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Abstract
A nonreduced order of a Ting A is a subset o satisfying i) a+a C
a, ii) @-a C e ili) —a Ua = A (without any restriction on
—a M a). The purpose of this paper is to organize these objects
into a topological space or spectrum, to show relations to existing
concepts, to analyze some examples, and to motivate our inquiry.
by questions of multiplicity.

1 Nonreduced Orders

The concept of order in a field and its generalizations to commutative
rings play a central role in real algebraic and semialgebraic geometry.
This paper studies another such generalization, that of a nonreduced
order of a ring. (By ring we understand without further mention com-
mutative ring containing 1/2.) The nonreduced order seems to be the
weakest possible notion of total order in a ring that is compatible with
the ring structure. By this we mean the following: each total order on
a ring A is determined by the subset o consisting of elements which
are nonnegative in the order. (We freely use the single term “order” or
more explicitly “nonreduced order” to refer either to this subset or the
relation > induced on A according to & > a if and only if b~ a € a.)
This nonnegative cone should have some obvious properties. It should
be closed under addition and multiplication and contain all squares. In
other language it should be a “quadratic semiring” or “preordering”.
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Also for the order to be total it is necessary that ~a U a = A. What
seems less obvious is that these conditions alone suffice to give an inter-
esting class of objects. The purpose of this paper is to support this claim
by introducing a corresponding spectrum, showing relations to existing
concepts, analyzing some examples, and motivating our inquiry by ques-
tions of multiplicity. (Although the unadorned term “order” has other
uses in ring theory, our use here is distinet enough to be unambiguous
even if we omit the qualifier “nonreduced”.) ¥ we were to require also
that the elements order-equivalent to 0 (that is, which are both > 0 and
< 0) form a prime ideal, we would arrive at the concept of prime cone or
prime ordering and the related fundamental notion of the real spectrum
of a ring Spec.(A) [2]. However, our aim is to stop short of this with
the following weaker definition.

Definition 1.1. An order of a ring A is a subset a satisfying

JataCa

it)a-aCea

i) —aUa = A.

We note that properties ii) and iii) together imply that o« contains
the squares. The book [3] surveys a number of spectra associated with
ordered structures such as the Keimel spectrum for F-rings.

It is often convenient to regard A itself, which satisfies these condi-
tions, as the improper order. All other orders we consider proper. It is
easy to see that an order is proper if and only if it does not contain -1.
The support of an order supp(a) is the ideal —aNa. We call elements of
this subset “order-equivalent to 0”, a property which we indicate by ~ 0.
The term “nonreduced” refers to the quotient ring A/supp(a), which in
general contains nilpotents. However, if « is an element of the real
spectrum then this ring is reduced. Thus, a more accurate term would
be the (absurd) “not-necessarily-reduced order” according to which the
real spectrum is the subset of prime orders. The onder spectrum of A,
denoted by Ord(A), is the set of proper orders of A.

We equip Ord(A) with the ordinary topology using the subbasis of
principal basic closed sets of the form

{a | 2 € @, & a proper order }

for a € A. We understand constructible sets to be members of the
algebra of sets generated by the principal basic sets and freely define
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sets by inequalities according to {e > 0} = {a | a € a} and {a >
0} = {a | a € @,a ¢ ~a}. We note that there is a certain danger
in becoming too comfortable with the inequality symbolism since here
a > 0 and b > 0 do not imply ab > 0 but only ab > 0. However algebraic
operations respect in a familiar sense the weak signs > 0 and < 0.

We also have the finer constructible topology for which the con-
structible sets form a subbasis. It is easy to see that constructible sets are
finite unions of sets of the form {f; = 0,---, fr, = 0,91 > 0,---, g > 0}.
This is the simplest form in the order spectrum as opposed to the real
spectrum, where several equalities can be replaced by a single degenerate
equality. But in general,

{(fP+=01={f2=fg=g?=0} £ {f = g = 0}.

Open constructible sets are defined as finite unions of sets of the form
{fi>0,---, fr, > 0} and closed constructibles are finite unions of sets
of the form {f; > 0,---, f, > 0}.

Why study nonreduced orders? Our motivation is to obtain intrin-
sically semialgebraic numerical attributes of points, sets or functions by
using information residing in nilpotent elements. Crudely put, in the
study of varieties we know how to distinguish the equations z = 0 and
2% = 0. We wish, at the very least, to give analogous distinctions in"the
study of inequalities for distinguishing z > 0 and 2 > 0. In algebraic
geometry we start with algebraic data such as the coordinate ring A(V)
of an affine variety V. From this we strive to derive geometric informa-
tion. The key device of the modern abstract approach is to assemble
directly from A algebraically defined images of V which articulate V
for different purposes with varying degrees of explicitness. Here, there
are many possible choices: prime spectra, maximal spectra, real spec-
tra, valuation spectra etc., each depending upon which features are to
be brought into view [5]. In the same spirit, in defining nonreduced or-
ders and assembling them into the order spectrum we make yet another
decision about how much and what sort of algebraic information is to
be recast in geometric form. In this we have in mind a kind of loose
comparison with the situation of schemes, which has both positive and
negative aspects.

We know from complex geometry that it is important to study schemes
both as geometric objects and as objects equipped with certain algebraic
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data. The latter point of view distinguishes sets which are geometrically
the same but which differ significantly in the data which define them and
is vital for assigning notions of multiplicity to subsets. One device for
this is the closed subscheme [6]. In this approach the underlying sets can
be the same but are equipped with different sheaves that reflect differ-
ences in the defining algebraic data. If we were to view V as not just the
set of its points but as the set of its closed subschemes, we would shift
our attention from the set of prime ideals of 4 to the set of all ideals.
This set is probably too large in most situations to view geometrically.
The idea of the closed subscheme amounts to taking these one at a time,
foregoing further geometrization by using only prime ideals as points and
retaining other information in algebraic form in the associated sheaf.

In contrast, and somewhat in the face of this warning example, we
propose enlarging the set of real points. We are emboldened io take
this step for several reasons. First, in special cases the order spectrum
appears to be an interesting geometric object. Second, in the real case,
which requires inequalities as well as equations, the natural counterpart
of the set of all ideals seems to be the complete set of preorderings.
Hence, our notion of order spectrum seems to have no obvious counter-
part in the case of schemes. In fact, for very simple rings it is possible
to geometrize all preorderings collectively. However, for rings of geomet-
ric interest this set is typically huge, even grossly infinite-dimensional.
Finally, continuning to reckon size, the order spectrum gives us instead,
surprisingly small objects of intermediate size. We will find that Ord(A4)
has a natural fibration over Spec,(A) and, again comparing with affine
schemes and ideals, that we are geometrizing a set related to a highly
restricted subset of the ideals of A.

First we develop some algebraic properties of Ord(A). Then, to fix
our ideas, we use these properties in sections 3 and 4 to determine and
analyze some simple order spectra. Section 5 gives mainly topologi-
cal results, especially relating the order spectrum to the real spectrum.
Section 6 treats the special case of finite dimensional algebras over the
reals.
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2 Algebraic Properties

Definition 2.1. If o and 8 are orders and o C 8 then we say 5 15 a
specialization of a and o is a generization of 3. Ifa, b€ a andz € A
and z(a 4 b) € ¢ = za,zb € ¢, then g is an a-absolutely-convez ideal. If
a C B and a(B) > 0 then a(a) > 0.

Theorem 2.2. Let o be a nonreduced order of A, ¢ = supp(a) and
p =r(q). Then:

i) If ab € g then a? € ¢ or b2 € q. In particular p is prime.

i) g i3 an a-absolutely-convex ideal.

iti) 8 is a proper order extending o if and only if there exists a proper
a-convex ideal, I, such that 8 = a + I and supp(B) = 1.

iv) The set of nonreduced orders eztending o is linearly ordered by
inclusion. The support of o is the smallest a-convex ideal. Therefore
there is a one-to-one correspondence between o-conver ideals and spe-
cializations of a.

v) The function

g:ra—at+p

maps Ord(A) to Specy(A) and induces a fibration of Ord(A) over Specr(A)
by trees of nonreduced orders partially ordered by inclusion.

vi) ¢(a) is the smallest element of Spec,(A) containing a.

vii) If A is Noetherian then Ord(A) satisfies an ascending chain
condition.

Proof.

i) If ab € supp(a) then by replacing @ or b by —a or —b if necessary,
we can suppose that a and b € o. Then, since « is total, by permuting
the roles of @ and b if necessary we can suppose that a —b € e. Then
ab~b2ca=>-bea-abCat+aCa Hence % € —aNa = q.
Hence if ab € g then a? € ¢ or b¥* € gq. Now suppose ab € p. Then
akb"€q=>a2"€qorb2keq=>ae;porb€p.

ii) If z(a + b) € ¢ then since o is a total order we can assume that
z € a. Then za,zb, ~za — zb € @ = —~za,—zb € a = za,zb € g.

iii) Suppose a C B. Then set I = supp(B). I is certainly proper. If
b€ P\ athen b€ —a C —F = b € supp(B). This shows that §=a +1I.
To see that I is c-convex, suppose that ¢ > b > 0 relative to o and
a € I. Then these inequalities hold in 8 and supp(f) is B-convex. So,
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b € I. Conversely, it is elementary that o -+ 7 is an order. Clearly,
I C supp(a + I). For the reverse inclusion, suppose z € supp(a + I).
Then z = e+ z and —2 == b+ y, where a,b € o and z,y € I. Hence
a+b € I and by convexity a,b € I. Hence, supp(a + 1) C I. In
particular, o + 1 is proper.

iv) If 8 and A extend o then N 8 is also an order. Suppose, seeking a
contradiction, that 5\ B and g \B are each nonempty, containing elemeuts
b and b respectively. Then —b € ﬁ and —b € 3. Hence b — b € 8 and
b-be 8. Permutmg the roles of ¢ and B, if necessary, we can suppose
that b—b € BNAC 4B, which implies b € b+ 8 C ﬁ, a contradiction.
Hence, at least one of g\ 8 and B \ B must be empty, that is, either
BCBorBcCp

v) Let 8 = a + p. We show that p = supp(B). It is obvious that
p C supp(B). To establish the reverse inclusion suppose z € supp(8).
Then ¢ = a+r = —a’—r' where a,a’ € « and r,r’' € p. Hence, a+4' € p.
This implies {a + a’}* € g, which by a-convexity of ¢ shows a* € ¢ and
hence z € p. Thus supp(8) is prime and 3 belongs to Spec,(A). - If
¥ € Specr(A) and o € ¢~2(v) then by property iv) the set of orders
containing a is linearly ordered by inclusion. This gives Ord(A) U {A}
the structure of a tree with root the improper order.

vi) If @ C B € Spec,(A) then

a+p C B+ radical(supp(B)) = 8

vii) If A is Noetherian then by property iii) extensions of a require
extensions of support which satisfy the chain condition.

As is usual in the case of spectra, homomorphisms of rings con-
travariantly induce mappings of order spectra. However, part ii) of the
following shows that for surjective mappings the direct image of a nonre-
duced order is again an order with the caveat that it could be improper.

Theorem 2.3. If p : A — B is a homomorphism then:
i) ¢~ HOrd(B)) C Ord(A);
i) If ¢ is surjective then (Ord(A)) C Ord(B) U {B}.
Proof.

i) If B € Ord(B) then & = ¢~1(8) is a subsemiring of A. Also
A= YB)= ¢ (-BUB) = (~B)Up 1(B) = ~aUa. If & were
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improper then —1 € a would imply ¢(~1) = —1 € 3 contradicting that
3 is proper. Hence a is a proper order.

ii) If « € Ord(A) then § = (o) is a subsemiring of B. Also,
B = p(A) = p(—aUa) = p{—a) Up(a) = —BU B. Hence 3 is an order,
possibly improper.

The functor Ord has very simple behavior with respect to direct
sums.

Proposition 2.4.

Ord(A® B) = {Ord(A) ® B} U {A & Ord(B)}.

Proof.

If y € Ord(A & B) then (—1,1) or (1,—1) € ~. If the former, then
(=1,1)(1,0)2 = (-1,0) € 5. By theorem 2.3 ii) the projection =}y
on A is an order, in this case improper, that is, w1y = A. Similarly
wgy = B € Ord(B) U {B}. Also, the squares (1,0) and (0,1) € v which
implies A @ 8 C +. Since y C A @ § C v we conclude that vy = A & 8.
Finally, if 8 were improper then v = A & B would be improper also,
contrary to hypothesis.

Next, our main concern is to show that various operations on proper
orders lead again to proper orders. By an ordered ring we mean a.pair
(A, a) consisting of a ring A and an element o of Ord(A4).

Definition 2.5. Let (A, a) and (B, 3) be ordered rings. Let p: A — B
be a ring homomorphism. Define 8, the contraction of 3, to be ¢~ ()
and of, the extension of a via ¢, to be the semiring in B generated by
() and the squares in B. If ¢ is surjective then a® = ¢(a).

Proposition 2.6. Let (A, o) and (B, 8) be ordered rings. Letp : A — B
be a surjective ring homomorphism.

i) If (A, m, a) i3 a local ordered ring and m is a-convez then a® is a
proper order.

i) B = g%

11) If ker(yp) C a then a = o®*°. In addition, if o is a prime order
then af is also prime.
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Proof.

i) Suppose that —1 € o That is, —1 = p(a) for some @ € a. Hence,
0= ¢{1+a). If a € m then 1+a is a unit and (1) = 0, a contradiction.
If a ¢ m then 1 + @ ¢ m by convexity. So 1+ a is a unit and again
(1) = 0.

ii) The proof is elementary.

iii) Clearly a € o®. Now, let « € a®. Then y = @(z) € o® That
is, y = @(z') for some z' € a. Since p(r —z') = 0, z — z' € o. Hence
€ a. Suppose that supp(a) is prime and that xy € supp(a®). Then
there exist @ and b in A such that ¢(a) = z and ¢(b) = y. Hence
ab € supp(a®™) = supp(a), which implies that either a € supp(a) or
b € supp(a). Hence, supp(a®) is prime.

Proposition 2.7. Let (A, a) be an ordered ring and T a multiplicative
set in A. Define ar in Ar as

aT:{gz-l a€a for some t€T}.

Then

i) (AT, ar) is an ordered ring and o% = {b | bt° € a for some t €
T}.

i} Define ir : A — Ar by a — §. Then iy preserves order.

i) If T Nr(supp(a)) = @ then ar is a proper order provided « is
proper.

i/} In particular, if p = r(supp(a)) and in A, we define ap = ay,
then ay, is a proper order of A, provided o is proper.

Proof.

i) ar is clearly closed under addition and multiplication. To see that
it is total, let ¢ € Ar with a € A and t € T. Then either a € & or
~a€aandt € o or ~t € o. Hence either%} € aT or —}5‘—‘ € at. The
identification of af is straightforward.

ii) If & € a then § € ar.

iii) Suppose —1 € ar. That is, -1 = & wherea € c and ¢t € T.
Then —t? € &, which implies ¢ € r(supp(a)).

It should be clear by now that consideration of Ord(A) leads to
rings containing nilpotents. More precisely we are led to an interesting
natural generalization of the ordered field k(a) intrinsically associated
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to each point a of the real spectrum of A. For a prime order, k(a) is
the quotient of the localization of A at the prime ideal p = supp(a) by
the image of p, ordered by the image of a. In the case of a nonreduced
order we let ¢ = supp(a) and p = r(g). Then, since p is prime, we can
form A{a) = Ap/qAp. If A is Noetherian then it is easy to see that this
is an ordered Artinian local ring. Up to isomorphism this is an ordered
extension of an ordered field by a finite number of nilpotents. This is the
motivation for our study of finite dimensional real algebras in section 6.

3 Examples

Here are three examples. Each is a three-dimensional algebra over the
reals.

Example 3.1. A= R[z]/(z®) > {a + bt + c£% | £ = 0,a,b,c € R}.

Ord(A) is finite. The real spectrum contains a single point which can
be described variously as {e > 0} or R20 4 (£) or (regarding elements of
A as 'quadratic functions’) as {f | f(0) > 0}. The nilpotent element £ is
necessarily infinitesimal in the sense that BT > *£ with respect to any
proper order. To see this, suppose, {o the contrary, that £ —r > 0 where
r > 0, Then, since in any order £24ré+r2 > 0, we infer £3~r3 = -2 > 0
which implies that the order is improper. The full order spectrum has
five members:

{a >0}
{a >0} uU{e=0,0>0} {a>0}U{a=0,b<0}
{a>0}u{a=0,b>0}U{a=b=0,c>0}{a > 0}
U{ea=0,b<0}U{a=b=0,c >0}

These nonreduced orders are determined by the sign of £ and by the
lowest of its powers which is order-equivalent to 0. At the top level £
is order-equivalent to 0 and the support is the prime ideal {x) . At the
second level £ has a sign and £2 is order-equivalent to 0. At the bottom
level ¢ has a sign and €2 > 0. Each of these orders is minimal with sup-
port 0, which precludes any proper subset from being a total order.
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Example 3.2.

‘4=‘R[:;[:7y]/(xvy)22 {a+bf+f37}Ifngﬂ:ﬂ2:0:asbsC€R}-

Here again we have a single point ap in the real spectrum, which
can be described as R20 + (¢, ) or, regarding elements of A as “affine
functions”, as {f | £(0,0) > 0}. The squares are £ = {a > 0} U {0}.
Moreover the multiplicative structure is so weak that any extension of T
by a convex cone « in the plane a = 0 is a subsemiring of A. If x is the
union of an open half-space in this plane with one of the closed half-rays
on its boundary then this extension is an order a. Since —a Na = {0},
this order is minimal. Extending the boundary ray to the boundary line
gives a larger order and any further extension gives the prime ordering
ap. This exhausts the possibilities. Parameterizing the half-spaces by
5! (use the inner unit normal) with the binary choice of boundary ray,
the minimal orders correspond precisely to oriented bases for R2, or
the orthogonal group O(2). We thus obtain the following diagram for
the order spectrum which, ordering elements by inclusion, becomes a
one-dimensional tree.

g

l
Sl
|
0(2)
The ring A obviously admits the action of O(2) and each branch of
the tree is equivalent modulo this action to

{ez20}>{a>0tu{a=0020}2{c>0U{a=0,b>0lU{a=b=0,c>0}.

Let a > b (a is infinitely larger than b) mean that for all A € R,
a + Ab > 0. Then this order has an alternate description in terms of the
relations >, infinitely larger than, and ~ 0, order-equivalent to 0, in
which the sign of each element is precisely determined by the indicated
relations.

{1z~y~0}o{1»z>y~0}D{l>z>y> 0}

Example 3.3. A=R® R & R where R is real closed.
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By proposition 2.4 on direct sums there are only three orders:
R R®R,R® R*°® R and R® R & R>".

In this case the order spectrum coincides with the real spectrum.

4 The Augmented Line, Ord(R[z])

We recall {1] that the real spectrum of R[z| where R is the field of real
numbers Specy(R|[z]) consists of

(1) zero-dimensional points, which are maximal orders having the
form a = {f | f(a) > 0} for each a € R,

(2) two infinite points

+o0 = {f | f{Z£z) > 0 for all z sufficiently large and positive}

(3) one dimensional half-branches a* (a”) = {f | f(z) 2 0 on an
open interval containing @ as left {right) endpoint}.

The orders a* and oo are minimal nonreduced orders since they
have support {0} which implies that no smaller preordering can be io-
tal The infinite points are also maximal proper in the sense that any
enlargement generates the improper order R{z|. These, together with
the improper order R[z], can be assembled into the following diagram.

R[Erl
—00 a + oo
a” at
Specy(R[x}) U {R[x]}

The real spectrum is, of course, a subset of the order spectrum but
there are many more nonreduced orders. Here Spec,(R[z]) will form a
kind of exoskeleton for Ord(R[z]). We proceed to determine all nonre-
duced orders. Let o be any proper nonreduced order. Then « is con-
tained in at least one prime order 8. If 8 is minimal then a = 3 so it
suffices to consider # = a. Then by theorem 2.2, 5\ a C —8 N 3. Since
a C B we have a = 8\ (8\ a) D B\ (=0). Hence o O {f | f(a) > 0}.

Thus o contains elements negative at any point of R other than a and
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cannot be contained in any order b # a. By theorem 2.2, supp(a) is an
ideal with prime radical in R[x] which is convex with respect to o and
hence with respect to the preorder consisting of the sums of squares. R|z]
is & PID in which the only primes are linear and irreducible quadratic.
The quadratics do not ‘give convex ideals, so the only convex ideals with
prime radical are (0) and (z — )™ and the only ideals of this form possi-
ble in a are (0) and (z — a)™. We have already classified the cases with
support (0). So we can suppose that {f | f(a) > 0} + ((z ~ a)™) C @
where m is minimal. Since « is total, either x—aora—z € a. fr—a €
then any element f of a is either f = 0 or there is a positive constant
csuchthat f=(z —a)¥(c+(z—a)g)Ca-{f|fle)>0}Ca-aCo.
In either case f € o, that is, at C a. So a* + ((z — a)™) C a. But
at + ((z — a)™) is a nonreduced order. By theorem 2.2, if f € o\
(a* + ((z — a)™)) then f € supp(a) = (z — a)™, which is a contradic-
tion. Hence a =at + (z — a)™. The case in which a — z € o similarly
leads to a =a~ + ((z —@)™). This completes the identification of nonre-
duced orders. These, considered as points of a geometric object, all fit
together in a diagram which elaborates the preceding depiction of the
real spectrum by interpolating for each @ € R the nested discrete chains
of nonreduced orders a* + (z — a)™, m = 2, 3... between a™ at the
bottom and a at the top.

R[|X]

—00 a + 00
a +(z—ae)=a=at+(z—a)
a_-}—(:.':—a)2 a++(a:—a)2
a~ +(z—a)m at + (z — a)™
a~ at

Ord(Rix]) U {Rix]}

It is instructive to examine some simple semialgebraic sets in Ord(R|[z]).
The algebraic sets {z = 0} and {z* = 0} are quite different, the former
consisting of 0 while the latter is:
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0" +(z)=0=0"+ ()
0™ +(z)? 0t + (2)?
0™+ (z)? 07 + (@)°

{x3 = 0} c Ord(R[x]).

Similarly the sets mentioned in the introduction as a crude paradigm,
{ > 0} and {z® > 0}, are different. Less obvious is that the sets {z > 0}
and {22 > 0} also are different because of differences with respect to the
nonreduced orders with one-dimensional support. In fact

{z >0} = {«* > 0} U {0F + (x)%, 0™ + (x)°}.

It is evident that Ord(R|z]} contains sufficient structure to count

multiplicities. We illustrate this by using it to give a kind of semial-
gebraic interpretation of counting the zeros of a single real polynomial
f(=).
Theorem 4.1. Given f € R|z| where R is the field of real numbers,
let u(f) be the number of real zeros of [ counted without multiplicity,
v(f) the number of real zeros counted with multiplicity and T(R|[z]/f)
the tree of nonreduced orders of R{z]|/(f) including the improper order.
Then the width of T(R[z]/f) is 2u(f), and the sum of the lengths of the
branches is 2v(f).

Proof. This follows from the action of Ord on direct sums and the

following.

i) T(R[z]/(z — a)™) consists of a two branches of length m.
i1) If f has real zeros z; with multiplicity m; then

R(z]/(f) ~ ®R[z]/(z — z;)™ & R[z]/(9),

where T(R|[z]/g) is the trivial tree consisting of the root {R{z|/g}.

iii) If f and ¢ have no zeros in common then it follows from propo-
sition 2.4 that

T(R[z)/f9) = T(R[z]/f & Rl[z]/9)

is obtained by tying together the trees T'(R[z}/ f) and T(R][z]/g) at their
roots.
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5 Topological Properties

We continue the development of topological properties begun in Section
1. Many properties of the order spectrum parallel those of the real
spectrum closely. In fact the proof of the following is verbatim from
Becker’s paper [1] by using the previously mentioned change to > 0,< 0
and = 0.

Proposition 5.1. Let o, 8 € Ord(A) with the ordinary topology. Then
i) fefal iffagh.
i) «, 8 can be separated by open sets if a ¢ B and B & .
iti) A proper order is conteined in a unique marimal proper special-
1zation.
iv) a is closed iff o is @ mazimal proper order.

The relationship between Ord(A) and Spec,(A) is first established in
theorem 2.2 via a mapping, ¢. This is, ¢ : Ord(4) —+ Specy(A) which
maps « to its minimal prime specialization, o + r(supp(c)). Note that

a € pla)\ —p(a) == a*co\~a VE21

Hence,
¢ a>0)={a>0a2>0.-}.

This is not, in general, open in the ordinary topology. However, it is
closed in the constructible topology since its complement is

{uﬁﬂ}U{a)0,a2$0}U{a>0,a2>0,a3$0}U’---.

Similarly, ¢"1(a > 0) and ¢ 1(a = 0) are not necessarily closed in
the ordinary topology but they are, in fact, open in the constructible
topology. Hence, ¢ is not necessarily continuous in either topology.
However, we do have the following.

Proposition 5.2. ¢ i3 e closed function with respect to the ordinary
topology.

Proof. Let F C Ord(A) be a closed set. Let o € ¢(F)\¢(F). As an
element of Ord(A), a ¢ F, since o = ¢(a). Hence in Ord(A) there
exists a basic open set, U = {a; > 0,---,a, > 0} such that « € U and
UNF =0 In Specy(A), let U= {a1>0,---,ap > 0}. Then a € U,
which is open in Spec,(4). Since o € ¢(F), UNG(F) # 0. That is, there
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exists 3 € F such that ¢(g8) =:8€ (}ﬂq‘;(F). Hence, ay,---,an € ,é\—,é
In particular, a1,-,ap, € 8\ — 8. That is, S€EUNF. Bt UNF =@,
a contradiction.

Note: ¢ is not an open map. In R{z|, ¢(z®**! > 0) = {z > 0} Vk > 0.
It would be interesting to know when images of constructible sets by ¢
are constructible.

Proposition 5.3. Lety : A — B be a homomorphism. Then ¢ in-
duces a continuous mapping, ¥* : Specy(B) — Specy(A) which lifts to
a continuous mapping, ¥"* : Ord(B) — Ord(A) such that the diagream
commaules

Spece(B) ¥’ Spece(4)
i)} i
Ord(B) ;’ Ord(A)
where i, the inclusion map, is continuous.

Proof. The map ¢* : Ord(B) — Ord(A) is also defined as ¥*(8) =
B¢. To see that 1* is continuous it is straightforward that e € g%\ —
B¢ <= 1(a) € B\ — B Hence v* '({a1> 0, -, a > 0}) = {¢(a1) >
0,---,¢(ax) > 0} and continuity follows. That the diagram commutes
and { is continuous are elementary.

If the ring homomorphism is surjective, there is an associated co-
variant map, which is defined as follows. Let % : A — B be surjective.
First, consider U = {a| o® is improper}. Then U is an open set. For
if @ € U then there exists ¢ € a such that ¥{s}) = —1. By convex-
ity, 2a + 1 > 0, relative to a. This, together with ¥(2e + 1) = -1,
shows that « € {2a +1 > 0} C U. That is, U is open. Now, let
C = {a} o® is proper}. Then C is a closed set, which we consider with
the relative topology. Define ¢, : € — Ord(B) by ¥.(a) = o®. We
use this map to recover a familiar principle exhibited by the Zariski
spectrum.

Proposition 5.4. Let 1 : A —+ B be a surjective homomorphism. Then
v* gives a canonical homeomorphism of Ord(B) to a closed subset, K
of Ord(A), which maps Specr(B) to the closed set K N Specy(A).

Proof. Let K = {a|Ker(1) C a}. It is'closed, since K = aeKQr(w) {a=
0}. From proposition 2.6, K C C. For, Ker(¢) C a implies a = a®.



266 James McEnerney and Gilbert Stengle

In particular, o® is proper. Now, consider , restricted to K. From
proposition 2.6, we also see that ¥*(Ord(B)}) = K, ¢* o ¢, = idg,
Yu 09" = idopgp) and

bea®\—o° < Vacy l(b),a€a\-a.

This last property is used to show that 1, is continuous. This establishes
the homeomorphism, since ¥* is continuous. The continuity of v, follows
from checking the inverse of basic open sets, that is,

v ({d1 > 0, by > 0}) = {a € K|¢pu(a) € {br > 0,---,bx > 0}}
={acKla®e€{b1>0,---,bx >0}}:U{aeK|ae{a1 >0,--+, 0 > 0}}

where the union is over aj,---,ar € ¥ ™H(b1),- -, (bk) respectively.
This is open in K and %, is continuous. Finally, proposition 2.6 also
guarantees that ¢* maps Spec,(B) onto K N Specy(A).

Proposition 5.5.. Ord(A) with the constructible topology is a Stone
space in which the clopen sets are ezactly the constructible sets. The
consiructible sets are quasi-compact in the ordinary topelogy. An open
set is consiructible if and only if it is gquasi-compact.

The proof in (2] proposition 7.1.12 carries over to this context if one
eliminates the requirement that the order is prime.

Proposition 5.6. Let o be an order in R(z1, - - -, zn] such that dim(a) =
n ~ 1(here dimension means dim(R{z1,---,zn]/supp(a)}). Then there
erists a prime order 8 such that dim(8)=n and 5 C .

Proof. Let v be the minimal prime specialization of a. Then dim{a) =
dim(v) and supp(7) is generated by an irreducible element p such that
p € a. Since a C v it must be that supp(a) = (p*) for some k > 1.
We invoke proposition 10.2.6 from {2], which states that - is the special-
ization of two distinct n-dimensional prime orders. Let 8 be the prime
order in which p > 0. We show that 8 C . Clearly, 8\ (p) = o\ (p).
So, let f € 8N (p). Then f = gp™ where p does not divide g. Then
g € B. For otherwise g € —8 would imply that +f € # which, since 8 is
n-dimensional, would imply f = 0. Hence g € 8\(p) = a\(p) and f € .



The nonreduced order spectrum of... 267

The following example shows, contrary to the special conclusion of
this result, that a nonreduced order need not contain a prime order even
if the ring is a domain. It alse incidentally illustrates that the forward
image under a surjective map of a prime order need not be a prime order.

Example 5.7. In B[z, 3| let o be the prime order a = {p | p([—a,0),0) >
0 for some e > 0} and let 8 be the image of a under the quotient map-
ping R[z,y] — Rlz,%]/(y* — ). Then theorem 2.3 ensures that 3 is
an order, possibly improper, of the quotient ring. We show that z, the
image of z, is not in 8. If # € 8 then = = a + g(y* — 2°) with a € a. For
y = 0 this gives the relation = + z3g(z,0) = a(x, 0) which, by the defi-
nition of o, is impessible for = small and negative. So 8 is proper. Now
suppose that 8 contains a prime order 4. Then z ¢ 4. Hence —z € v
and —Z% € 4. But in the quotient ring z® = 72 and hence is in every
order, Hence 72 € supp(7), and since v is a prime order we arrive at the
contradiction & € 4. Thus § is a nonreduced order of R[z,y}/(y? — z3)
containing no prime order.

6 Finite Dimensional Algebras Over the Real
Numbers

We now consider the case where A is a finite dimensional real algebra
which corresponds in geometry to a zero dimensional real variety spec-
ified by an ideal of definition. We begin with some strong inferences
using arguments from the theory of convexity in RY, which in their
simplest form apply only to the real numbers {4] and to no other or-
dered field. Choosing a vector basis for A over R we can identify A with
some RY equipped with an associative, commutative multiplication. In
this situation any order & must be a total convex cone, that is a con-
vex cone satisfying —aUa« = RY. Although, in general, there are many
more such cones than nonreduced orders, still the following classification
shows that they are not too numerous.

Theorem 8.1. Let o be a proper total convex cone in RN. Let (.,.)
be a nondegenerate inner product. Then there is a sequence of Kk < N
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mutually orthogonal nonzero vectors ey, es, ..., e such that o s

{{e1,2) > 0}
U{(e1,z) = 0, (eg, z) > 0}

U{(e1,x) = (ea, x) ... = (eg~1,2) = 0, (ex, ) > 0}

Proof. Any proper convex cone in R¥ is contained in a closed half-space
{(e1,z) > 0}. Then o C {(e1,2) = 0} implies

o = {(e1,2) 2 01\ ({(e1,2) 2 0} \ o).

Since « is total, this implies

a D {(e1,z) > 0}\ —a D {(e1,x) 2 0} \ {(e1,z) <0} = {(e1,z) > 0}.

Thus, o lies between an open half-space and its closure. Also, this
half-space is unique since if a contained the union of two distinct open
half-spaces it could not be proper. This open half-space determines e,
modulo RT. If « is the closed half-space then o = {{e1,z) > 0} and
we are done. Otherwise repeat this argument inside the vector space
orthogonal to e; with the convex cone which is its intersection with a
to determine the next vector. Continuing until the process terminates
yields the required sequence.

We shall refer to the integer k as the depth of the order. For the
study of examples we will represent such orders by choosing a basis for
A, identifying an element with its vector of components in R¥, and
using the usual inner product e7f to measure orthogonality. We then
can represent orders & in the form

e1 €11 ... €IN
eg e ... €2N

€k €kl - EkN
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This representation embodies weak necessary conditions for a cone to
be an order which reflect only the linear structure. However there are
some further necessary conditions that use the multiplicative structure.

Theorem 6.2. Let

€1
€2
a =
€k
be an order in a finite dimensional real algebra. Let egyq,...,en fill out

an orthogonal linedar basis. Then, for 1 < j < k, e; 15 orthogonal to the
ideal (e.‘H‘l’ ceny eN).

Proof. By induction on j. Whatever the real parameters Az,..., AN,
the element £ = e+ Agea+. ..+ A ey satisfies the simplest test for strict
positivity, namely, positive inner product with e;. Hence for any element
a the weak sign (> or <) of ax is independent of these parameters. Thus

(e1,az) = (ae1,e1) + Aa(eeg,e1) + ... + An(aen, e1)
cannot assume both strict signs. This is possible only if
(aeg,e1) = (aes,e1) = ... = (aen,e1) = 0.

This implies the case j = 1. Next, assuming the conclusion for 1,2, ... 5~
1, we repeat the above argument with z = e; + Aj11e541 + ... + Anen.

By orthogonality to ej,...,e;—1 and positive inner product with ej, =
is strictly positive. By the induction hypothesis, for any e, azx is also
orthogonal to e;,...,e;_1 and again, whatever the parameters, cannot

have inner products of both signs with e;. This is possible only if the
conclusion of the theorem holds.

From these properties we draw the conclusion that any order on
a finite dimensional real algebra has a simple finitary order-theoretic
description.
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Corollary 6.3. Let
€1

e
o= 2

€k

be an order in a finite dimensional real algebra. Then the sign of any
element is determined by the infinitesimal and null relations

e1>e>...Dep > egir~egia~...en~0,

Proof. Apply the criteria for nonnegativity to the orthogonal expansion
of the element in the e;.

Another necessary consequence of the multiplicative structure is that
the linear span of ez, ..., en is an ideal since it is the support of the
order.

Corollary 8.4. If fork> 1

18 a proper order in a finite dimensional real algebra then so is

€1
Y= a (er).

€k—1

Proof. Let g = €2 and suppose b € §. If this membership is

€k—1
determined by inner products above depth & — 1 or by a positive inner
product with egx_; then b € oa. If all inner products with ej,...,ex_3
vanish then b = Agex + ... + Anen, which exhibiis b as an element of
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a + (ex). Thus 8 C a + (ex). To establish the reverse inclusion suppose
b € a+(ex). Then b = a+cep with a € . By the orthogonality of (ex) to
€l1,--.,€k-.1, b satisfies exactly the conditions for membership in 2 that
a satisfies. Thus, o+ {ex) C 8. To see that g is proper, suppose —1 € 3.
Then —1 = a + beg. Since k > 1, —(1,e3) = (a,e1). Opposite sides of
this equation have opposite weak signs and so both must vanish. This
implies —1 € (eg, ..., en), which implies in turn that e; € (eg,...,en).
This means that e; is self-orthogonal, a contradiction.

Reconsidering the earlier example A = R[z,y]/(z,y)? in the light
of these results we use the basis {1,x,y}, which we represent by the
usual basis {(1,0,0), (0,1, 0), (0,0, 1}} of R3 and the usual inner product.
Then any choice ez and e3 of vectors filling out an orthogonal basis gives
a descending chain of orders

1 0 0
{1 0 0}:){1 0 0 }:) 0 ex ens
0 ex e
0 e3z eas
with corresponding chain of supporting ideals
(z,4) D (e32z + easy) D (0).

The order-theoretic description of these orders using the relations >» of
infinitely larger and ~ of order-equivalence gives, for an order of depth

2,
1> egox + egay > 0 and esgr + easy ~ 0;

and for an order of depth 3,
1> ez + eosy > esox +e33y > 0,
with only 0 order-equivalent to 0.
Example 6.5.
A= R[m,y]/(ma,yz) 2 {linear span{1, z, y, z°, zy, 22y} | =° = y* = 0}.

Let the indicated linear basis correspond to the usual basis of R®. Then,
as in the preceding example, there is a single prime order of depth one
with support the prime ideal (z,y). First, since

2%y = (z® £ y/2)%,
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#2y must be order equivalent to 0 in any order. Accordingly, there are
no orders of depth 6. Also, there is a perfect correspondence with the
orders of

A = R[z,y]/ (=% 2%y, y?) = {linear span{l,z,y,z% =y} | 2° = 2%y = y* = 0}

and it is these that we shall classify according to depth.
Granting these preliminaries, the single order of depth 1 is the prime
cone

ali{l 000 0}.

By corollary 6.4 any order of depth 2 must specialize to an order of
depth 1. Hence the representation

g { 16000 }
¢ B C D E
will account for all orders of depth 2. B and C cannot both be zero since
thenz ~0andy ~ 0= 22 ~ 2y ~ 0 = D = E = 0 which would reduce
ag to o;. Thus we can suppose that B2+ €2 = 1. We next show that D
and E both vanish, If D = 0 then z? ~ 0 = +zy ~ (z1y/2)? = E=0.

If D#Othen Dz — Bz’ ~ 0= Dz~ 0= 22~ 0= D =208
contradiction. Hence, at depth 2

~J1 0 0 00 2 2 __
ag—{o B C 0 o}whereB +C°=1

This form is only a necessary condition for a cone to be an order of
depth 2, but it is easy to check that it is also sufficient.

Descending to depth 3, the orthogonality of rows in our representa-
tion allows us to snppose that

1 0 0 0 0
az={( 0 B c 0 0
0 -pC pB D FE

The nonnegativity of (z + Ay)? = z*? + 2Azy is decided at depth 3 by
D + 2)\E 2> 0, which is true for all A only if E = 0 and D > 0. Also
pCr —pBy > 0,zy ~ 0 and 1 4- Az > 0 together imply

(1 + Az)(pCz — pBy) ~ pCz — pBy + ApCz? > 0.
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This requires that p2(B2 + C2) + ApCD > 0 for all ), which is possible
only if pCD = 0. We distinguish three cases depending on which factor
vanishes,

If p = 0 then D must be strictly positive, and we can suppose that

1 0 0 00
az=<¢< 0 B C 0 0
00 0 10

If this cone were an order then Cz — By ~ zy ~ 0 = Cz? ~ 0. Since
z2 is strictly positive, this is possible only if C = 0, and we can suppose
that the cone has the form

1 0 0060
az;=¢ 0 x1 0 0 O
0 0 010

Again it is easy to check that these are in fact orders.
If p # 0 but D = 0 then we can normalize p to £1. This gives the

form
0

1 0 0 o
azo=4¢ 0 B c 00
0 xC F¥B 0 0
which is parameterized by O(2).
If p and D are not 0 but C = 0 then the cone can be normalized to

1 0 000
aa=4 0 x1 0 0 O
0 0 p 10

Thus, since the orders a3, fit together smoothly with the family as3,
the orders of depth 3 consist of the two families a3z and a33 parameter-
ized by O(2) and R respectively.

At depth 4 we encounter a new phenomenon. Not all orders of depth
3 can be generalized to depth 4. Any generization of a3z will have the
form
10 6 0
0 pn p12 O
0 pn p22 O
0 0 0 D

aygo =

Hooo
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The preceeding argument with (z + Ay)? again shows that D > 0 and
E = 0. The subcase D = 0 collapses to the case of depth 3. Hence we
can suppose that D =1 and

0 0
ri1 P2

P21 p2
0 0

42 =

e B < Y e
= o oo
oo o

However, if p11 # 0 then this form determines pj1z > 0 at depth 2,
and in any case determines pa)x + pgoy > 0 at depth 3. Together these
determine at depth 4 that pi1ip2; > 0. This necessary condition also
suffices for this generization from depth 3 to depth 4.

In the other case of depth 3, the element y ~ pz? has weak sign
determined below depth 3. This is the A-independent weak sign of (1 +
Az)(y — pz?) which, if E is not zero, is the sign of A\E. Hence E = 0,
and we have the necessary form

10 0 0 ¢
an — 0 £1 0 0 O
=00 p 1 0
0 0 %1 xp 0
At depth 5 orthogonality determines the forms

0 0 0 0
pur pi2 0 O
pn p22 0 O
0 0 1 0
0 0 0 =+1

52 =

Do o M-

in which the last row determines the sign of zy. Its sign is that of py1p12
if that is not 0, of poipig if p11 = 0, and of pripos if po1 = 0. Finally,
generizations of ay3 have the form

10 0 0 0
0 ¢ O 0 0
asz=<¢ 0 0 p 1 0
0 0 e —ep 0
0 0 O 0 €3
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where the ¢; are +1 or —1 and €3 is constrained by the signs determined
at shallower depth according to €3 = €1sign(p) if p # 0 and €3 = €1€2 if
p=0.
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