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Levelled O-minimal structures.
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Abstract
We introduce the notion of “levelled structure” and show that
every structure elementarily equivalent to the real exponential field
expanded by sll restricted analytic functions is levelled.

An expansion R of an ordered field (R, <,+,-,0,1) is o-minimal if
every subset of R (parametrically} definable in ® is a finite union of
points and open intervals; it is ezponential if it defines an isomorphism
of the ordered groups (R, <, +) and ({0, 00}, <, -), where (0, 00) denotes
the positive elements of R.

Example The ordered field of real numbers with restricted analytic func-
tions is the structure

Ry = (IR, <,+,—,40, L (-‘f-)fGJR{X,m},mE]N)’

where R{X, m} denotes the ring of all power series in X, .-+yXm over
IR that converge in a neighborhood of [—1, 1J™, and where f : R™ — IR
is defined for each f € R{X,m} by

fz) = { flz), zel-1,1]™

0, otherwise .

We let IRap exp denote the o-minimal (see e. g. {2]} expansion of Ry, by
the function z — e : IR — IR,
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Given an exponential o-minimal expansion R of an ordered field
(R, <, +,-,0,1) there is a unique definable differentiable ordered group
isomorphism

E:(R,<,+,0) — ((0,00),<,-,1)

satisfying B/ = E on R. We denote this unique (hence 0-definable)
function by exp. The function exp behaves (in R) to a large extent
as the real exponential function e behaves when working over the real
pumbers. (See [5] for details on the above.} The compositional inverse
of exp from {0, c0) onto R is denoted by log, and is called the logarithm
function (of R); we extend log to be defined on R by setting log(z) := 0
for z £ 0. For r € R and a > 0, we put a” := exp(r loga).

Below, let ® denote an o-minimal expansion of an ordered exponen-
tial field (R, <,+, —,,0, 1, exp); “definable” means “R-definable”-—that
is, “definable in R with parameters from R”—unless stated otherwise.
The reader is assumed to be familiar with the basic properties of o-
minimal expansions of ordered exponential fields.

Whenever convenient, we regard any particular partial function as
being totally defined by setting the function equsl to 0 off its domain of
definition.

Let eg denote the identity on R and put eny1(t) ;= exp(en(t)) for
n € IN and ¢ € R. Similarly, ¢; denotes the identity on R and
£ni1(t) = log(€n(t)) for each n € IN and ¢t € R. We may also write
£_n, for e,, depending on convenience; for example, ultimately we have
Lirk(t) = £;(€x(t)) for all j,k € Z. (Ultimately abbreviates “for all
sufficiently large positive arguments”.)

A function f : R — R is said to be infinitely increasing if f is
ultimately strictly increasing and unbounded. Note that if f is definable,
then f is infinitely increasing if and only if lim;_, 4o f(£) = +o0.

For functions f,g : R — R with g ultimately nonzero, we write
7(2) ~ 9(2) i ime_ yoo F(£)/0(t) = 1.

Suppose that f: R — R is a definable infinitely increasing
function and there exists s € Z such that for some k'€ Z we have
£(F(2)) ~ £r_4(t). Then s is unique and £;(f(t)) ~ £;_s(t) for all
j 2 k. Following Rosenlicht [7], we then say that f has level s and
we write level(f) = s. Equivalently, a definable infinitely increasing
unary function f has level s if and only if there exists N € IN such that
En ol F(8)) ~ En ().
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Definition. The structure R is levelled if every definable infinitely in-
creasing unary function has level; its complete theory Th(R) s levelled
if every A= R is levelled.

We can now state the main result of this note.

Theorem {Ronexp) 9 levelled.

We defer the proof until later.

Levelled structures have nice properties that can show up in unex-
pected ways. For example, it is shown in [6] that if R is levelled, and
* : RZ — R is definable, continuous and (R, ) is a group, then (R, %)
is definably homeomorphic to (R, +). (It is not known whether this
property holds for ® without the assumption that  be levelled.)

We now list some basic properties of level; the proofs are easy and
we omit them.

Proposition. Let f, f1, f2 be definable infinitely increasing unary Junc-
tions with level(f) = s, level(f1) = s1 and level(f2) = so.

(1) For each k € Z, £ has level k.
(2) If ultimately f1(t) < fa(t), then 51 < so.

(3) If a,Befl,00) are such that uliimately f1{t) < fat)® and
f2(t) < f1(t)P, then sy = s2.

(4) Both fi + f2 and f1- fo have level equal to max(s1, $2).
(5) The (ultimately defined) composition f1 o fy has level 51 + 93.

For A C R™! and z € R™ put Az == {t € R: (x,t) € A}, and for
f:A— Randz € R" define fr: Az = R by fz(t) = f(z,t).

Definition. The structure R is exponentially bounded, or e-bounded for
short, if for each definable f : R — R there exists n € IN such that
ultimately |f(t)] < enlt).

Note. Clearly, if ® is levelled then R is e-bounded. On the other hand,
if R is ebounded, then for every m € IN and definable function
f: R™t! — R the set

{level (fx) : fx has level }
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is finite. This follows from (1) and (2} of the previous proposition, and
the fact that for f as above there is some N € IN such that for each
z € R™ ultimately we have |f;(t)] < en(t). (This fact is established
over the reals using 4.18 of [4], but the proof given there goes through
for o-minimal expansions of arbitrary ordered fields.)

Proposition. The following are equivalent:
(1) Th(R) is levelled.

(2) For everym € IN and definable function f : R™t) s R there exist
integers N, s(1),...,s(k) with N >0, 5(1),...,s(k) such that for
every z €R™, i f. 15 infinitely increasing, then
En(f(t)) ~ En_o(3)(t) for somei€ {1,...,k}.

(3) ® is e-bounded, and for every m € IN and definable function
f: R™1 — R there exists N € IN such that for every z € R™,
f fz is infinitely increasing, then &y, (fz(t)) ~ En(t) for some
integer s (= s(z)).

Proof. (1) = (2). We may assume that f is O-definable, say by an
(m + 2)-ary formula ¢ in the language of ®. Let v = (vi,...,vm), and
for each pair of integers (j, s) let ¥;,4(v) be the m-ary formula express-
ing: “If ¢(v,t,y) defines an infinitely increasing function y = F,(t),
then £;(Fy(t)) ~ £;_4(t).” Since Th(R) is levelled, for every % = R
and every ¢ € A™ (where A is the underlying set of 2A) there exist
7,8 € Z such that A |= ¢;,(a). By compactness, there exist integers
3(1),...,3(k}), s(1),..., s(k) such that

REVe [%(1),3(1)(1:) V...V ¢j(k),a(k)(v)] -

Put N := max{0,j(1),...,j(k), s(1),..., s(k)}.

(2) = (1). Let A= R and g be an 2A-definable infinitely increasing
unary function; say that g is defined by (e, t,y) with a € A™ for some
m € IN and ¢ an (m +2)-ary formula in the language of R. Let X be the
0-definable set comsisting of all z € A™ such that ¢(z,t,y) defines an
infinitely increasing unary function y = f=(t). Now define f : A™H+1 _, 4
by

_ ) f(t), zeX
fla )= { 0, otherwise .
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Then f is O-definable, and by elementary equivalence there exist N € IN
and s € Z with £n5(fa(t)) ~ €n-s(t); that is, g has level s.

That (2) = (3) is clear, and (3} = (2) follows from the note preced-
ing the statement of this proposition.

Note. If Th(R) is levelled and ®' := (R, <, +,,0,1,exp,...) is a reduct
of R, then Th(R’) is levelled.

(This is immediate from the preceding proposition, but this fact can
also be established directly by a basic model-theoretic argument.)

We have no example at present of an o-minimal expansion of an
ordered exponential field whose complete theory is known to be not lev-
elled. However, Boshernitzan [1] has shown that there are real analytic
functions f : (z,00) — IR satisfying f{t + 1) = ef® for ¢t > & whose
germs at +oo belong to Hardy fields; such a function clearly cannot
be ultimately bounded by any fixed compositional iterate of ¢*, hence
does not have level. Also established in [1] is the existence of ultimately
real analytic solutions to the functional equation g(g(z)) = €% (a so-
called “half-iterate” of e*) whose germs belong to Hardy fields. No such
function could have level (otherwise, 1 = level(g o g) = 2level(g)).- It
seems plausible that (IR, <, +, -, exp) could be expanded by some such
functions to an o-minimal structure.

Proof of the Theorem

We now fix some R = Ry exp, With underlying set B. We must show
that R is levelled.

We let L., and Ty denote respectively the language and the theory
of Ran, and Lay exp 80d Tap exp denote respectively the language and the
theory of Ran,exp-

We assume familisrity with the main results from [2,3]; we must first
modify some of the constructions from those papers.

If G is a divisible ordered abelian group, then R({(t®)) denotes the
field of formal power series of the form f = }_ agt?, where g ranges over
G, each a, € R and supp f := {g : ay # 0} is well ordered. Since the
reduct of R to Ly, is 8 model of Tyy, we can naturally equip R((t€)) with
an Lan-structure so that R{(t®)) k= Tap.
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There is a natural valuation » : R{(t¢)* — G given by v(f) :=
minsupp f. We extend this valuation to R{(t¢)) by putting v(0) := oo,
with v(f) < oo for all f € R((t®))*.

In the following, we say that a map F from an ordered ring D into
an ordered ring D’ is a partial exponential if F is an order-preserving
homomorphism from the additive group of D into the multiplicative
group of positive elements of D',

Construction of R((t))¥
We construct a chain of divisible ordered abelian groups

{0} =I' 1 clocIhC---

such that T',_; is a convex subgroup of ', for each n € IN. Putting

Kp = R((t™)) for each n € Z with n > —1, we will obtain an £q-

elementary chain '
K1~<Ky<Ki=<---

where I';,_; is an ordered R-subspace of K, for each n € IN. We identify
K_1 = R{(t1%)) with R. We will define partial exponential maps Ey_1
Kn_y — Kp such that E,_; C E,, for each n € IN.

Let [o := R. Let E_; : R — R((t")) be given by E_;(r) := exp(r).
Suppose now that n > (Q and that I'), and E,,_1 have been constructed
for m < n. Put

On:={z € Kn:v(z) >~ for somevyeln_ 1}

and
my = {x € Ky : v(x) > Th1}.

Note that O, = Kpp—1 & Iy, We extend E, 1 to a partlal exponential
En : Op — Kyp by setting En(:c) = En-1(r) Cienlai/i) for z = r + o
with r € Ky—1 and @ € my,. (Note that ;. (/i) is well-defined since
v(a) > 0.) Let Jy := {x € Ky, : suppz < ['p_1}; 50 Kn = Jn ® Oy, as
Kp—1-linear spaces. Then we put 'y := Jy, & [y, € Ky, ordered as an
R-linear subspace of K, so Iy, is convex in Fy41.

Finally, extend En to the partial exponential E,, : K, — Kp41 given
by
En(z) := t Ep(b) for = = a + b with @ € J, and b € O,,.

Put R((2))¥ = UYK,, TI':= Uy, and E := [JE, Then
R((t))F | Ton and E : R((2))¥ — R((t))F is a partial exponential that
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agrees with the restricted exponential function on [-1, 1} and ultimately
dominates all polynomials. Note that R((t))% is a subfield of R{(t")).

Construction of R((t))Lf

Similarly as in §2 of [3] we obtain an Lgexp-embedding
® : R((t))F — R((t))? such that ®(¢t~!) = E(¢t!). Let z denote t—*.
Put Ly :== R((t)})®. Wecan find an Lop exp-extension L; of Lo and an iso-
morphism 7 : Ly — R((t))¥ such that 7 maps R((¢})¥ onto ®(R((£))%)
Then E(n]'(x)) = 2. Indeed, every positive element g of R((¢))% has a
logarithm in L, (that is, there exists h € L; such that E(h) = g). We
continue by constructing for each n € IN an Lap exp-extension Lypi of
Ly, and an isomorphism %n+1 : Lnt1 — R((£))Z such that nni1 maps Ln
onto ®(R((t))F). Every element of Ly, has a logarithm in L,.;. Finally,
put R((#))*# == ULy.

Every positive element of R((t))“Z has a logarithm in R{((t))}*E.
Thus, from the axiomatization of Tapexp from [2], we see that
R((t))LF = Tanexp- By §5 of [2], we may identify the field H of germs at
+00 of definable unary functions with the smallest elementary substruc-
ture of R((¢))XZ containing R and the element z = ¢~ € R((t))L".
Therefore, in what follows we routinely identify any given definable
unary function f with its germ f € M, which in turn is identified with
the element f € R((¢))EE. In particular, note that for every definable
unary function f we have E(f) = exp(f), and if f is ultimately positive
then E(£(f)) = f. Thus, there is no harm in denoting the logarithm
function for R{(t))LF by ¢, and using the notation £ for k € Z in the
obvious fashion. Note in particular that 5, (x) = £p(z) for all n > 1.

Given definable unary functions f and g with g ultimately nonzero,
we have f(z) ~ g(z) if and only if lim;_, f(z)/9(z) = 1 if and only if
v(f—g) > v{g). Thus, glven nonzero f, g € R((£))LE, we write f ~ g for
v(f—g) > v(g), that is, f = g(1+¢) for some € € R((t))~F with v(€) > 0.
Note also that v(f) = v(g) if and only f ~ cg for some nonzero ¢ € R.
It is easy to see that ~ is a congruence relation on the multiplicative
group of nonzero elements of R{(t))~Z.

Lemma. Let f,g € R{(())LF with f,g > 0, and v(g) < 0.
(1) If f = gh with g > A" for all v € R, then £(f) ~ £(g).

(2) Ifv(f) = v(g), then £x(f) ~ Lx(g) for all k > 0.
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Proof. For (1), note that for all positive » € R we have
r(€(f) — £(g)) = ré(h) = £(h7) < £(g),
that s, w(£(f) — £(8)) > v(£(a)).
An easy induction on k yields (2).
a

Claim. Let g € R((t))€ with v(g) < 0 and g > 0, and let k be the least
positive integer such that v(g) € T'x (as in the construction of R{(¢))%).
Then £244(9) ~ £2(z).

Proof. We prove this by induction on k. First, suppose ¥ = 0. Then
v(g) = v(z") for some positive r € R, and by (2) of the Lemma we have

£2(g) ~ £o(z™) = £(r) + £o(x) ~ £a(x).

Suppose now .that the result holds for a certain & > 0 and let
v(g) € Tg41 \Tx. Then v(g) = 6§ + v where § € Ji, § < 0 and v € I'}.
Hence, v(8) € I'x \ T'k-1 and v(8) < [e—1 , s0 €24x(—8) ~ £2(z) by the
inductive assumption. Also, we have ¢ = t®(at” + ), with a € R and
v(p) > v. Now 6 < I, so £(g) ~ E(t's) = —& and fop41(g) ~ lork(—6)
by (1) and (2) of the Lemma, respectively. Thus, o, 411(g) ~ £a2(x).

]
Claim. Let g € L, (as in the construction of R((¢))*F), ¢ > 0 and
v(g) < 0. Then there exists s € Z such that o, :(g) ~ fo1n(z).

Proof. Let fn : Ln — R((t))? be as in the construction of R((¢))LE. By
the previous claim, there is some k € IN such that £o,k(fn(g)) ~ £2(z).
Since fy, is an Lan exp-isomorphism, we have

t2+i(9) ~ t2(fn ' (2)) = L2(ta(x)) = L21n(z).
Hence €51 n1,5(g) ~ f21n(z), where s = k — n.
a

Definition. An element f € R((t))LF has level s for s€ Z if f > 0,
v(f) < 0 and there is an N € IN such that £n.4(f) ~ £n(z).

It is immediate from the preceding claim and the construction of
R{(t))~E that every g € R((t))LF with g > 0 and v(g) < 0 has level s
for some s € Z. Hence, R is levelled.
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