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Note on oo-superharmonic functions.

Peter LINDQVIST and Juan MANFREDI*

Abstract

The purpose of this note is to show that all viscosity superso-
lutions of

dv v 8%
Ay = _— <0
oo¥ Zaz.- dzj Ozi8x; —

are variational. That is, they are limits of p-superharmonic func-
tions, induced by the operator

Apgu= div{|Vv|P~2Vv) ,
as p approaches oco. In addition, it is shown that each viscosity
supersolution of Ay v < 0 is Lipschitz continuous.
1 Introduction
The solutions of the differential equation

" 8h B8h 8%
Ah = — =0 1.1
* uz:l dzx; 8zj Bxzidx; | (L.1)

are called oo-harnionic functions. They play an essential role as the
best Lipschitz extensions of their boundary values, cf. [A ] and [J]. Their
regularity properties are poorly understood, but at least it is known that
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they belong to C(2) N W, ’°°(Q) The mere concept of solution is' diffi-
cult, because the equation ﬁoes not have an ordinary weak:formulation
containing only the first partial derivatives, while the second ones.needed
to evaluate (1.1) are not even known to exist. There are two options to
overcome this difficulty.

First, one uses the-concept of wviscosity solutions.. This has the ad-
vantage that A has to be calculated only for smooth test’ “functions.
Second, one approximates the equation by. equations like .,

div(|Vaff2Vu) =0 , div(|[VulP?Vu) = P71,

as p approaches 0co. Both approdches are needed, so far. A strange
mixture of viscosity and variational methods prevails. ., . .,

. For the details of the variational method see [DBM]. The viscosity
method is developed in [J] where a remarkable uniqueness result is ob-
tained. It is proven in [J] that, given continuous boundary values in an
arbitrary bounded domaintin the n-dimensional Euclidean space, there
is a unique viscosity solution attaining thé given boundary values at
every boundary point. As a maiter of fact, this viscosity solution is
the uniform limit of the corresponding p-harmonic functions, as p ap-
proaches 00, (The solutions of the equation div(|Vh|P"?>Vh) =.0 are
called p-harmonic.) Although the framework of viscosity solutions is
needed to prove uniqueness, it does not produce any “new” solutions.

The objective of our note is to prove that even the mscostty super-

solutions of the equation are variational, i.e., they are locally uniform
limits of p-superharmonic functions, .as,p approaches oo. We use an ob-,
stacle problem in the Calculus of Variations, a tool that is of mdependent

u:(ltleljest A noteworthy consequence of the variational characterization
is that certain estimates now are automatically extended to the full
class of viscosity supersolutions. As an example we mention Harnack’s
inequality (Corollary 4.5) and Liouville’s theorem (Corollary 4.7).

. "t - . TN

2 Some Definitions

The viscosity supersolutions of A,v < 0 are equivalent to the oo-
superharnionic functions defined via a comparison.principle.. To be on
the safe side, we mention the definitions. Let Q denote a domain.in R™.




Note on co—superharmonic functions

2.1 Definition. The function v : } — (—00,00] i3 a viscosity superso-
lution, if

(i) v#£ oo
(ii) v is lower serdicontinuous, and

(iii) at any given point x we have Agp(z) <0, if 9 €CF(Q), ¢ S v
in 0, and ¢(z) = v(z).

Notice that A, has to be calculated only for the test-function ¢,
not for v itself. Analogously, a viscosity subsolution is defined. Finally,
a function that is both a viscosity super- and a viscosity subsolution
is called a viscosity solution. Thus viscosity solutions are continuous
by definition. By the result of R Jensen the Dirichlet boundary value
problem has a unique viscosity solution, cf. [J]. To be more precise,
suppose that © is bounded and that f : 8Q — R is a given continuous
function. Then the equation Ak = 0 has a unique viscosity solution A
in Q with boundary values

li_rfgh(z) = f(&)

at each £ € 8. As a matter of fact, limp.oohp = h uniformly in
€2, where hy, is the solution to the equation Aph, = 0 with boundary
values f in §%. (It is known that Ay is unique and that k, attains the
prescribed boundary values, if p > n = the dimension of the space.) To
begin with, it is not clear that different sequences of p’s approaching
o0, would yield the same function A. It is here that Jensen’s uniqueness
result is indispensable. Accordingly, the full sequence converges to h.

2.2 Definition. The function v : § — (—00,00] is co-superharmonic,

if
(i) v# oo,
(ii} v is lower sendicontinuous, and

(iii) v obeys the coniparison principle in any subdomiain D with D CC
Q: if h € C(D) is co-harrjonic in D eand h <v on D, thenh < v
in D.
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Notice that this definition requires that the concept of:00-harmenic
function has been defined in advance. Here we take the oo-harmonic’
functions as the v1scos:ty solutions. This mixture of two ooncepts in one
definition is not esthetic.! 2

2.3 Proposition. The viscosily supersolutions and the co-superharrionic
functzons are the san:le functtons

Proof. The v1sc051ty supersolutlons satisfy the companson prmcxple by
[J, Theorem 2.1} and hence they are co-superharmonic.

Suppose;naw. that v,is oo-superharmonic, Given xo € ? and ¢ €
cQ),, such that go(z) < v(z), when z,€ 5, and (p(zo) = v(zq), we have
to show that Aoou’;(:co) < 0. Suppose on the contrary, that Aoo(p(a:o) S
0 for some.p. By contmmty Aoocp(:c) > 0, when |z = xol <.r. Denote
B B(zo, r) Consu:ler the auxxllary. functlon

I T T w(x)'—{p(;c) —Elz—ngrz

A dlrect calculatlon ylelds , o
Aow (.7:) = Agp(z) - 2£|ch(3:) — 2e(z — zo)|?

— 2z — z0) - V|V (2)]? + 4¢? z:(u:I - Zoi)
J

3 <p(:ﬁ-)

j“:‘"a_a_'—(% 30;)

= ooqp(:r:) —I— Of(e).

Hence Aoow(:c) > 0 i in B when e> 0 is small enough This means,
that w is a claésswal subsolutlon to the equation and as such it satlsﬁes a
companson principle:: w < h in B, & denoting the oo-harmonic functlon
havmg the same boundai'y values on 4B as w. In particular, v(zg) =
o(zo) = w(:z:o) < h(zo).

Qn the,_oth{e; hand,

_hlos =vlsp = vlop — er® < v|gp — er?

By tbe assumption v(z) > h(z) + er? in B (the translation by the con-
stant er? does not matter). Thus v(z¢) > h(zq) +er?, which contradicts
the inequality v(xg) < h(zo) above. Hence the assumption A o (zg) > 0
was false. This proves that v is a viscosity supersolution.

'We do not know whether one may further restrict the &’s in (iii)’ to those having
second partial denvatws, so that the condition Asch = 0 could be directly verified,
at least at almost every point. .
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3 The Obstacle Problem

We will prove that the solution to an obstacle problem in the Calculus
of Variations is co-superharmonic. Suppose that 3 : Q- Risa given
Lipschitz continuous function and that ¢ € W1°(Q). For simplicity,
assume that  is a bounded domain. The function ¥ will act as an

obstacle: all admissible functions are forced to lie above ¥. We aim 7

at constructing a function v, € C(S'-l) A WL (€) such that vy > ¥,
v|0§t = ¥|812, and for each subdomain D C §2

Voo "oo,D < "V”“m,D (3.1)

whenever v € C(B) NWLe(D), v > ¥ in D, and v|8D = ve}8D. In
other words, one can characterize vy, as the best Lipschitz extension to
1 of the boundary values of 3, under the constraint that the admissible
functions are forced to lie above the obstacle.

The solution to the obstacle problem is unique. Fortunately, we need
not deduce that from (3.1}. For our purpose it is enough to construct one
solution as the limit of p-superharmonic functions, which solve the same
obstacle problem for the integral [, |Vv|Pdz. To this end, we minimize
the variational integral [, |Vu|Pdz in the class

Fp= {uEC(ﬁ)ﬂWl’p(ﬂﬂvzwinQ, v=ypond}. (32

There is a unique minimizer in this class, say vp. Thus

/Q|Vup|pd:r S/Q|Vv|pd:r (3.3)

for each v € Fp. We refer to {L] about this obstacle problem. Notice
that the class of admissible functions is not empty, since ¢ € Fp. {We
tacitly assume that p > n, so that the boundary values certainly are
attained in the classical sense.)

Using the familiar inequalities

1Vvpllpa < 19121V o2

1-=

lep(z) — vp(y)| < 2njz —yi" ?[[Vopllpa

D
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and some compactness arguments; we deduce that:a subséquence of v,’s
converges uniformly to a function v and that v, € Foo Actually, the
full sequence converges, see Remark 3.5 below.. .~ ..

3. 4 Theorem. The constructed solution Voo, to the obstacle problerd is
00- superharmomc in Q. It 13 00- harmomc in the set {Bo > 9 }:

Proof - We clann that Upo' 18 00- superharmomc 1:Choose a subdomaln
D CcC Q ,andjsupposeithat ho, € C(D) is an corharmonic function such
that ke, < v on the boundary 8D.. By Jensen's uniqueness theorem
hy, is variational, ie, it is the uniform limit of p-harmonic functions
with.the same boundary values as ko on.8D. Given & > 0, we have
Up > Vo, — € for (a subsequence of) large p’s. On the boundary 6D we
have hy < woo <ivp + & for large p's. By the comparison principle for
p-supcrharmonic functions, the inequality hp £ Up, + ¢ holds in D. At
that Voo 2 hoo in D Thusm00 Satl‘iﬁeS the comp_arlson.prlnmp'le. This
proves, that Voo .18, 005 superharmonlc . o

., JTo,prove that vy, is 0o-harmonic in the set where the obstacle does
not hinder, we proceed as_follows. Given ¢ > 0, ,mnmdqr‘ the open set

. H W . ¢ 1 . "
e e b L R M E T A P ¥

De={z &0 | vauld) > ¥(=) ¥ ¢},

provided that it is not empty When p > pe, vp(z} > vaolz) — € and
'U;;(I) > ¥(z) in*D;. Strictly 'speaking, this holds for a subsequence
of p’s. It is known that », is p-harmonic in the set {v, > ¥}, of. [L].
Especially, v, is p- ‘harmoiii¢ in D¢, when p is large: This méans that v
is the uniform limit in D, of p- harmenic functions. It is casily seen that
the uniform limit of p-harmonic functions, as p approaches oo, always is
oo-harmonic. Thus we have establisbed that vy is co-harmonic in each
D¢, when € > 0. This is the desired resuit.

. -
: 1 B ' S . ' A
3.5 Remark. A subsequence of p’s was used in the constriction of vg,.
Indeed, the full sequence converges, To see this..suppose! that we have
two functions v], and v2, in the previous theorem, perhaps resulting
from different subsequences. If the Set {vl, > vZ} is not empty, vl
is co-harmonic in this set, because vl > v2 > ¥ so that the obstacle

does not hinder. ‘But;:on the boundary of the same set, vl = v3.. By
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comparison, vgo > the co-harmonic function vl a fact that contradicts

the definition of the aforementioned set. This proves that vl < v2, in
Q. By symmetry, v/

2
o = Voo

Finally, it is worth our while mentioning that the minimization prop-
erty (3.1) follows rather directly from the construction. (We will not
need it.) '

4 Viscosity Supersolutions Are Variational

We will show that every viscosity supersolution is variational. In other
words, it is locally the uniform limit of p-superharmonic functions. To
prove this we will solve the obstacle problem with the supersolution itself
acting as obstacle! Therefore we had better first prove that we encounter
a Lipschitz continuous obstacle.

4.1 Lemma. The co-superharmonic functions are Lipschitz continuous
on conipact subsets. In particular, they are locally bounded and belong

to W™,
loc

Proof. Although a direct proof is not difficult, we will deduce the
result from Corollary 3.10 in {J], according to which bounded viscosity
supersolutions are Lipschitz continuous. Thus we have only to show
that the co-superharmonic function v is Jocally bounded. Since this is
a local question we may as well assume that v > 0 in §2, v being lower
semicontinuous by definition.

If v(z0) = oo at some point zg € §2, then we would have that v = oc
in 2, a situation excluded by definition. Indeed, choose a ball B{zq,r) C
1. Then the inequalities

v(z) > k(r — |z — xo|) , - =1,2,3,... (4.2)

hold, when z = zg and when |z — zg] = 7. The function h{x) = k(r —
lx — zp|) is co-harmonic in the domain 0 < |z — zg| < r, so that (4.2)
holds in B(zg,r) by the comparison principle. This means that v =
o0 in B(zg,r). Continuing like this, with a chain of balls, we get the
contradiction.

If v is locally unbounded, we can always select a sequence of points

x1,2,T3,... such that v{xg) > k and zg = limzy is an interior point.
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‘ For a*sufﬁuently small r’ all ‘B(xg,r)CQyand -0 - e
. . Lodei,

o) K D e —ml) b =123 3

»

WheI}l z,5 zk.and when |z — zg| == r. Again the mequahty holds in

B(zryr) by companson . Thus v(:x:) > '“2", when !:c :.:kl < 5 This
certamly yields that v(zo) o0 and so we are back to the first case.

Losn o Do ggfonsd s Bl e s, Y
4.4 Theorem’! Any oo superharndonic funétion is variational, i.e., it is
a locally unifornd Izmzt of p superharmomc Sfunctions.

BTN AN IS S N o iber g v S 1 BEEOA
Proof Suppose that woo is an arbltrtary oo~superhar’monic function
in, Q ..By. Lemma 4 1 it is, locally Lipschitz continuous, Let D cch
denote a subdomam By Rademacher s theorem Vwoog emsts a.e. in Q
and W € W1°°(D). it

We solve the obstacle problem in the domam D w1th Woo a5 obstacle.

The oliition b is obtained as the uniform limit in D of pisuperharmonic
funétiois.” By the donstriction ve = wi;. We refer to Section 3. In the
(components of the) open set where the obstacle does not hinder v, is
oo-harmonic,; that is, v, is co-harmonic in {yve > woo};; But on the
boundary: of t]&lshset Voo F, Woo (recall that both functlons c01nc1de on
8D by, the (,onstructlon) whence the, companson pnnmple ylelds that
Wos: = voo in the set where Woo < Voo, Th_lS is a clear contradxctlon,
except, if the aforemeutloned set is, empty. We have proved that Voo =
Weg 1IN D e
« Using an exhaustion of €} with bounded subdomams Di, D1 C Dg C
-1+, anda dlagonahzation procedure we obtam that Moo, = hm 1 vp in €2
The convergence is uniform on each subset DJ, but 1t may happen that
vy is defined in D; only when p > a certain index dependmg on j. For

the diagonalization one hasi to observe that vy Ditt v;) 7 in Dj, where
an obvious notation has been used.
This proves:the theorem. . R S

P ta
S T : T

- ) L
F TN B SRR T ST el o 4L

45 Corolldry 'The' Harnack mequalzty holds for all non- negatwe o0~
superharmomc functions: :

zl)"; e LT '1".- S B T i P st oayr ':3;-

IR Y S S TS ! L. 'U(:I.‘) Se%v(y) , SRS B BT | (46)
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when =,y € B(zg,r) and B(xo,R) C 2, 0 < r < R.

Proof. This was proved for variational oco-superharmonic functions in
[LM] and by Theorem 4.4 they are all of this kind.

4.7 Corollary (Liouville) The only co-superharmionic functions bounded
Sfrord below in the whole R™ are the constanis.

Proof. Adding a constant to the function, we may assume that it is
non-unegative in R™. Let R — oo in (4.6).
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