¢ €(0,1) there are a measurable function h. : T — Ry with
Ip(he) < ¢, numbers a(e) € (0, 1) and v =v(a(e)) € (0,1) such that for
p-t.e. t €T the inequality '

@(t,”;”) < I?L[q)(t,u)%—@(t,v)] @)

holds true for every u 2 he(t) and |2| < a.
Proof. Repeating the same argumentation as in the proof of Theorem
1.3 from {7] and Lemma 1.1 from [2] it can be proved that the conditions

¢ € Ag and * € Aj imply an existence of a number £, > 1 and a
measurable function z : 7' — R such that [3(z) < oc and

0] (t, 52—111,) < %‘P(t,u)

for y-a.e. t € T, for every u > 2(t).

Take an arbitrary number ¢ > 0. We caun find a number A = A\, > 0
such that Js(Az) < §. Define

2 )& (¢, 21+ Due
Ak:{feT (1499 (130 + )

sup

: <15,
Az(t)<u<z(t) (I)(t:u) - }
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It is easy to verify that A; C A;; for every i € AV. Since 2y _, 0 as
u — 0 for p-ae. £ € T, ®(¢,-) is not linear in a certain neighborhood

o0
of 0 for p-a.e. ¢t € T. Hence (T \ | A;) = 0. Then the Beppo-Levi
i=1

theorem implies that there exists a number { = I, € A such thal

f B(t, 5(t))du < 5.
T\A
Define
he(t) = Xz(t)x 4,(2) + 2(t)xma,(t)-

Obviously Ip{he) < €. Moreover, denoting ¢ = £(e) = min{&;, 1+ %}, we
have

o (t, %u) < ~2~lé-¢(t,u)

for p-a.e. t € T, and for all u > h(t). Taking 2 number a = a(¢) € (0,1)
such that 1 +a < ¢ and putling v = v{a(c)) = z57 € (0, 1), we get

l+a 1 1
P (t, 5 u) <30 a)q)(t,u) S S (®(t,u) + ®{t, au))

~ 5= 7) (B(t,w) + B(t,0u)) Q
for p-a.e. t € T and for all u > h(t). Purthermore, the convexity of
&(t, ) implies that

2® (t, %ﬁu)
®(t, u) + P(t, au)
is a non-decreasing function of a for p-a.e. t € T and for all w > h(t).

Consequently, for every ap < a inequality (3) holds with the same ~.
Hence we obtain the thesis.

Moreover, the following two lemmas will be useful.

Lemma 3 (Lemma 3 in [11]). If & satisfies the Ag-condition, then
for every o € (0,1) there erists a non-decreasing sequence (BY) of
measurable sets of finite measure such that

M (T\ D Bgl) =0
m=1
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and for every m € N a number k%, > 2 can be found such that
D(t, 2u) < kp®(¢,u) (4)

for p-a.e. t € BY, and for every u > af(t), where f is from the Ag-
condition.

Lemma 4 (Lemma 4 in [11]). If & . satisfies the Ay-condition, then
for every € € (0,1} there exist a measurable function g : T — Ry end
ke > 2 such that

13(ge) <€ and ®(t,2u) < ke D(t, u) (5)

for p-a.e. t € T, whenever u > gg(t).

3 Main result

Theorem 1. Let ® be a Musielak-Orlicz function and let X be a Banach
space. Then the following statements are equivalent:

(a) La(p, X) is P-convez.

(b) Both Ly and X are P-convex.

{c) La is reflezive and X is P-convez.

(d) X is P-conver, ® € Ay and $* € As.
Proof. (a) = (b). Since the spaces Lg and X are embedded isomet-

rically into La(u, X) and P-convexity is inherited by subspaces, Ly(u)
and X are P-convex.

(b) = (c). Every P-convex Banach space is reflexive {see Theorem
3.2 in [14]). Hence Lg is reflexive.

(e¢) = (d). The reflexivity of Musielak-Orlicz function space Lg is
equivalent to the fact that ¢ € Ao and @* € Ay (see (8] ).

(d) = (a). Suppose that ® € As and ®* € Ag and X is P-convex.
Let ng be a natural number from Lemma 1. For every ¢t € T define

70 = max {ny (0,000},

where functions A 1 and g 1 are respectively from Lemma 2 and
Ing Ing
Lemma 4 with ¢ = 3-370. Hence Is(f) < 2—71,5. Put in Lemma 3 o = q,
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where ¢ is from Lemma 2. We have I3 (1f) < oo, because & € As.
Take a set By, from Lemma 3 with mg large enough to satisfy

1
o (z, %) dh < 5. (6)
T\Bg‘o 0

Let ! € N be such that
number k3, > 2 such that

< 2!, Then, by Lemma 3, there exists a

Bl

3 (t, %v) < (K2, Yo (t, )

for p-a.e. t € B, , whenever v > af(t). Putting

1
Ez u and @;;)_’ = B(a,mo) = Bmy,
we get
®(t,au) = B, ®(t, u) (7)

for p-a.e. t € B}, and for every v > f(t). Moreover, by Lemma 4, we
have

3 (t, —};v) < (ke)'®(t, v)

for p-a.e. t € T, and v > f(t), where k. = &

obtain

. Analogously, we can

®(t, au) = BO(t, u) (8)

for u-a.e. t € T, and for every u > L‘(}l

Now, we will show that there exists a number ry € (0, 1) such that
for any elements x1, %2, ..., £, of Banach space X and for p-a.e. t € Ty
we have

0 no no
¢ ts S @ t, A , g
Ejz:; ( y x) 9 ’"1; (& =il x) (9)

where Thy = {t eT: maxlgs,zo{]lx,-ﬂ x1 2 ﬂﬂ} .
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Take #1,Z2,..,2n, € X. Let k be an index such that x|y =
maxi<i<no{||€il x }. For the clarity of the proof, we will divide it into
two parts.

1. Suppose that there is iy € {1,2,...,ng} \ {k} such that

(ETR %
llzell x

Since ||zxlf > f-g'l > f(t) for p-a.e. t € Ty, by inequality (2), we obtain

3 (t, I (v EAPE: nzkux)

< 2= @ @ llal) + & (6 sl x)

Hence, by the convexity of ®{¢,-) for p-a.e. t € T, we get

Bk

i=1 =i
) -5 ( (& flea Il x) + @ (¢ el x))

iy — Tk

_2—

1 np

<z Z‘Iv(t il ) — —(no<1> (¢ Nzl x))

ng

Zq’ (& f=ill x)

_ng—1 I
e il e )Zmn i1x) (10)

for y-a.e. t € Tyy.

I1. Assume that for all ¢ # k we have

il
leelly = ()
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Then ||lz;|| > 0 for every i # k. Let ip, jo be from Lemma 1. We may
assume that

< lzioll x < }_ (12)
Thlx ~ @

Really, otherwise we have

][:r,-OHX min {l|lzi |y, |z :nl:;} min {||z; ]y . |z ,c“;}

lzsolix = max (=il Tziolly) = llll x

a >

which contradicts to inequality (11). Hence, applying Lemma 1 and
inequality (12}, we get

Tig — Tjg

2

l4+a

) < (1 _ 2%a ) ([ENI ;t2 lw;-gu*_

Therefore, by the convexity of ®(¢,-) for p-a.c. t € T, we obtain

Je

Fig — gy

2

) < %(1 —a) (@ (t, [zioll ) + @ (& llziol 1)), (13)
X

where a = f‘_‘f_'; € (0,1). Consequently, by inequalities (13} and (8), we
have -
> e (+f237,)
i=1 j=1i X
<

S3 @t llmill) = 5 (@ heolx) @ (& llzs )
i=1

no— 1 2
< 02 > @ (4 llwillx) — a® (¢ a |zl x)
i=1

ng— 1.1 af
< - W:ﬁ— ("0(1) (”I’-[IX))

i=1
llx) = Z¢(t sl x)
_mo—1/7  2ap .
T2 (1 no(no — 1) );4’(lt sl ) (14)
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for y-a.e. t € Ty. Define-

max {1 7 1 205 }

r1 = ma -—— - ——.

! ng(no — 1) no(no— 1)

Combining inequalities (10) and (14), we get inequality (9). Repeating
the same argumentation as in the proof of inequality (9), a pumber
rg € (0,1) can be found such that the inequality

no no
Sy e(n]Es) )<
i=1 j—i

holds for every zy,zx9, ..., zn, clements from Banach space X and for p-

a.e. t € B satisfying maxi<icno{l|zil x} = f(t). Using (7) in place of
(8) one can find that (15) is true with

WZ¢U%M (15)

rgimax{l— i 1 2 fmy }

no(no— 1)~ ngfmg=1)

Let f1,.., frg € S (L‘I’ (1, X)) Define
E = {t €T : Z@(t, Nfi(8)lx) = nocp(t,f(t))}.
i=1

Obviously 1g}asyfcm{]|f,-(t)nx} > f(t) for every t € E. Divide the set E

into two following subsets:

B = {re B max (101 > L2,

Ft
me={tep: 100 < max (15010 < 22},
Next decompose the set Eo into two subsets Eg) and Ess defined by

Eoy = EsnN B'?nu

Egg = Eg \ Bmo
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By inequalities (9) and (15}, we have

35 (2952 )< () Socunano a0

i=1 j=1
for p-a.e. t € E1 U Eg1, where r = max{ry, ro}. Obviously r € (0, 1).
Moreover, by the definitions of the set £ and the function f, we have

ng _ 1
> Is (finr\E) <3 (17)
i=1
Now, let t € E'22. Then, by inequality (6), we have
no 0
S halm) =3 [ ®EIn0lx)
fe=] :':11:-'.2\3’%“:1
< [ not (1 max UAOIx}) do
E?\Bveno
< / no® (t, I%) du < [ no® ( f(t)) u < 2._ (18)
E:\Bg, T\B2,

Hence, by inequalities (17) and (18), we get

o e ng
S Iy (fiXT\(EmEn)) => Iz (fiX‘T\E) + > s (fixpyn) < 1
im o1 =

Since ||fi]| = 1 for i = 1,2,...n9 and @ €Aj, we have Is (fi) = 1 for
i=1,2,...,ng Consequently,

no —
> Ia (fixgumn) 2 no— 1. (19)
=1

Therefore, by inequalities (16) and (19), we have

ZZL}( (fi— )=

i=1 j=1i
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ng o o o
= ZZLI» (% (fi — f3) XT\(EluEgl)) + ZZL} (% (i — 1) XE:UEm)

i=1 j=t i=1 j=1

1 ng oL r {ng no
S R_O. ( 2 ) ;I@‘ (f'IXT\(EIUEZI)) + ;5 ( 2 ;I{b (fiXEluEzl)

= n_lo_(nzo) (."‘ZD fq, (fi) - f:fds (.fiXEluEzl))

i=1

o
r no T
+_(2) E Iy (fiXE1UE21)

ng

1—+00
(7:-20) (1 _ _no__ZIq: (fiXE1UE21))

i=1

<) -ttt < (5) o,

where p = gl_—r). So, there exist 41,77 € {1,2, ..., np} such that
r 9 - ) +J 7=y H

Il

- /1 '
Y (5 (fil - f,h)) <1 - P-
Finally, by the Ag -condition for ®, we obtain that

1
||§ (fil - fjl)

<1-gq(p),  0<q(p) < Ut [6]).

Thus, by Lemma 1, the space Lg(u, X) is P-convex. This completes the
proof.

Theorem 1 is a generalization of Theorem 1 from [12]. Moreover, the
following characterization of P-convex Musielak Orlicz spaces of real
functions Lg, proved directly in [11] in a very complicated way, is an
immediate consequence of Theorem 1.

Corollary 1. The following statements are egquivalent:
(¢) La is P-conves.
(b) Lg is reflezive.
(c) ®€éz and * € Ag.
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Proof. It is enough to apply Theorem 1 with X = R.

Corollary 2. The Lebesgue-Bochner function space LP(u, X) (1 < p <
00) is P-conver iff X is P-conver.

Proof. The Lebesgue space LP is a Musielak-Orlicz space generated
by the Orlicz function @ (¢,u) = |u|® for every t € T satisfying all the
assumptions of Theorem 1.
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