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A failure of quantifier elimination.

Angus MACINTYRE* andDavid MARKER**

Abstract
We show that Iog is neededto eliminatequantifiers in the the-

ory of the real numberswith restrictedanalyticfunctionsandex-
ponentiation.

Welet £~ bethe flrst orderlanguageof orderedringsaugmentedby
function symbolsf wheref is an analytic funetiondefinedon an open
U D [0,1]” for sornen. Wc interpretf as a functionon E? by

ifze[O,11”otherwise

Let £~ he the languageobtainedby addingto £~ unar>’ funetionsym-
bois Ir for eachr E E.. We interpretIr as the function

ifx>’0
otherwise

anddenote fr(x) by ~r. Finail>’ we Iet £an,exp be the language~ U
{exp} andLa — ¡3 u {exp}.

afl,exp en
In [2]we showedthatthe L.n,exp-theoryof E. adrnitsquantifierelimi-

nationin thelanguageL,expU {log}. Indeed,weremarktherethatexp
Is unnecessaTyasweconid actuallyeliminatequantffiersin thelanguage
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CanU {log} u {A: q E Q}. Here we showthat althoughexp andlog are

interdefinable, log is esaentialfor quantifier elimination.

Thearem. Lel «x, y) be tite forinula

Bz (exp(expz)=zAy= zexpz).

Titen «z; y) is not equivalentto a quantifier free L~exp-formula.

Of course~(x, y) is eqnivalent to the quantifier free Len U {log}-

formula

z> lAy= (logz)(loglogx).

Thereare severalprevious“failure of quantifier elimination” theo-
remafor the realswith exponentiation.Osgood’sexample

y> O A 2w (wy = z A z = yen’)

is not equivalent to a quantifier free formula in the language
{ +, —,., <,O, 1, exp} (or any expansionby total real analytic funetiona

(see for example [11)),while, in urpublished work, van den Dijes and

Macintyre showedthat

Bz( A = zA y = e2)

is not equivalent to a quantifler free formula in the language
1{ +, —,~, ~,exp,<,0, 1}. Both of theseformulasareequivalentto aquan-

tifier free L~,exp-formulas.

In [4] Oabrielov gives several “failure of quantifier elimination” re-

sultaof adifferent spirit.

The most interestingopenquestionof this ]dnd is whetherthe the-
or>’ of (R., +, ., exp) admitsquantifierelirninationin eitherthe language
£ = {+, ., —, c,O, 11 U {exp, log} or £ augmentedby all semialgebraic

functions. It seemsthat to eiminatequantifiersoneneedato add sorne
implicití>’ defined restricted analytic functions, so we expect both of

thesequestionsto havea negativeanswer.
Let 1(z) = (logzr>(loglogx) and let r be the graph of f. We sa>’

that en open set U C E.2 contajus a tail of r if (z, f(z)) E U for ah
suificientí>’ largea’.
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Let «a’, y) be the aboye formula. Suppose for purposes of contra-

diction that 4~ is equivalent to a quantifier free £~,~~-formula, say

r 8

u) (Fi(z, u) = DA A G~4(x, u) o)
1=1 j=1

for sorne£~i,exp-termsF1, Qj. Let

= {(z,y) F~(z,y) = QA A Gt,j(z,y) > 0}.

ti

By o-minimality thereis an 1 such that (a’, y) E Y1 if andonly if y = ¡(a’)

for sufficiently large a’. Fix such an 1.

Let Wo = {(x,y) : F4a’,y) = O} and let Wj = {(z,y) : Gí,j(z,y) >
0} for j = 1,..., s. Each Vi§ contalus a tau of E Snppose that for each
1 there is an M1 such that {(x, y) E r: a’ > MJ is in the interior of W1.

Then {(a’,y) EF: a’> rnaxM1} is in the interior of Y¿, a contradiction.

Thus a tau of t’ must be in the boundary of at least one of the $4§.
Thus we have shown that thereis an CR -term F snch that a tailan,eKp

of Fis in either the boundaryof {(z,y) F(z,y) = 0} or the boundary

of { (a’, y) : F(a’, u) > 0}. Unfortunatel>’, since our terms need not be

continuous, we must consider both possibilities. The next lemma shows
that we can in fact choose F such that the Brst possibility holds and E
15 analytic on a neighborhood of a tail of E

Lemma 1. Let ¡(a’) = (logz)(loglogx). Titere is an ¡3 -term
8n,exp

FQc,y) whicit is analytic on an open U C E.
2 containing a tau ofr such

that F(z, ¡(a’)) = O for sufficiently lame a’, and for alí a’ there are at
mosí finitely manyy sucit that (z,y) E U and F(z,y) 0. Moreover,
toe can chooseF such that aH of ita subienna are anal¡¡tic on U.

Proof. We know there is an ¡4texp-term F(z,y) with the following

property:
(*) There is an open U C E.2 containing a tail of 1’ such that r is in

the boundary of either

a) {(z,y> E U: F(a’,y) = O} or
b) {(a’,y)EU:F(a’,y)>O}.

Wcma>’, by induction on terms, assume that if anynonconstantsubterm
of F is replaced by the constant term O or 1, then the resulting term
¿oes not have property (t).



212 Angus Macintyreand David Marker

Wenext try to Lid an open V ~ U containing a tail of F such that

F and aU of its subterms are analytic on y. We ti>’ to prove this by

induction on subterms of F. Wewill see that the only obstructions to
this induction wifl lead to a new term F1 with property (*) such that

F1 and alí of its subterms are analytic on an open set containing a tail

of P.
• If a subterm t of F is a constant or variable, it is analytic on all of

U.
• Suppose t0 and t1 are a subterms of F and t¿ is analytic on V1

where V1 is an open subset of U containing a tau of 1’. Then V = Von 14
contains a tail of 1’ aud ~o~ ti, tot1 and exp(te) are analytic cix V.

• Suppose ti,..., t,, and it = ~(t~ t~) are subterms of F, where ~

is the function symbol for a restricted analytic function and ti,.. - , t,. are
anaLytic on an open set EJe containing a tail of 1’. Using the o-minimality

of E.~,,exp ene of the following holds for eachi.

Case 1. There is an open 1/1 ~ U1 containing a tau of 1’ such that

t1(a’, y) E (—~, O] u (1, +oc) for all (a’, y) E 1/1

Case 2. There is an open V1 § U~ containing a tau of F such that

t1(x, y) = 1 for all (a’, y) E V~.

Case 3. There is an open 14 ~ U1 containing a tail of 1’ such that
o < t~(a’, y) < 1 for all (a’, y) E V1.

U we are not in cases 1)-3) then te(a’, y) must be equal to O or 1 on
a tau of 1’. Since te(x,y) is analytic on aix open neigliborlicod of a tau

of 1’, we must be in one of the following two cases.

Case 4. flere is an open set 14 § U~ containing a tail of 1’ such that
te(z,¡(a’)) = O but {y: (a’, y) E V1A te(a’,y> = 0J is finite for suificientí>’

large a’.

Case 5. There is aix open set V1 § ~e containing a tail of 1’ such that
te(a’, ¡(a’)) = 1 but {y: (a’, y) E V1A te(z,y) = 1} is finite for suificientí>’

large a’.

Cases4) or 5) are the caseswhere cur induction breaks down. lix
case4) we replaceF by te(z,y). Then te(a’, y) satisfies(a’) andte andall

of its subtermsareanalyticon T/¿. Lix case5> wereplaceF by t1(z,y) — 1.

lix eithercasethe new term hasthe desiredproperty.
lii case1)
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for all (a’, y) E 1’1. Thus we could replacethis occurenceof t1 by O to
obtain anew term fl suchthat ff* = F on aix open set containinga
tau of 1’. This contradictsour assumptionson E. Similar]>’ in case2)
we canreplacethis occurenceof te by 1 contradictingour assumptions
on E.

Thus we ma>’ assumewe are in caseiii). Let V = flL1 ~e. Then
(t1(a’,y),...,t~(z,y)) e (0,1)~ for all (a’,y) EV and it is analytic on V.

• Suppose it and t are subtermsof F, it = tr and118 analyticon an
open set U containing a tail of 1’. As aboye, we canLid en open set

V C U containinga tau of 17’ suchthat oneof the foilowing holds:

Case1. t(a’, y) <O for all (a’, y) E V,

Case2. t(a’,f(a’)) = O and {y: (z,y) EV At(a’,y) = 01 for sufficiently

large a’, or

Case 3. t(z,y)>Ofor(z,y)EV.
As aboyecase1) cannot happenas we couldsimplify E by replacing

it by O. lix case2) we canuse t insteadof E andwe are done. Thus we
mayassumethat we areun case3) andnotethat it is analytic 011 V.

This completesthe induction. Either we will Lid a siknpler term
satisfyingthe conditionsof the theoremor we will eventuallythin U to

aix open V containing a tail of 1’ snch that E is analyticon V. lix the
later case,sinceE is analytic 011 V, {(a’, y) E V : F(r, y) > O} is open.
Thus we must be in casea) of (*) and E is the desiredterm.

Let F(a’, y) be the term guaranteedby lemma1. Note that sinceE
andah of its subtermsare analytic aix U, one can show by induction

that all of the partial derivativesof E areequalto -termscix U.an,exp
Let p E 1’ fl U. By repeatedapplicationof the Weierstrassdivision

theoremwe cen flnd aix open neighborhoodV of p, n E N and en
analytic funetiony on V suchthat on V

F(a’,y) = (y— f(a’))flg(a’,y)

andthereis no point (a’, y) E V \ {p} suchthat y = ¡(a’) andg(a’,y) = 0.

Note that for eacli vn <u there is an anaWtic it~ on V such that

O
tmF

aytm(z,y) = (n )l(¡¡ — f(a’))flm(g(a’,y) + (y — f(a’))itm(z, y)).
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Let O be aix 4,0,<1,-termsuch that a = on (1. Then G

vamshes identicail>’ on 1’ fl y and doesnot vanishon 1’ fl V \ {p}. By
analyticcontinuationando-rninbnality

G(x,f(a’)) = O

and oc
!=0

for sufficiently large a’.

Since (cC, ze
2) parameterizesthe curve y = ¡(a’), G(eetze) = O

for sufficiently largez. Differentiating with respect to z we see that

0= e2 00e .~—(efl ze + (z + 1)et
5.(e~t ze)

and

2: = ez~(etZ,zet) — 1 (1)
-» (ec,zez)

for sufficiently largez.

SupposeM is a nonstandardmodel of the £an,exp-theoryof
E., a’ E M, and a’> K Let N be the smallest £~exp-substrncture of

M containingR(eeta’e±),i.e. N is the smallest subset of M containing
R(eetzeZ)amiclosedunder£~y-termsandexponentiation.In fact N is

the srnallest £~~elementar>r submodel of M covxtaining E.(et,re”) and

closedunder exp. Since O and are £~exp-terms, a’ E N. We will

obtain a contradictionhy showingUds fafis when AA is the logarithmic-

exponentialseriesfleid R((t))LE constructedin [31.

For the remainderof theproof we assumefamiliarity with thenota-
tion andresultsfrorn [3¡.

Lemma 2. Leí a’ — U
1 E R((t))LE. Leí IV c R((t))LE be tite sinallesí

£~,exp-subsiructureof R((t))LE containing E.(cex,re”). Then a’ ~ IV.

Proof. We first note that lii fact IV c E.((t))E. We build a chain
(E

0 : a < A) of truncation closed £~-elementarysubstrncturesof IV

such that:

1) E0 = U,3<0 Fp if a is a limit ordinal,
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Ii) there is Va E E0 snch that F0~1 is the smallest C~-eIementary

submodelof E.((t))E contaiixing E(eVa) for all a < A, and

iii) IV = WC>E0.

Claim. SupposeE is a truncation closed Lan-elementar>’ substructure
of R((t))E andthe valué group of E is aix E.-vector space. Then E is en

L~-e1ementarysubstructure.
II y E E and y> O, then y = at

9(1+ e) wherea e E., a> 0, t9, e E E
and v(c) > O. Then ~r = artrfl(1 + ~)r Sincez u—. (1 + z)r is analytic

near zero, (1 + ~)r E É. Siixce the valuegroupof E is an E.-vector space,
t79 E E. Thus yr E E. By the quantifler elimination from [5], E is aix

£~-elementary submodel of E.((t))E.

The aboye claim, the truncation results of §3 of [3] and the vahiation
theoretic results from §3 of [2] guarantee that II E is a truncation closed

L~-elementary submodel of R((t))E, y E E.((t))E, v(y) « v(E) and E fls

the smallestL~-elementarysubmodelof E.«t))E containing E(y), then
E* is truncation closed and the value group of E is v(E) e E.v(y).

Let Fo be the the smallest L~-elementary submodelof E.((t))Econ-
taining RSlee, xc”). By the aboye remarks E~ is truixcation closed.We
can then bulid (E

0 : a < A) satis~ring i)-iii) aboye. Since

e” =Uxandet~~CCt

the valuegroup of Ea is E.(1 + a’) e 112. Clearí>’ R(1 + a’) is a couvex

snbgroup of the value group of Ea. Wc argixe that E.(1 + a’) is a convex

subgroup of the value group of E0 for alí a < A. Thus R(1 + a’) is a

convexsubgroupof the value groupof IV. In particular a’ ~ N.
lix fact the valuegroup of E0 is of the form E.(1+ z) e H where

suppit < E. for all it E H. The next claim allows usto inductivel>’ show
that this is true for the valuegroup of E0 for all a.

Claim. Let E c E.((t))E be a truncation closed L~-eIementarysub-

model with value group O = R(1 + a’) e H where supp it < E. for all
it E H. Supposey E E, e~’ ~ E and E1 is the smallestL~-elementary

submodelof E.«t))E containiixgE(eV). ThenE1 is truncationclosedami
G~, the value group of E1, la E.(1 + z) eH1 wheresupp it1 <E. for all
it1 E H1.
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Let y = a + fi wheresuppa < O andv(P) =0. By our assumptions
on 0, suppa < E.. Sincee0 E E, E(e~) = E(e0) ande0 = u0. n~

thevalue groupof E
1 isceE.a. Thussupp(ra+it) < Ofor alt EH.

Since H1 = Ea e H, thisprovesthe claim.
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