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Abstract

The full automorphsim group of the Kulkarni surface is explic-
itly determined. It is employed to give three defining equations
of the Kulkarni surface; each equation exhibits a symmetry of the
surface as complex conjugation.

In [1) and [6], Accola and Maclachlan determined that for each genus
g 2 2, there exists a Riemann surface which admits 8¢ + 8 automor-
phisms. They also proved that an automorphism group of larger order
cannot be uniformly constructed for every genus. In |5], Kulkarni ana-
lyzed whether the family constructed by Accola and Maclachlan is the
only family of Riemann surfaces whose members posses 8¢ 4 8 automor-
phisms. He proved that if ¢ = 0,1,2 mod 4 and sufficiently large, then
the family constructed by Accola is unique, however if ¢ = 3 mod 4 there
exists an additional family. Members of this family have subsequently
been named Kulkarni surfaces. Kulkarni showed that these Riemann
surfaces have an automorphism group isomorphic to -the group with the
following presentation: '

< A,B|A®T2_pt— (4B =1, B24AB%= A9 > . (1)
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In [4), a defining equation for the Kulkarni surface is computed. After a
birational change of coordinates, the defining equation exhibited in [4]
becomes:

292 (z - 1)z Iz + 1)92 = 0. (2)

Recall that a symmetry of a Riemann surface is a bijective, antiholomor-
phic involution. In (2], it was determined that, in addition to the auto-
morphism group of order 8¢ + 8, each Kulkarni surface possesses three
conjugacy classes of symmetries with fixed points. As is well known, to
each class of symmetry a defining equation with real coefficients can be
given which exhibits the symmetry as complex conjugation. In addition,
since the three symmetries have fixed points, the defining equatlons for
the surface admit real solutions.

In this paper we explicitly determine the full automorphism group of
(2). We then employ our results to yield three defining equations of the
Kulkarni surface in which the symmetries are exhibited by conjugation.

Throughout the paper, let g be a fixed integer congruent to 3 mod 4.
Let G be the group defined in (1) and let X denote the Kulkarni surface
of genus g. Let K be the subgroup of G generated by 4 and let H be
the subgroup of @ generated by A and B2. Thus [G: H] = [H : K] =
Note that K aH, however K is not a normal subgroup of G. Let U denote
the upper half plane. To each of the subgroups defined above, we can
associate a Fuchsian group. From (1), G 22 A/T where A is the triangle
group (2,4,2¢g + 2), and I" is the normal subgroup of A generated by
B2AB?A9. There are three points of X/G = U/A ramified in X = U/T.
To conform with notation later in the paper, let R, Ro, and Rg be the
points of ramification 2,4 and 2g + 2 respectively. It is easy to determine
the following information:

(1) In the covering of X/G by X/H, both R and R are ramified,
however Ry is unramified. Let Qq, and @Q; denote the points lying
above R and let Q,, denote the point lying above R,.

(2) In the covering of X/H by X/K, Qo is ramified. In addition,
exactly one of Q¢ and Q1 is ramified; we choose our notation so
that Qo is ramified, and Q; is unramified. Let P., denote the
point lying over @, let P_; and P; denote the points lying over
@1, and let Py denote the point lying over @g.
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(3) The only ramification that occurs in the covering of X/K by X is
at P_q, P1, and at Py. The ramification indices at these points are
29 + 2,29 + 2 and g + 1 respectively.

The determination of the automorphism group of X is equivalent to
finding the group of automorphisms of C(z, ), the function field of X.
We will freely work with both the function fields and the actual surfaces
and use the same name for an automorphism of a surface and its induced
automorphism on the function field of the surface. From equation (2) we
see that X (and consequently C(z, z)) has the automorphism A(z) = =z,
A(z) = ez, where ¢ is a 2g + 2th root of unity. Note that the Riemann
sphere, with the associated function field C(z), is the orbit space X/ K.
Clearly the points z = 0,z = —1, and £ = 1 of the orbit space are
ramified in X with ramification indices g+1,2g+2 and 2¢+2 respectively.
From 3) these points correspond to Pg, P_1, and Pi.

We now determine the automorphism B?; this will allow us to de-
termine the automorphism B. Recall that < A,B%? >= H, and H/K
induces automorphisms of X/K and of the function field C(z). But
from 2) above, we know in the cover of X/H by X/K, that P_; and
P, both lie over Q1, and Qg is ramified. Thus the automorphism B2K
switches z = 1 and z = —1 and fixes z = 0. Recall that the automor-
phism group of C(z) is the group of linear fractional transformations,
thus B%(z) = —z. The Riemann surface with function field C(z?) is the
orbit space X/H. Define y = z2. Then Qo and Q; are the points y = 0,
and y = 1. Note from 2) that the point P is fixed by B? Thus Qoo
corresponds to y = oo.

Since |G : H} = 2, the coset BH induces an automorphism of X/H
and of the function field C(y). From 1) we see that y =0 and y = 1 are
interchanged by BH and yo is fixed by BH. Thus BH corresponds to
the linear fractional transformation y — 1 — y. Recalling that y = z2
this yields that BH(z?) = 1 — z2. But examining (2) we see that if we
define ¢ and v by

2 1)/2
P e
z(z + 1) [z(z + 1)]lot1)/4
then from (2) we obtain
4_ zg+1 2 _ .'122 -1
v = ) = )
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Thus B(z) = +izv?, where i = /—1. We choose B(z) = —izv?; we will
see later that B3(z) = izv2.

Note that the Galois group of C(z, z) over C(z) is the cyclic group
generated by A. Thus for each divisor d of 2g + 2, C{(z, 2(20+2)/ ) is the
unique subfield of C(z, z) which contains C(z) as a subfield of index 4.
Note, in particular, that C(z, v) is the unique field which contains C(x)
as a subfield of index 4.

It is left to determine B(z). Note that

2_
B() = o

2

(5)
Applying B to (4) and using (5) easily yields that

(zB(2))? = e"z(z + 1)(—izv?)(—izv? + 1), (6)
for some integer r. Thus to determine B(z} we must find a square root of
z(z + 1)(—izv?){—izv? + 1). Let « denote such a square root. Then
[C{z,v?,u) : C(z,v?)] = 2, and the previous paragraph yields that

C(z,v% u) = C(z,v). Thus u € C(z,v). Using this fact, a direct cal-
culation yields that if

u = ex’v® + iczo(z + 1) (7)
where ¢ = (i + 1}/2, then
u? = z(z + 1)(—izv?)(—izv® + 1). (8)
We can now prove the following theorem.

Theorem. Let (2) define the Kulkarni surface of genus g. Let the funé-
tions g, v and u be defined as in (3) and (7) and let ¢ be a 2g 4 2th
root of unity. Then the automorphism group of the Kulkarni surface is
generated by A and B where

A(z) =z, A(z)=¢€z, B{z)= —izv?, Bz} =u/=z.

In addition, these automorphisms satisfy the relations (1).

Proof. A is obviously an automorphism of (2). To prove B is an
automorphism it is sufficient to show that

B(2** — (v — 1)z (= + 1)9+2) — 0. (9)
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But the left hand side of {9) is

u28+2

Sz - (miz? = 1) =iz (—ize® + 1P (10)
Z

Using (2) and (8), (10) becomes

fz(z + 1)(—izv?)(—izv? + 1)j9+!

(x - )zo-1(z + 1)9+2 — (mizv? — 1)(—izv?)9"Y(—igv? + 1)972

= (—izv?)9"(=izv? + 1) (fi(——-,_,'ﬂ — (—izv? = )(—izv? + 1)). (11)

T

However, (4} yields that the third factor of line (11) equals 0. Thus B
is an automorphism of (2).
Note that

2 2

B(g) = B(— )) - - (12)

z(z +1 - 22(—izv?)(—izv? + 1)

Thus (8) implies

z(z + 1) _

Blqg) = 1/q. (13)

This immediately implies that B(v) = 1/v and, since B(z) = —izv?,
that B?(z) = —z. Note also from (3) that A(v) = iv.

We now show that A and B satisfy the relations (1). Clearly B%(z) =
z, so we show that Bi(z) = z. But

B (Z) - 32(‘[1.)11. - (14)
But if we define a == cx®v® and 8 = czv, then
u=a—iB(a)+if. (15)

Observe that B%(a) = a and B(8) = —if and, since A(v) = v, that
A(e) = —ia, AB(a) = iB(a) and A(f8) = i8. A short calculation yields

B*u)B(u) — uB?(x) = —2° + 2B(a)? - 28% = 0.

The last equality occurs because of (4). This combined with (14) yields
. that B%(z) = z.

269
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We now show that BA has order 2. Clearly BA(z) = eu/z, and
from (15) it is easy to deduce that BA(u) = u. This clearly yields
BABA(z) = z. It is straightforward to see that BABA(x) = z, thus
B A has order 2.

Finally we verify the last relation. Clearly A(x) = z and B%*(z) = -z
so B2AB%(z) = A9t%(z) = z. To complete the verification note that

B2A(z) = eB(u)z/u, lA9+232(z) = A"%(B(u)z/u) (17)

Since g + 1 2 0 mod 4, A9t! fixes both z and v, thus A9*! fixes both
u and B(u). Thus A912B%(z) = —ezAB(u)/A(u). A short calculation
shows

uAB(u) + A(u)B(u) = 2(—a?+ B(a)* - %) = 0.

Thus the two quantities in (17) are equal and the last relation is verified.
This proves the theorem.

In [2] it is shown that the Kulkarni surface admits three nonconjugate
symmetries with fixed points. To each of these symmetries, a defining
equation for the Kulkarni surface can be found for which the symmetry
is given by conjugation. In addition, since each symmetry has fixed
points, the defining equations admit real solutions. We now determine
the symmetries and their associated defining equations.

For the remainder of the paper, we work exclusively with the func-
tion field C(x, 2) of the Kulkarni surface. Recall that a symmetry of a
Riemann surface induces a symmetry of the function field of the surface,
in other words, a field automorphism of order 2 which fixes the real, but
not the complex, numbers. The symmetry given by conjugation of (2)
determines the following automorphism of C(z, z) over R :

T T, zrz, i —i (18)

We denote this automorphism of C(z,z) by o. Note that v and ¢ are
real rational functions of =z and z, thus o(v) = v and o(g) = ¢. It can
easily be determined that As and o B are also symmetries of C(z, z).
We show now that they each lie in distinct conjugacy classes.

(1) To show o is not conjugate to o B; assume that B"A°¢cA™*B™ " =
oB. Since A and o both fix z, we obtain r = A°cA™%(z) =
B~"oB"t(z). By substituting r = 0,1,2,3 we obtain a contra-
diction.
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(2) To show o and Ao are not conjugate, assume that B"A’c A™*B™" =
Ao. Then i*BT(v) = BTA%(v) = AcB"A%(v) = iAo B"(v). Re-
call that B"(v) = v if 7 is even, and B"(v) = 1/v if r is odd. In
either case we obtain a contradiction.

(3) To show that Ac and oB are not conjugate, as
sume B"A"a"AacrkA“’B_" = oB. Then A%c*Aca*A~%(z) =
B ToB™!(z), and a contradiction is obtained as in (1) above.

We now determine a defining equation which yields Ao as conjuga-
tion. Note that Ac(z) = z and that Ao((1 +¢€)z) = (1 + €)z. Define
& = (1 +€)%*2 and ¢ = (1 + €)z. Multiplying (2) by the real, negative
number x yields

(14 2)29+2 — (14 &%z - 1)29 Yz + 1)7*2=0.  (19)

Thus
(%2 gz - 1)z Mz + 1) =0, (20)

Thus (20) is an equation for the Kulkarni surface with real coefficients,
and for which complex conjugation is the map:

(=(Q+€zm¢, zrHz i —i (21)

This is precisely the same automorphism as Ae. In addition, since « is
negative, whenever 0 < z < 1, (20) admits a real solution for ¢. Thus
(20) is a defining equation for a symmetry with fixed points.

We now determine an equation which exhibits the symmetry ¢ B as
conjugation. Recall that g = 3 mod 4. For this section, we assume that
g > 7. Observe that A9*! and B commute. This follows from (1), since

ATFLBATHL = A-149+2B 4912471 = A~Y(B2ABY)B(B%ABY)A™!
(22)
— A"1B2ABAB%’A ' = A"'BB*A"! = B.

Thus A9*! and B generate an abelian subgroup M 2 Zj x Z2 of order
8. Let E denote the subfield of C(x, z) which is fixed by M. The only
elements of order 2 in M are A9+l B? and B249*!. Thus there are
exactly three maximal subfields of C(z, z) which contain E.
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We make the following definitions:

t=gq+1l/q, r=v+1lfv, s= -i—%. (23)
Note that if g == 3, then ¢ = r and s = 2. For this reason, we assume that
g > 7. Since v is a power of ¢, (13) yields that each of these elements is
fixed by M. In addition, it is clear that each of » and s can be expressed
as a polynomial in ¢{. Note that [C(g) : C(t)] = 2, and from (4) and (3),
we obtain that [C(x,q) : C(g)] = 2 and [C(z,z) : C(x,q)] = 2. Thus
[C(z, z) : C(¢)] = 8, and thus C(t) = E. .

We note that {1, z, 2, zz} is a basis for C(z, z) over C(g}. From 22 =
gz(z + 1), and 2% = 1/(1 — +*) we deduce that

1 _ {(1— v Mz = 1)+ 1)
z{z+1) vl !
1z = z _ (1 — v*Wz(v? =1 + 1)z
Cgz(z+1) gvt ’

o (v = 1)(L44) + 22+ 1) — v+ 1)
B(z)zgzz:rv 1 z:ﬂ@‘v v )

We note that C(z,q) consists of the elements of C(z, z) which are
fixed by A9*). If kg € C(z,z), then B%(hg) = ho. This leads us to
consider whether there exists hg € C(z, q) such that B{hg) = ihg. There
are many such elements. Define

_ V2(i ~ )(v? = )z
- 2v '

We note that B(h) = ih and o B(h) = h. In addition, since & is fixed by
A?%1] but not by B?, we obtain that [C(h,t) : C(¢)] = 4 and

R (24)

Rt = # 11)2 = —ri(r? - 4). (25)

We now determine an element which is fixed by B but not by A9+1,
A natural candidate is

jo:=z+B(z)+BXz) + B¥z) =z +

2qv
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__z(:r:(u4 -1)+1) N 2(z(v? = 1) = @2 - 1)) —iz(z(v? = 1) +v2+1)
y? 2qv
_ 2(v? — D)2z +z—1)(v—g)
= po
However N )
2 clv—gq)  As—Z)
(jo)* = P R (26)
In order to avoid fractions, we instead consider
. V2rjo V2z(v2 + 1) (v — ¢)(z(v? — 1) —v2 + 1)
] = 5 = 2quq - (27)
Thus B(j) = j, and ¢ B(j) = j. Since A97}(z) = —z, we have AT*1(j) =
—j. In addition,
2 a2
j2 _ (‘U + 1)(q U) — 1,_(3 _ 2) (28)

qu®
Note that j ¢ C(k, t) since j is not fixed by A9tL Thus C(5, h,t) =
C({z, z). A basis for C(h, j,t) over C(t) is given by
{1,h,h%, %, j, jh, ih%, ih%}.

Define ¢ = h + j. Recall that the maximal subfields of C(x, 2) which
contain C(t) are fixed by an element of G of order 2. However BX(¢) =
B2(h+j) = —h +j, ATYY() = A9* (k + j) = h— j and BAIH(() =

—h — j. Thus C((,t) = C(z, z). The minimal polynomial of { over C(t)
will yield a defining equation for the Kulkarni surface. It is easily com-
puted as follows. We define

Fp = (T = ()(T - A77(())

= T2 _2hT + K2 — 2 =T? —2hT + h® = r(s - 2).
We define

Fq = (F2)B2(F2) = (T2 —2hT + h® = r(s—2))(T?+ 26T + h* —r(s - 2))

=Tt 2(h2 4 (s~ 2NT? — 2h%r(s —2) — r2(r? — 5% + 4(s — 2)).

273
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The minimum polynomial is F = (F4) B(F4). Thus
F(()=¢8—4r(s—2)¢5 +272(r2+ 352 — 125 + 8)¢*  (29)
+4r3(s —2)(3r% — 52 + 45— 16)¢% + ri(rt + 2r2s(s — 4) + 5% — 85> + 1652).
This polynomial can be written more compactly as: |
(€2~ r(s =22 + 42— 4))2 +16-°°(s — 2)(r* - 0)¢% =0,  (30)
or recalling that 52 = r(s — 2) € C(t) and h? = —r2(r% — 4) € C(t), as
((6* ~ %)% ~ 1*)® - 168%%¢% = 0. (31)
It remains to express r and s in terms of {. Define the polynomials
fn(t) by
fult) ="+ .
Note that f,(t) satisfies the recurrence relation
far1(t) = tfa(t) = far(t),  fo=2, fi=t (32)

Using the elementary theory of recurrence relations (32) has the closed

form: (t . m)n . (t ~ \/{2__4)"
fn(t) = o . (33)
But (33) is easily seen to yield
; A
)= g 2 (Qk) G 2

where [n/2] is the greatest integer less than or equal to n/2. With this .
notation, r = f(g41)/4 and s = fi,_3)/4, and thus (29) can be expressed
entirely in terms of ¢ and ¢.

Thus (29) is a defining equation for the Kulkarni surface. Note that
complex conjugation is the map:

(¢, gtljg=t—1t, i —i

This is precisely the automorphism o B. Thus (29) is an equation for the
Kulkarni surface which exhibits o B as conjugation.
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We verify that (30) admits real solutions, and thus that complex
conjugation of (30) has fixed points. Let # be any real number such that
/2 < 0 < w. In (23) define

498
q= egtl
Thus o (o-3)05
. , g—3)8i —(g—3)6i
r=e% 4% s— ¢ gt 4 e_gFl

Thus -2 < r < 0 and, since g 2 7, -2 < s < v2. In (30), let r and s
be defined as above, and let {2 = r(s — 2). Since (s — 2) is positive, ¢
is real. With these substitutions, the left hand side of (30) equals

rir? —4)(r? — 4+ 16(s — 2)%) < 0.

With the same definitions for r and s, the left hand side of (30) is positive
for large, real values of (. Thus (30) admits real solutions.

[ would like to express my gratitude to Emilio Bujalance for suggest-
ing this problem to me and for his constant support and encouragement.
1 also wish to thank Jose Manuel Gamboa and Antonio Costa for their
helpful conversations concerning this topic.
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