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A-realcompact spaces.

Jorge BUSTAMANTE, José R. ARRAZOLA and Ratal ESCOBEDO

Absiract

Relations between homomorphisms on a real function algebra
and different properties (such as being inverse-closed and closed
under bounded inversion) are studied.

1 Introduction and notation

By a function algebra A on X we mean a family of real-valued functions
on X such that: 1) A is a linear algebra with unit under operations
defined pointwise, 2) A separates points on X and 3) A is closed under
bounded inversion, that is, if f € A and f > 1, then + € A. We

denote by Hom(A) the family of all A~-homomorphisms, that is, non null
multiplicative real linear functionals on A, endowed with the Gelfand
topology.

Hom(A) has been intensively studied when X is a completely regular
Hausdorff space and A is C(X) (see [12]). In recent years different pa-
pers have been devoted to study homomorphisms on some subalgebras
of C({X), for example algebras of differentiable functions have been con-
sidered in [1]-[5], [14] and [15]. As can be seen in the quoted papers, in
studying function algebras frequently one needs results asserting that a
homomorphism is the evaluation at some point of the supporting space.
This paper is devoted to elaborate a general theory related with this
subject.
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2 Single-set evaluating algebras and
A-realcompactness

2.1.- Let X be a completely regular Hausdorff space, Y C X
and f:Y — R a continuous map. If f has a continuous extension to
p € X \'Y, this extension will be denoted by j:(p) For f : X — R,
Z(f) ={z € X : f(z) = 0}). Aset S CY is a zero set if there exists
g € C(Y) such that S = Z(g) and 5% is the closure of § in X. As usual
BX denotes the Stone-Cech compactification of X.

2.2.- The elements of any function algebra can be considered as uniformly
continuous functions on X in the following sense. Denote by A the
subalgebra of all bounded functions in A. Let Uas be the uniformity
generated on X by Ay, that is U4 is defined by the pseudometrics

de(z,y) =| flz)— f¥) |; Fe€Apz,yeX.

Let 74 denote the topology induced by U4 on X. Since A separates
points in X , (X, 74) is a completely regular Hausdorff space. All topo-
logical notions on X are assumed in the 74 topology.

Denote by X4 the completion of the uniform space (X,U4), then
X 4 1s a compact Hausdorff space and X can be considered as a dense
subspace of X 4. It is known that each f € Ap has a unique continuous
extension f to X4. Set A = {f 1 f € Ap}. A separates points in X 4
({7]) then, by the Stone-Weierstrass theorem, A is a dense subspace of
C(X4) in the uniform norm.

2.3.- The following result from [7] will be used in the sequel:
Theorem. Let A be a function algebra on X, then

(a) p € Hom(Ayp) if and only if there exists a (unique) p € X4 such
that @(f) = f(p) for every f € A. Moreover X 4 is (homeomorphic
to} the mazimal ideal space of Ap;

(b) ¢ € Hom(A) if and only if there exists a (unique) point p € X 4
such thatl, every f € A has a finite continuous extension f(p) to
p and p(f) = f(p) The set I{A) of all such p, with the topology
induced by X 4, is (homeomorphic to) the mazimal ideal space of
A,
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2.4.- In what follows we associate to a given function algebra A the
spaces X 4 and J(A) defined above. Moreover, we identify Hom(A) with
I{A) and X with a (dense) subset of X 4. Thus we have the inclusions,

X CcI(A)C Xa.

In studying properties of homomorphisms it is important to have
conditions to recognize points in I(A) \ X. It is easy to verify that for
a point p € X 4 \ X the following assertions are equivalents:

(a) p € I(A);

(b) for every f € A, there exists a net {z,} in X such that z, — p
and f(z)) is bounded;

(c) for every f € A, there exists a neighbourhood V of p in X 4 such
that f(V N X) is bounded.

2.5.- We need some definitions: a function algebra 4 on X is called
single-set evaluating if, for every ¢ € A and each f € A, there exists
z € X such that »(f) = f(z). A is called inverse-closed if for every
f € Asuch that Z{f) =0, ]1' € A. Tt is easy to prove that inverse-closed
algebras are single-set evaluating. There exist single-set evaluating al-
gebras which are not inverse-closed |6].

2.6.- Given a nonempty set X, (A, B) is called a subordinated pair 7]
on X if: i) A and B are function algebras on X; ii) B C A; iii) every
homomorphism on B has an extension to a homomorphism on A.

2.7.- Theorem. For a function algebra A on X the following conditions
are equivalent:

(a) A is single-set evaluating;
(b) Forallpe I{A)\ X, if f€ A and 0 < f <1, then f(p) £ 0;

(c) (RA,A) is a sudordinated pair, where RA the smallest inverse-
closed algebra on X containing A.
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Proof.

i)

ii)

i)

iv)

Suppose that {(a) holds but (b) does not. Fix p € T(AY\ X and
h € A such that 0 < A < 1 and A(p) = 0. Since evaluation at p is
a homomorphism on A, A is not single-set evaluating,

Suppose that (b) holds and A is not single-set evaluating. Take
@ € Hom(A), p € I{A) and k € A such that ¢(g) = §(p) for every
g € A and (k) # k() for all z € X. Set h(z) = (k(z) — ¢(k))*

and f(z) = 525, Then f(p) = ¢(f) = 0 and 0 < f(z) < 1. This
contradicts (b). :

For {a) implies (c) see lemma 16 of {6].

Since RA is inverse-closed it is single-set evaluating. If (RA, A) is
a subordinated pair, then A is single-set evaluating.

2.8.- Recall that a completely regular Hausdorff space Y is realcompact
[12} if every C(Y )-homomorphism is the evaluation at some point pin Y.
This concept can be generalized in the following way: if A is a function
algebra on X, X is said to be A-realcompact if every A-homomorphism
is the evaluation at some point p of X. A similar notion was used in [8],
[16] and {17].

2.9.- Remarks.

1)

2.10.-

If A, = A, then X is A-realcompact if and only if X is com-
pact (in the 74 topology}). When X4\ X # @ we can obtain
A-realcompactness only when A contains an unbounded function.
In particular if (X, 7) is a pseudocompact noncompact, completely
regular Hausdorff space and A == C(X), then X is not
A-realcompact.

Notice that if A and B are function algebras on X, B C A, with
X A-realcompact, then X is B-realcompact if and only if (A, B)
is a subordinated pair.

Proposition. Let A and B be function algebras on X with B

uniformly dense in A. Then (A, B) s o subordinated pair.
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Proof. Since By is uniformly dense in Ay, the spaces C(X 4) and C(Xg)
are isomorphic, thus by the Banach-Stone theorem (see [12]) X 4 and X
are homeomorphic. We may identify X 4 and X g. Fix a homomorphism
w on B and a point p € X4 such that for every f € B, o(f) = f(p).
We will finish our proof by showing that every g € 4 has a (unique)
continuous finite extension to p. Fix g€ A and f € B such
that sug | f(z) — g(z) |< 1. There exist a neighbourhood V of p in X 4
T€

and a positive constant M such that for every y € VN X, | f(¥) |[S M.
Then for every y € VN X, | g(y) |< M + 1, now the assertion follows
from 2.4.

In [10] (proposition 1.8) was proved the following fact: if X is a
realcompact space and A C C(X) is a subalgebra with unit, closed
under bounded inversion, uniformly dense in C(X}, then Hom(4) = X.
Our next result, as an application of proposition 2.10 (see remark 2.9.2),
provides a natural extension.

2.11.- Corollary. Let A and B be function algebras on X, BC A. If B s
uniformly dense in A and X is A-realcompact, then X is B-realcomnpact.

2.12.- Theorem. [et A be a single-set evaluating algebra on X. Then
X is A-realcompact if and only X is RA-realcompact (see (c) in 2.7).
Moreover if A is inverse-closed, then X is A-realcompact if and only if
for every p € Xa \ X, there exists

feAy 0<f<1, suchthat f(p) =10. (1)

Proof, The first part follows from theorem 2.7, the remark 2) in 2.9

and the construction of RA.

For the second part suppose first that X is A-realcompact. Suppose
that p € X4 \ X. Taking into account that p ¢ I(A) = X, there
exists f € A\ Ap such that for every net {zx} in X, with x5 — p,
f(x») is unbounded (see the last assertion in 2.4). Then h(p) = 0 and

0 < h(z) £ 1for z € X, where h(z) = %ﬁ'{%

Suppose now that for all p € X4\ X there exists f € A such that
0 < f <1and f(p) = 0. By defining g(x) = -(1;7, we have that g € A
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and for every net {z,} in X, z) — p, {g(z,)} is not bounded. This
completes the proof.

2.13.- Remark. In general condition (1} does not imply A-realcompact-
ness. For example, let X be the real interval (0,1} and A the restriction
of continuous functions in [0,1] to (0,1]. In this case the condition holds
but X is not A-realcompact (notice that X4 = [0,1)}).

2.14.- Theorem. Let A be a function algebra. Then X 4 is the Stone-
Cech compactification of X if and only if for any disjoint zero sets S
and T in X, there exists f € A, such that

0<7<1, f(S)={0}and f(T)={1}. (@)

Proof. If A satisfies (2) by theorem 11 of [11], Ap is uniformly dense
in the space Cy{X) of all real continuous bounded functions on X, then
BX = Xa.

On the other hand if 83X = X 4, 4, is dense in Cp(X ) and the result
follows again from theorem 11 of [11}.

From theorems 2.12 and 2.14 we obtain a proof of the following result
due to S. Mréwka {proposition 3.11.10 in [9]).

2.15.- Corollary. Let X be a completely regular Hausdorff space. Then
X is realcompact if and only if for every p € X \ X, there exists f €
C({X) such that 0 < f(z) < 1,z € X, and f(p) = 0.

The next result extends Theorem 2 of [15]. Jaramillo presented in
{15] different examples of functions algebras for which Theorem 2.16 may
be applied.

2.16.- Theorem. Let us suppose that o function algebra A on X satisfies
the following conditions:

(a) for every f,g € A and p,e > 0, if the sets

P(f) = {z | f(x) |< €} and Qu(g) = {= | 9(z) [2 p}
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are not empty and disjoint, there exisis h € A , 0 < h <1, such
that

h(Pe(f)} = {0} and h(Q,(9)) = {1}

(b) given an open (in the 7o topology) cover {Hn} of X , such that
Hn C Hpyy, and f : X —R, if there exists a sequence f, in A
such that fp |, = f |H., then f € A;

(c) for every p € Xa\ X there exists g € C(X 4) which satisfies (1).
Then X is A-realcompact.
Proof. Pet © be a homomorphism on A. There exists p € X 4 such that
o(f) = f(p) for every f € A. We will show that p € X.

Suppose that p € X4\ X, take g € C(X 4) such that 0 < ¢ < 1 and
g(p) = 0. Set

1
En={z € Xa:g9(z)> b n=12,..

We may suppose that each Ep is not empty. Since A is dense in
C(X 4), there exists a sequence {fp} in A such that

a 1 “ R 1
| fn = ¢ lloo< P and || fr = fr41 llo< T3’

where || . }{oo denotes the sup norm in C(X4). Set
2 1
Fo={zx € Xa:| falz) |2 5;1—}
It is easy to prove that forn > 2, En—3 C Fn C En41.

Now we have that (X U En)=NX U Fn, thus {Fo, N X} is
nelN nelN
an increasing open cover of X. Foreachn > 2 takegr, € A,0< g0 < 1,

such that )
gn(FSpi2[ 1 X) = {1} and gn(Fan [ X) = {0}.

Notice that §n(p) = 1, thus ¢(gn) = 1. The function f(z) = 3  gnlz),

n=2

L]
z € X is well defined. Set kn(z) = ¥ gj(z). Since kp, € A, f € A.
) §=2
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It is easy to see that for every z € X and each n, kn(z) £ f(=x), then
n
o(f} = wlkn) = 3 w(g;) = n (see 1.4 of {13]), this says that @(f) = oo,
F=1
a contradiction.

2.17.- Theorem 2.3 gives a representation of the real maximal ideal of A
but, as the following result will prove, we can not expect to obtain a one
to one relation between z-ultrafilters and maximal ideals. The notion on
z-filter is used as in [12]. An ideal in 4 is a proper ideal. For an ideal I,
ZN={z(f):fel}. Jisazfiter J7'={f € A: Z(f) € J}.

2.18.- Theorem. Let A be a function algebra which satisfies (2). The
following assertion are equivalent:

(a) for each mazimal ideal I in A, there exists p € X such that
—BX
I={fed:pez(f) }
(b) for each mazimal ideal I in A, there exists a mazimal ideal J in
C(X) such that 1 C J;

(c) for each mazimal ideal I in A, Z(I) is a z-ultrafilter;

(d) A is inverse-closed.

Proof. Since A satisfies (2), for every zero set P in X there exists f € A
such that Z(f) = P.

The assertions (a) implies (b) and (b) implies (a) follow directly from
the Gelfand-Kolmogorov theorem ([12], 7.3).

(b) implies {c) Fix maximal ideals I and J in A and C(X) re
spectively, with I C J. Z;l(Z(J)) is an ideal in A, Therefore, I =
Z7N(2(J)). Since Z{I) = Z(J), Z(I) is a z-ultrafilter.

(c) implies (b) Fix a maximal ideal I in A, since Z({) is a z-ultrafilter
J={feC(X):Z(f) € Z(I1)} is a maximal ideal in C(X) containing
I.

(c) implies (d) Take f e A such that Z(f) =0 and sect
I'={gf:g€ A}. Since f € I, I can not be an idcal, thercforc 7 = 4.

(d) implies (c) Fix an ideal J in A. Since A is inverse closed § ¢ Z (/).
Ou the other hand, if f,g € Tand h € 4, Z(f2+¢%) = Z(f)NZ(y) and
Z(f) C Z2(fg) = Z(g).
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3 The sequentially evaluating property

3.1.- A function algebra 4 on X is called sequentially eveluating if, for
every ¢ € Hom(A) and each sequence {f,} in A , there exists £ € X such
that @(fn) = fu(z), for n = 1,2, ... This property has been intensively
studied in [2]. As far as we know the use of this property goes back to 5.
Mazur (see the note to statement A of [8]). If a function algebra 4 on X
has the sequentially evaluating property, then every homomorphism on
A is sequentially continuous on Ay, where A, is the algebra A endowed
with the pointwise convergence topology. This fact was noticed for some
particular algebras in [2] and [6].

3.2.- Denote by {4 | JC(X 4)| the closed under bounded inversion algebra
on X generated by A and C(X 4). By setting

n
A=) frge: fr € A, gx € C(X4),n € N},
k=1

we have that [AJC(X4)] = {h1/h2: h1,ho € A1, Ry 2> 1}

3.3.- Theorem. Let A be a single-set evaluating algebra on X. The
following conditions are equivalent:

{a) A has the sequentially evaluating property.
(b) Each zero set in X4\ X does not meet I{A).
(c) [AUC(X4)] is single-set evaluating.

Proof. Suppose that (a) holds and (b) fails, then there exists a zero set
P C X4\ X such that PN I(A) # 0. Fix ¢ € P[I(A) and let ¢ be
the evaluation at g. Since P is a zero set, there exists f € C(X4) such
that P = Z(f). Since A is dense in C(X 4) for the uniform norm, there
exists { fn} in A, with fn — [ uniformly on X 4. We have thal ¢{f,,) =
fala) — f(g) = 0. Set gn = fn — w(fn) € Ap. According to the above
arguments g, — f uniformly on X 4 and ¢(g») = 0. By the sequentially
evaluating property there exists 2o € X such that ¢(gn) = gn(zo) = 0.
This says that lim gn(z0) = f(zo) = 0 and we have a contradiction.

(b} implies (c) Suppose that (b) holds and let ¢ be a homomorphism
on [AUC(X4)]. We will prove that for each h€[AUC(Xa)l,
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Z(h — p(h)) # 0. Since v is a homomorphism on A (C(X4)), there
exists p € I(A) (¢ € C(X4)) such that, for each f € A (g € C(X4))
o(f) = f(p) (w(9) = §(q)). Since Ay C ANC(Xa), for cach f € Ay,
f(p) = f(q). Taking into account that A separates points in X 4, we have
that p = ¢q. Nowif f € (AJC(X4)),set g5 = f~w(f). HZ(g)N X =0,
then Z(g)(1(A4) = 0 and this is not posible (p € Z(g) NI(A)).

Since for every f € A, ¥ f o f)) has a continuous extension to X 4,
we have that for any h € A1 (see 3.2), Z(h — @(R)) # 0. In fact, if
fl:"-!.fﬂ. € A and g1,--28n € C(XA)3

@;éz(?‘( — Ul (o))

=T Uk e LA

& 2(3 (e = p(i)ok + o (e) ok — olax)
k=1

=Z(D_ frax — o> frar))
k=1 k=1

Now if ki, ko € 4] with h2 > 1, then
hy h1
Z(Zl
hy P
= Z(ip(h2}h1 — p(h1)he — o(p(h2)hy — p(h1)h2)) # 0.

= Z(p(ho)h1 — p(h1)he)

(c) implies (a) Suppose that {A{JC(X4)] is single-set evaluating.
Fix ¢ € Hom(A). There exists p € I(A) such that, for each f € 4,
#(f) = f(p). Let us prove that ¢ may be extended to a homomorphism
@ on [AJC(X4)). It is sufficient to prove that every function h €
[A|JC(X a)] has a (unique) continuous extension to p.

n
Suppose first that h = }: frgr, with fr € 4 and g € C(X4), for
E=1,2..,n Set kh(p) = Z Fe(P)ge(p). We have that, for any net

{za}aea in X, such that z — p in Xa,

lim A(xy) = ; limn fi{zxy) lim ax(za) = 3 Fi(P)dnlp) = hip).

k=1
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Finally, if k = %;— € [AUC(Xa)]. with ki, ho € A1 (ko 2> 1), set

hip) = -}i:—((ﬁ))- Then, by defining «(k) = h(p) for & € [AUC(XA)], we

have that ¢ € Hom{[A|JC (X 4)]) and @(f) = ¢(f) for [ € A.
Now, fix a sequence {fn} in 4. Set gu(z) = 2,,%’%? and

g = Z gn. We have that § € C(X4). Let us prove that ¢(g) = 0.

n=1

i
In fact, notice that the sequence { E gk} converges uniformly to g and

Z gk < g. Then, given € > 0 and n such that || Z gk — 9 llo< € it
follows that

0=0(} gx) <ole) =vlg— Y_gr) Sep(l) =

k=1 k=1

Taking into account that [AJC(X 4)] is single-set evaluating, there
exist zg € X such that 0 = ¢(g) = g(zg). Therefore ©(fn) = fn(zo} for
each n.

3.4.- Remark. If A is an inverse-closed algebra on X closed under the
uniform convergence, then |A|JC(X4)] = A, and A has the sequential
evaluating property. This assertion can be obtained from the result
of S. Mazur quoted in [8] and gives a proof of following fact: X need
not be A-realcompact when A is a sequentially evaluating algebra on
X. For certain class of algebras the sequentially evaluating property
implies A-realcompactness (for example if X is a Lindelof space in the

T4 topology), this just was the main reason for studying this property
in [2].

The last proposition in this section can be proved as theorem 2.16.

3.5.- Proposition. If a function algebra A satisfies conditions (a) and
(b) in theorem 2.16 then A has the sequentially evaluating property.

Acknowledgments. The authors thank the referee for several sugges-
tions which have been incorporated into the final version.
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