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The Artin conjecture for Q-algebras.

Ronan QUAREZ

Abstract

We give a simplification, in the case of Q-algebras, of the proof
of Artin’s Conjecture, which says that a regular morphism between
noetherian rings is the inductive limit of smooth morphisms of
finite type.

Introduction

This article is devoted to the proof of Artin Conjecture for Q-algebras
which can be formulated as follow :

Artin Conjecture Let A 2 B be a regular morphism between noethe-
rian rings, where we assume that A contains Q. Then, the ring B is a
filtered inductive limit of smooth A-algebras of finite type.

The Artin Conjecture is also called Generalised Neron desingularization
or Appproximation of regular morphisms. The proof of the Artin
Conjecture is based on ideas of Popescu [Po] and completed by André
[An1]. We will follow this proof. The conjecture had also been proved
by Spivakovsky [Sp| using another method, containing some geometrical
ideas, such as blowing up.

In these references, the Artin Conjecture is proved without the
assumption that A contains Q. To deal with this desingularization
problem in general characteristic, the André Homology [An2]| seems to
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be the appropriate tool. However, it appears to be quite natural, for Q-
algebras, to give a proof without using this André Homology formalism.
This is our main goal : to simplify André 's proof for Q-algebras.

The Artin Conjecture is a powerful tool in commutative algebra
which admits a lot of applications, some of them are described in [Te].

It is formally equivalent to the following formulation :

Artin Conjecture (2nd form) Consider a commutative diagram of

4 % B

noetherian rings | , where ¢ is regular and C of finite type
C

over A. Assume that A contains Q. Then, there ezists a factorization

A2 B

[ where D is smooth of finite type over A.
C — D

We will work with this form of the conjecture, the factorization
through D is called a desingularization or smoothing of C.

The section 1 recalls the definitions of smoothness and regularity for
a morphism. We also introduce the singular locus of C over A which is
the set of all prime ideals of C where C is not smooth over A. Then, the
ideal of the singular locus is defined to be the intersection of all these
prime ideals. We denote it by Hcya-

In section 2 we show, among other things, that if \/Hc/aB = B
(i.e. if the inverse image of the ideal of the singular locus of C over A in
Spec B is empty), then we have a smoothing of C.

In section 3 we explain the main lines of the proof. The idea is to
make the ideal ,/H/4B increase, until we finally arrive to B. For this,

we reduce to the case where /H¢yaB is a prime ideal q. Set p=qnA.

In section 4 we treat the basic case where ht p = ht g = 0. In section
5 we explain the reduction to this basic case, by means of a lifting
property of the smoothing. This last section contains the most technical
part of the proof.

I want to thank Michel Coste and Mark Spivakovsky for useful
comments on this paper.
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1 Preliminaries

First, recall some classical notations. We denote by Spec B the set of
all the prime ideals of B. For any p € Spec B, k(p) is the residue field
of B at P and htp is the height of pin B. Let ¢ : A — B be a ring
homomorphism. Let I be an ideal of A, J an ideal of B and  be a prime
ideal of B. Then, IB = ¢(I)B , JNA=¢"1(J) and Aq = Ay-1(q).

In this section, we introduce the classical algebraic results about

smoothness and regularity of morphisms. For these notions we will refer
to [M1] and [G1].

1.1 Smoothness and regularity for a ring homomorphism

Definition 1.1. (Formal smoothness). Let A 4% Bbea ring
homomorphism and I an ideal of B. The ring B is formally smooth
over A for the I-adic topology if for any A-algebra C and any nilpotent
ideal N of C, each continous morphism B = C/N (for the discrete
topology on C/N and the I-adic topology on B, i.e. u(I%) = 0 for some
inleger e¢) can be lifted to a morphism B -+ C. That is, we have a
commulative diagram :

B 5 CJ/N
TN 1
A - C

We also say that B is I-smoocth over A. If I = Q then we say that B
is smooth over A (for the discrete topology). If the lifting v is unique,
then we say that B is I-etale over A.

Definition 1.2. (Regularity). Lel k be a field and B a noetherian
k-algebra. The ring B is geometrically regular over k if for any finite
field eztension k — k', the ring B @, k' is regular (it is reguler at each
prime ideal). The morphism A kA B is regular if ¢ is flat and for each
prime ideal p of A, B@ 4 k(P) is geometrically regular over k(p).

Let q € Spec B and p = qNA. The morphism A 2 Bis regular at q,
if Bq is flat over Ap and the ring Bq@® Ap k(p) is geometrically regular
over k(p).
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Remark 1.3. The notion of a geometrically regular ring is local.
Namely, the ring B is geometrically regular over k if and only if, for
any prime ideal q of B, Bq is geometrically regular over k.

In the same way, the morphism ¢ is regular if and only if ¢ is regular
at each prime ideal q of B.

When the rings Ap and By are artinian (ht q = htp = 0), it is clear
that ¢ is regular at q if and only if the morphism ¢4 : Ap — Bgq is
regular.

Beware that it is not true in general. Indeed, Nagata showed [Na,
Appendix E7.1] the existence of a noetherian normal local Q-algebra
R, whose completion Ris not a domain. In this case, if the morphism
R — R were regular then R should be normal by [M1, Th 32.2]. Which
is not possible since R is not a local domain.

We may also mention nevertheless that this property is true if we assume
that the Q-algebras A and B are excellent. Then by [G2, 7.9.8], the
morphism A — B is regular at q if and only if ¢q : Ap — Bgq is regular.

The definition 1.2 has a simple formulation for Q-algebras since we
do not have to deal with field extensions :

Proposition 1.4. Let B be a noetherian algebra over a fleld k con-
taining Q. Then, B is geometrically regular over k if it is a regular
ing.

The proof of the Proposition is immediate by using the two lemmas
[M1, 28.I.emma 1] and [M1, 28.7].

1.2 Relations between smooth and regular morphisms

We will see that the two notions of regular and smooth morphisms
coincide under some finiteness assumption.

Proposition 1.5. Let ¢ be a morphism of noetherian rings A 2 B.
The morphism ¢ is regular at q if and only if the morphism A * Bgq
is formally smooth for the q-adic topology. Then, the morphism ¢ is
regular if and only if the morphism A ﬁ Bgq is q-smooth for each prime
ideal g of B.

The proposition follows from [M1, 28.7] and the difficult theorem
[G1, 19.7.1]
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Lemma 1.6.([M31, 28.7]). Let (A,m,k) be a noetherian local ring
containing a field L. Then, A is M-smooth over L if and only if A is
geometrically regular over L.

Theorem 1.7.([G1, 19.7.1]). Let (A,mk) and (B,n, K) be two
noetherian local rings and ¢ : A—B be a local homomorphism. Let
By = B®4k = B/mB and ng = n/mB. Then, B is n-smooth over A
if and only if B is flat over A and By is W-smooth over k.

If we assume that B is a finite type A-algebra then we get the
following :

Proposition ([G1, 22.6.6]). Let A be a noetherian ring and B a finite
type A-algebra. Then we have the equivalences :

e B is smooth over A
e For each prime ideal q of B, Bq is smooth over A

o For each prime ideal q of B, Bq is -smooth over A

We can summarize the previous results into the following
proposition :

Proposition 1.8. Let ¢ : A — B be a morphism of noetherian rings.
If B is smooth over A then ¢ is regular.

Assume that B is a finite type A-algebra. Then B is smooth over A
if and only if ¢ is regular.

Smoothness criterion using the module of differentials

Let A be a noetherian ring and B an A-algebra. Consider a presentation
B >~ F/I with F a polynomial ring F = Alug|;cj. We recall the second
fondamental exact sequence ([M1, Th 25.2]) :

F

Denote by Hi{A, B) the kernel of the first arrow. This is justified
by the fact that this B-module does not depend on the choice of F. It
is actually the B-module H,(A, B, B) in the theory of André Homology
of commutative algebras defined in [An2).
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We deduce from [G1, 22.6.3] :

Proposition 1.9. Let A kA B be a morphism of noetherian rings. The
ring B i3 smooth over A if and only if Hi(A,B) = 0 and QlB/A is a
projective B-module,

Remark. By using the André Homology, we can also prove that the
ring B is regular over A if and only if #,{A4, B) = 0 and Qb/A is a flat
B-module.

Indeed, a projective module is always flat by [M1, Th 2.5]. Con-
versely, a finitely presented flat module is projective by [M1, Corollary
of Th 7.12]. Since B is a finite type A-algebra and B is noetherian, we
deduce that QL /4 is a finitely presented B-module. Hence, we find that

if the morphism A4 2, B is smooth then it is regular. Furthermore, if B
is a finite type A-algebra then ¢ is smooth if and only if it is regular.
Which is an improvement of Proposition 1.8.

The Jacobian criterion

When A is a noetherian ring and B is a finite type A-algebra, we have
another smoothness criterion, which is the Jacobian criterion (which
is again deduced from the smoothness criterion using the module of
differentials). Consider the presentation B = Aluj,...,un]/I with
I = (f1,...,fm)- The Jacobian criterion of smoothness [G1, 22.6.3]
says that :

The A-algebra B is smooth at the prime ideal p of B if and only if
there exist some subsets (g1,...,9r) of (f1,...,fm) and (v1,...,vy) of
(u1,...,un) with r < n such that :

det (8g:/0vj)1<ii<r € P,
Bp = ((g) : I)p where ((g) : I) = {& € Alu;,...,un] | af C (g)}.

1.3 The singular locus of an algebra

* Let-A be a noetherian ring and C be a finite type A-algebra. Consider
the presentation C = Aluy, ..., uxl/I with I = (f1,..., fm)-

We write Ay for the ideal of A[u] generated by the r x » minors of
the Jacobian matrix (8g:/8v;)1<i<r,1<j<n for g = {g1,...,9r) C I. The
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singular locus of the ring C over A is the set of all prime ideals p of
C such that C' is not smooth at p over A. We define the ideal of the
singular locus of C over A to be Hgyy = \/E{g}c{f} Ag((g) : IC. The
main advantage of the ideal of the singular locus is that the relative
dimension of the jacobian criterion does not appear any more. The
Jacobian criterion takes the following form :

Proposition 1.10. Let A be a noetherian ring and C a finite type A-
algebra. Let P be a prime ideal of C. The ring Cp is smooth over A if
and only if Hoya € p. Letz € C, equivalently we have C. is smooth
over A if and only if z € Heya-

The ideal of the singular locus Hcys does not depend on the choice
of the presentation of C over A.

All the classical results on smoothness can be formulated using the
ideal of the singular locus. We state below the examples of composition
and base change formulas for smoothness.

Proposition 1.11. {Composition). Let A be a noetherian ring, B
and C be two finite type A-algebras. Suppose we have two morphisms
A — C — B. Then \/HB/0HC/AB = JHB/CHB/A or equivalently

HpicN [ HoaB = HB/CDHB/A-

Proof. Let p be a prime ideal of B. We have the following
equivalences :

Hp/icHeaB € P " Hpjc € pand HeaB Z P

Bp smooth over C and Cyp smooth over A

!

Bjp smooth over C and Bp smooth over A
(M2, 33.B Lemma 1|

Hpic . pand Hpa € P

He/icHBA L P

1111

Proposition 1.12. (Base change). Let A be a noethertan ring, B
and C be two finite type A-algebras. Let D = B@,C. Then we have

1/HB/AD C HD/C-
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Proof. Let q be a prime ideal of D and p = qN B. If By is smooth
over A, then By @ Ap Cq is smooth over Cq and so is Dq which is a
- localization of Bp ® 4, Ca-

We explicitly mention some important consequences we will need in
the following .

Lemma 1.13. Let A be a noethenan ring and B be a finite type A-
algebra.

o Let I be an ideal of A, A = A/I and B = B/IB = B®,A/l.
Then we have 1/7‘[3/,41_3 CHa/a-

o Let A' = A[ﬁl,...,un] and B' = Bluj,...,up] = B4 A'. Then
we have the equality \/HpsB' = ‘HB:/A:. {(More generaly, this

equality is true whenever A' is flat over A by [An2, Prop 15.18] or
[Anl, I Lemme 30]).

Proof. We only have to prove the non obvious inclusion of the second
equality. The morphism A — A’ is smooth, so is the morphism
B — B’ by base change. Thus, we have H /4 = A’ and Hg g = B'.
We apply Proposition 1.11 to the sequence A —+ B — B’ to get
HpypN/HpaB' = HpypN Hpisa, and hence \/Hp/aB' = Hpia.
Again, we apply Proposition 1.11 to the sequence A — A’ — B’ to
get HB'/A' N HAJ/AB = HBw/Ar ﬁHBf/A which gives HB:/Af - HBf/A

Combining the two relations, we deduce H B/a' € \fHpjaB'.

1.4 Local criterion of flatness

Flatness is a prerequisite for smoothness or regularity, hence we will need

the following forms of the local criterion of flatness which are corollaries
of [M1, 22.3].

Proposition 1.14. Let A — B — C be local morphisms of noetherian
local rings. Assume that B is flat over A, and let k be the residue field
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of A. Then, C is flat over B if and only if C is flat over A and C Q4 k
is flat over BQ k.

Recall that an element z of a ring A is A-regular in A if it is not
a zero divisor. Moreover, a sequence (z1,...,Zn) of elements of Ais
said to be A-regular if z; is A-regular and if for any i € {2...n}, ziis
A/(z1,...,%i-1)-regular, and A/(z1,...,2a) # 0. We have :
Propostion 1.15. Let (A, m) be a noetherian local ring containing a
field k and (z1,. .., zy) be an A-regular sequence inm. Then, the subring
klz),...,Zn) of A is isomorphic to the free polynomial ring k[X1,-.., Xnl
and A is flat over k[zy,...,Zq].

3 Elementary smoothing, standardization

A% B
Consider the commutative diagram of noetherian rings | ,
C

where C is of finite type over A. In this section, we construct a
factorization which is smooth at the elements of C whose images in

B are in /HcaB.

Propostion 2.1. Consider the commulative diagram of noetherian

A 2% B
rings | , where C is of finite type over A. Lel z be an element
C .
of C whose image in B isin ,[Hc/aB. Then, there exists a factorization
A% B

[ where D is of finite type over A, Hg/aD C Hpyo and the
C — D
image of £ in D is an element of Hp/a-
Proof. Let ¢ = {c1,...,¢s) be a system of generators of Hcya. There
exists an integer N such that in B, z¥ = ¥ 1<, #(ci)zi with z € B.
Set

D =ClZy,.... Zs) /(&N — Y eiZs)
1<i<s

and send Z; onto z; to define a morphism D — B which factorizes
the diagram. Moreover, for any i , ¢ € Hpsc since B/BZ,-(:L'N -
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Y i<izs ¢iZi) = —¢; which is invertible in D, Thus, He/aD C Hpye-
Since =¥ = Y i<ics€iZi in D, we may apply Proposition 1.11 to the
sequence A — C — D and conclude that the image of z in D is in
HD/A-

If we take = 1 in the previous Proposition, we get :

Proposition 2.2. Consider the commultative diagram of noetherian

A% g

rings | where C is of finite type over A. Assume that
C

, where

v/ HeoyaB = B. Then, there exists a factorization

SN
LNl
-

D is smooth of finite type over A.

This Proposition is the expression of the Artin Conjecture when the
inverse image of the singular locus of C over A is empty in Spec B, i.e.
HeyaB = B. The Proof of the Conjecture will consist in shrinking the
image in Spec B of the singular locus of C over A in order it becomes
empty, and then to apply previous Proposition 2.2. The smothing in
this degenerated case will be called elementary smoothing.

Now, we introduce the notion of standard elements which are much
easier to deal with than general elements of the ideal of the singular
locus. ‘

Definition 2.3. Let A be a noetherian ring. Let C be a finite A-
algebra given by the preseniation C = Aluy,...,up|/I. An element
z of Hpya is said to be standard for this presentation, if there erists
(9) = (g1,---.9r) C I such that x € \/Ay((g) : I)C. The A-algebra C is
said to be standard smooth over A if 1 is stendard for some presentation
of C.

A multiple of a standard element is still standard. The main tool to
“force” an element to become standard is the Elkik Lemma [El, Lemme
3] which uses the symmetric algebra of a module.

Lemnma 2.4. Let A be a ring and M be an A-module. We denote by
SaM the symmetric algebra of M over A. Then, we heave QE‘AM/A ~
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M ®,4S4M. Moreover, M is a projective A-module if and only if SAM
is smooth over A.

Proof. For any SsM-module P, we have the isomorphisms :

Hom SAM(leAM/A, P) = Der 4(SaM, P) = Hom 4(M, P) =
Hom g, m (M @4 SaM, P)

Then we get Qg yr/ s > M @4 54M.

Now, suppose M is projective and consider the commutative diagram

SaM 5 C/I

1 1

A -+ C

We identify M with the degree one component of S4M, and we de-
note by u; : M — C/I the restriction of «. Since M is projective, u; fac-
torises through M % € — C/I. Hence, v, extends to a homomorphism
of A-algebras v: S4M — C, which makes the diagramm commute. The
infinitesimal lifting property of smoothness 1.1 is satisfied, and hence
54M is smooth over A.

Conversely, let I = @2, S4M be the ideal of positive degree
elements of S4M. The second fundamental exact sequence deduced
from A — SAM — SaM/Iis:

SaM

This exact sequence splits since SqM/I =~ A is smooth over A.
Thus, I/I? = M is a direct factor of the A-locally free module
Q}:‘AM/A ®s,m SaM/I. Then M is projective.

Proposition 2.5. Consider the commutative diagram of noetherian
¢

A —- B
rings | , where C is of finite type over A. Then, there
C
A 2% B
erists a factorization | 2 1 , where D is a finite type A-algebra,
cC — D
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HeyaD C Hpe,r and we can find a presentation of D over A such that
the images in D of all the elements of Hcya are standard.

Proof.

o We start with the presentation C = Alu]/(f) where v =
(u1,...,un) and f = (f1,..., fx). We consider the symmetric al-
gebra D = Sc((£)/(f)}?). The homomorphism ¢ — B factorizes
through D by sending the elements of positive degree to 0 in B.
Let = € Hoya. The ring C; is smooth over A, so the conormal
bundle (f)/(f)2®c C; is locally free over SpecC,, and by [M1,
Corollary of theorem 7.12}, it is a projective Cp~module. Then the
ring D, is smooth over C, using 2.4. Thus, the image of z in D
belongs to Hp/c-

o Let z = (z1,...,2k). Since the morphism Alu]/(f)[z] — D

which map (21,...,2) to f = (f1,..., fx) is surjective, we have
a presentation of D of the form D = Alu,z]/(f, k). We change
this presentation, by adding new variables v = (v1,...,vn) to get

D = Alu,z,v]/I with I = (f,h,v) and we claim that the new
conormal bundle I/12®p D, is globally free over Spec Dy.

o First we show that be /a = DZ. Since Cy is smooth over A we get
a split exact sequence of Cz-modules {second fondamental exact
sequence) :

0— (f)/(f)2®cz — Qh[u]/,q ®C.'z — Qé-/A®Cx — 0
C C C

Furthermore, QLM /A ®c Cz =~ CZ, which leads to the relation :

oy o~ ((FY/(f )2®Qé/ 1) @cCz. Moreover, the smoothness
of D, over C, gives a split exact sequence and a relation
Q}J,, /a ™ (Qé.z /4 Bc, Dz) @Qloz Jc., (first fundamental exact se-
quence (M1, Th. 25.1]). On the other hand, the canonical
surjection (f)/(f)*Q®c Dz — 3, sc. is locally injective, since
(£)/(f}2 ®¢ Cx is locally free, and we conclude (f)/(f)? Rc, Dz =
Q}L/Cz‘ Thus, we get QID,,/A ~ (Q}:‘x/A BH/(HH Rc, Dz~ D7

e Since D; is smooth over A by transitivity, we
get another split exact sequence and a relation DT ~

(£, 1)/, 1) DR 1) ®p D
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e Since I/1% = (f,h)/(f,h)> @ D™ we get :

12 @ Dz = ((£,1)/(£,:)* @ D2} P D =
D D

(5, 1/, 1)? @ D=) Dby = DI
D

Which complete the fact that the new conormal bundle I/ ®p Dz
is globally free over Spec D.

e Let F be a lifting of z in A[u]. The module Ip/IZ =~ I/1°®p D»
is a free Dz ~ (Alu, z,v]/I)F-module. Let (g1,..., gr) be a system
of polynomials of I which induces a basis of Ir/ I%. We have
Ir = (g1,--.,9+)Alu, z,v|F + I%. Then, by Nakayama’s Lemma
(M1, th. 2.2]), there exists an element a € 1 + IF such that
alp C (g1,...,9r)A[u, z,v]p. So, there exists an integer ¢ such
that F'eI C (g), and then the image of z in D is in +/((g) : I)D.
Moreover, F € \/Kg since D, is smooth over A. Thus, the image

of z in D is in {/Ay((g) : I)D and hence is standard.

Since the construction of the presentation of D does not depend on z,
it is true for any element of H¢/4-

Proposition 2.5 admits the immediate corollary which is an improve-
ment of the Artin Conjecture. Namely, we get a smoothing by a smooth
complete intersection algebra.

Corollary 2.6. Consider the commutative diagram of noetherian rings

A% B

1 , where C is smooth of finite type over A. Then, there exists
C

A2 B
a factorization | , 1 ,whereDisa smooth complete intersection
¢ — D

over A, i.e. we can find a presentation D — A[Y1,...,Yy|/(F1,..., Fm)
with m < p such that the rank of the Jacobien matriz (8F;/0Y;) is m
everywhere on Spec D.
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Proof. If we take z = 1 in Proposition 2.5, we have a desingularisation
by a standard smooth A-algebra D. This means that we have a presenta-
tion D = Aluy,...,upn}/I and (g9) = (g1,...,9m)} C I satisfying Agy({g) :
I'D = D. Then ((g) : I)D = D and there exists a € 1+ I such that
al C (g). The new presentation D ~ Afuy,...,un,v]/(g1,..., gm, av—1)
shows that D is a complete intersection over A.

In sections 3, 4 and 5, all the rings we will consider are
noetherian rings containing Q.

3 Main ideas of the proof of Artin Conjecture

In this section, we explain the main steps of the proof and use the results
of sections 4 and 5.
3.1 Central result

Let us formulate again the Artin Conjecture.

Theorem 3.1. (Artin Conjecture). Consider a commutative dia-

A4 % B
gram | 2 , where ¢ is reqular and C of finite type over A. Then,

c

B
there erists a factorization 1 where D is smooth of finite type
D

Q-
PN s

over A,

In all the following, ¢ : A — C — B will denote two ring
homomorphisms between noetherian rings, and C a finite type A-
algebra. Let J = Hg 4B and I = J N A.

The proof consists in successive smoothings of C so that the image
of the ideal of the singular locus in B increases. Since B is noetherian,
it reaches the whole ring B after a finite number of smoothings. Then
we conclude with Proposition 2.2,

We first reduce to a local situation, namely to the case of an “isolated
singularity”. '
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B

¢
—
Definition 3.2. Let a commutative diagram Ve , where C is

Q= =

of finite type over A. Let q € Spec B.
The ring D is called o partial smoothing at q of A — ¢ — B, if

A% B
there ezists a factorization | 2 | , where D is of finite type over
¢ — D

A and /HoaB C HpaB Zq.

Proposition 3.3. (Partial smoothing). Consider a commutative

A3 B
diagram | , where C is of finite type over A. Let q € Spec B,

C
p = qn A. Assume that ¢ is regular at ¢, i.e. Byq is (-smooth over
Ap. Assume moreover that q is a minimal prime divisor of J = HoaB
and P is a minimal prime divisor of I = J N A. Then, there exists a
smoothing at Q of A - C — H. .
Let us show that Proposition 3.3 implies Theorem 3.1.

Proof. If J # B then I # A and there exists a minimal prime divisor
pofl.

Let B = B/J, A= A/I and p = p/I. We get a morphism A % B
and P is a minimal prime ideal of A. The set A\P is multiplicative in 4,
hence we can find a prime ideal § of B which does not intersect H(A\P).
We choose such a q to be minimal. Then qN A C P since ¢ is injective
and §N A = p by minimality of p. Let q be the inverse image of §in
B. Then ¢ is a minimal prime divisor of J and qN A = p. Applying
Proposition 3.3, we get a smoothing D at gof A — C — B.

Then we have the strict inclusion \/HC/AB C \/'H p/aB. We replace

¢ with D and by noetherianity of B we get Hg/4B = B, after a finite
number of smoothings. Then we conclude with Proposition 2.2.

As the previous argument shows, we will often change C with a
factorization D. Here is a result about this change.
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A2 B
Remark 3.4. Consider the commutative diagram | 1 , where
c - C

C' and C’ are of finite type over A. Let J' = HciyaB and I' = J' N A.
Let q € Spec B be a minimal prime divisor of J and p € SpecA be
a minimal prime divisor of I. Assume that Hg/4C' C Herya. Then,
either J' ¢ q and C’ is a smoothing at q of A — C — B, or J' C q and
q (resp. p) is a minimal prime divisor of J/ (resp. I').

The proof of 3.3 is based on successive reduction on the heights of
the ideals p and q. :

o In-the general case we have htp < htq. Let us notice that
dim Bq/pBq = dim Bq — dim Ap = ht ¢ — ht p since the morphism
#q: Ap — Bq is flat and by [M1, Th 15.1].

First, we reduce to the case where htp = htq. Assume that
Proposition 3.3 is true when htp = htq. By regularity of
the morphism ¢, the fiber Bq/pBy is a regular local ring. Let
(w1,-.-,wn) be a system of parameters of qBq/pBy, with w; €
for any i € {1,...,m}. Let A’ = Afwy,...,w,]. We define the
morphism A’ — B by sending w; onto w;. Let p’ = qnA’. We have
p" = (p,w1,-..,wn) and the isomorphisms Ap/pAp =~ A;,,/p’A’,
and Bq/qBq =~ Bgq/p'Bq. According to Proposition 1.15, the
morphism A;,,/D’Ai,, = kfwi, ..., Wnl(w,,...wa) — Bq/P'Bq is flat.
Then, by Proposition 1.14, Bq is flat over Ai,,. Hence, from
Theorem 1.7, we deduce that Bq is g-smooth over Ai,. (the
separability of the residual field extension A;,,/p’A;,, — Bq/qBq
given by the characteristic zero hypothesis, is essential at this
point}. In other words, B is regular at q over A’.

Let J' = Herygr and I' = J' N A’ Since q is a minimal prime
divisor of J, the ring Bq/JBgq is an artinian local ring. Hence,
there exist s € q and a non zero integer N such that for any 7,
swi € J. If we replace w; with sw;, we may assume that w; € VJ
and so vVJ' = V7 by Remark 1.13. We may apply Proposition 3.3
to A’ = C'=C®, A" — B where P’ is a minimal prime divisor
of I'=(J,wy,...,wy,) and q is a minimal prime divisor of J'.

In this case Proposition 3.3 is true since dim Bq = dim AL,. Then,
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61

Al S B
there exists a factorization | ~ 1 , where D is smooth of
¢ - D

finite type over A’ and \/‘HCaM:B C ‘/'HD/A:B Z q. We apply
Proposition 1.11 to the sequence A — A’ — D to get Hpsar C
Hp,a since A’ is smooth over A. Thus, ‘/HC/AB C \/'HD/AB Zq
and the A-algebra D is a smoothing at of A - C — B.

Then, we treat the case ht p = ht q by induction.

The basic case of the induction where htp = ht 4 = 0 is exactly
Proposition 4.5.

Let k = ht p. Assume that ¥ > 0. By hypothesis, the prime ideal
p of A is a minimal prime divisor of I. Let N be the union of all
the minimal prime ideals of A contained in p. Since htp > 0 and
p is a minimal divisor of I, I is not included in N. Hence we can
find w € I'\ N. Consider rings of the form A/w™A. Then, for any
integer m # 0, the height of the prime ideal p/w™A in A/w™A is
stricly less than the height of p in A.

Since w € I, we have ¢(w) € ,/HcyaB. By Propositions 2.2 and

¢
: A = B
2.5, there exists a factorization | > 1 where D is of finite
cC = D

type over A, Hc/aD C Hpya and w is standard in D. By remark
3.4, it suffices to desingularize at ¢ the diagram A — D — B. In
other words, we may assume that w is standard in the A-algebra
C.

We use the lifting property of smoothing of section 5 which says
the following :

Proposition (Lifting of smoothing) 5.8. Consider a commu-

¢ i
A —- B
tative diagram | , where C is of finite type over A. Let
C

q be a prime ideal of B and w € ¢~ (q). Suppose that the image
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of w in C is a standerd element for some presentation of C over
A. For an integer k, and any A-algebra X, let X = X/ka.

Then, there exists a non zero integer k such that :

if there ezist a finite type A-algebra S which factorizes

Cye— Iy
LN e
Uy —

with ‘/').‘fc/AB C \/HS/A—E s q.é,

then, there ezists a finite type A-algebra T which factorizes

, with \/HC/AB C \/HT/AB gZ q.

Q—
1N e
N —

Let m = k. We have JC C HC/A by 1.12. Either Hg 5 ¢ § and
C is a smoothing of A — C — B at §, or § and p are minimal
prime divisors of respectively He 4 and Hey g N A.

Since we have htp < htp and dim Bg/pBy = dim Bq/pByq, the
result follows by induction on htp.

Which complete the proof if we assume the Basic Case and the Lifting
of smoothing properties of sections 4 and 5.

4 Basic case

A2 B
Consider a commutative diagram | -~ , where C is of finite type
C

over A. Let q be a minimal prime divisor of H¢ /4B and p=qn 4. We
assume in this section that ¢ is regular at q and htp = htq = 0. The
aim of this section is to desingularize A — C — B at q (Proposition
4.5).

4.1 Weak version of the smoothing

The aim of this subsection is to prove 4.4 which is a weak version of the
smoothing.
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Proposition 4.1. Let 4 2 B be a ring homomorphism. Let q € Spec B
and Pp=(qNA. Assume that htp =htq=20.
Then, Bq is the inductive limit of local artinian essentially of
finite type Ap-algebra Y such that there is o commutative diagram
A —- X — B
i 1 il  where a is essentially of finite type, 8 is faith-
Ap X v ﬁ By
Sully flat, X = j7Y(Y) and Xq~ Y.
The first step is to reduce to the case where the morphism i, j, ¢
and ¢q are injective.
We use without proof the following lemma :

Lemma 4.2. Let R — S be a ring homomorphism, where S i3 a local
ring with marimal ideal q. Let p = qN R, J be an ideal of S and
I=JNR. Then Rp = S if and only if (R/I)pyr=8/J and Ip =~ J.

Let A = A/Ker(¢qoi), B = B/Kerj and Ap = Ap/Ker¢q. The
morphism ¢ induce the commutative square :

$
—

—

A
l
iy 9 By

By Lemma 4.2 with J = 0, we have Bq ~ Bq. We apply Proposition
A - X - B

4.1 to the last square to get the diagram 1 ! ! or
/Ip % £> By
A —- X — B
equivalently the diagram | l 1.

Ap B Y Ei' Bq

There is w € B\ q such that w x Kerj = 0. We may assume that
j(w) € Y (hence w € X). Then (X N Kerj)q = 0 and Lemma 4.2
give the isomorphism Xq =~ ¥. Thus, we may assume now that the
morphisms i, j, ¢, ¢q are injective.

Set k = Ap/pAp and K = Bq/qBq. The key point of the proof is
then to find two liftings p and X respectively of Ap — &k and Bq — K
such that Aoggq = ¢op. In fact, we will construct p and X such that p(k)
(resp. A(K)) is the fraction field of k' = p(k)N A (resp. K' = A(K)N B).
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Suppose that we have constructed p and X as above. Then we

kf s Kl
get a commutative square | | with £ = Frac (k') and K =
k — K
Frac(K'). ,
Given e1,...,cs € Bq, we construct an artinian local Ap-algebra of

finite type Y such that ¢j,...,¢, € Y. Which will give the wanted
inductive limit.

Let p = (a1,...,am) and g = (b1,...,bs) with a; € A and b; € B.
Since Bq is artinian, the elements b; generate Bq as a K-algebra. We
write Bg = K|(by,...,by] ~ K|Bi1,...,Bp]/(F1,...,F;). There exists
G}, a polynomial with coefficients in K, such that ¢; = Gi{(b;,...,b,) for
t=1,...,s. Likewise, for any i € {1,...,m}, a; = Hi(bs, ..., by), where
H, is a polynomial with coefficients in K.

There exists Q7 < K’ a finite type k’-algebra such that
Frac(2"} = Q@ contains all the coefficients of the polynomials
G1,...,Gs, F1,...,Fr,Hy,...,Hpn. Since ' = QN K' > Q" we have
Frac (¥} = (L

Define Y = §by,...,bs) C Bg. Then Y has the following
properties :

sqeY forte{l,..., s}

o the ring Ap injects into Y and Y is essentially of finite type over
Ap,

o since Fy,...,Fr are in Q|Bj,..., By}, they generate the ker-
nel of QB1,...,By,] — Qby,...,b,] and hence Qby,..., by =~
QB1, ..., Ba}/(F1,-.., Fy). Thus, the morphism ¥ — By is flat.
Moreover, Y is local and artinian by injectivity of ¥ — By.

Let X = BnQby,...,bn). We have Q'[by,...,b) € X C
Qlby,...,bn] — Bg. Then, we get Frac(Q')b1,...,bs] — Xq =Y.
Since Frac (') = Q, we have Q[by,..., 0, — Xq— Y and Xq~ Y.

Now, it just remains to construct the liftings p and N\. The proof
given in the following lemma is the same as proof of Cohen’s structure
Theorem [ZS, VIII Th 27] in which we check at each step that we have
the fraction property p(K) = Frac (K').
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Lemma 4.3. Let C be a ring, p € SpecC and K = Cp/pCp. Assume
that the morphism C — Cp is injective. Suppose that we have an
integer N such that (pCp)™ =~ 0. Let H be a subfield K. Assume
that we have a lifting p : H — Cyp such that p(H) = Frac{H’) where
H' = p{(H)N C. Then we can extend this lifting to p : K — Cp such
that p(K) = Frac(K') where K' = p(K) N C.

Proof. If H # K then there exists an element a € C such that the image
& of @ in K is not contained in H. Suppose that p{H) = Frac (o(H)NC).
Let H# = H(a). Then p extends to a lifting 5 : H — Cjp satisfying
A(H) = Frac (5(H) N C). We have two cases to consider :

o If @ is transcendant over H, then we define p by sending a onto a.
Since a € C, we get Frac (p(H)NC)[a] — Frac (A(H)NC) — p(H),
hence p(H) = p(H )|a] = Frac (5{H) N C).

o If @ is algebraic over H, then H = H[X]/S({X) where S is the
minimal polynomial of @ over H. We have S(e) € pCp. First we
show that we may assume that S(a) € (pCp)".

Since the characteristic of H is zero, we have by Bezout theorem,
the existence of I/ and V in K|X| such that SU + §'V = 1. Then
§ = $2U 4 S8'T. We can choose an element v # 0 in p(H)NC to get
vT(a) € p(H)NC since p(H) = Frac (p(H)NC). Then, we replace
a and @ with respectively & = v(a — T(a)) and @ = va. From the
fact that S'(a) & PCyp, we have T'(a) € pCp and a represents a.
Moreover we have H|a] = H(a] and & € C.

The Taylor formula gives S(a—T(a)} - (S(a)—T(a)S'(a)) € p>Cp.
But $(a) — T(a)S'(a) = §%(a)U(e) € p*Cp, hence 8(a) € p*Cyp
with $(X) = S(X/v) € H[X].

We repeat this process with the new data &, a, S so that we may
assume that S(a) € IJNCE, H = Hia] and a € C. Since a € C, we
have Frac (p(H)NC) = H.

Then, we define p by sending a onto a since S(a) =0 in Cp.

Then, we conclude with Zorn’s Lemma.
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To get the lifting p, we apply Lemma 4.3 with H = Q, K = k and

the ring Ap.
To get the lifting A, we apply Lemma 4.3 with H = h, K = k and
the ring Bq. _
Which complete the proof of Proposition 4.1.
A% B
Corollary 4.4. Consider the commutative diagram 1 A , where
C

C is of finite type over A. Let q be a minimal prime divisor of HeoyaB
and p = qNA. Assume that ¢ is regular af q and htp = ht q = 0. Then,

)
A = B
there erists a factorization | 7 1 , where D is of finite type over
C — D

A aend HD/AB Z q.

Proof. By Proposition 4.1, we can find Ay — Cq 2y it Bq where
B is faithfully flat, « is essentially of finite type and Xq = Y if we let
X = j7YY). Hence Y is essentially of finite type over A and we may
find a subalgebra D of X, of finite type over A such that D contains the
image of C in B and Dgq~ Y.

The morphism 4p — Bgq is regular since Bgq is artinian and since the
morphism A — B is regular at q by hypothesis. Then, the morphism
Ap — Dgq is regular [M1, Th 32.1].

|
4.2 Smoothing in the basic case
A 3% B
Proposition 4.5. Consider the commutative diagram [ ,
C

where C i3 of finile type over A. Let q be a minimal prime divisor of
HeyaB andp = qNA. Suppose that ¢ is requler at q and htp = ht q = 0.

&
A > B
Then, there erists a smoothing E at q, i.e. a factorization [
C - E

with E of finite type over A and \/'HC/AB - ‘/HE/AB Z q.
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Proof. Let j: B — Bgand Kerj={¢ € B|3s ¢ q sb=0}. The ideal
q is mirimal, hence By is nilpotent and q = vKerj by artinianity.
Let (b1,...,bs) be a system of generators of Kerj and w ¢ q such that
w X Kerj = 0.

A% B
By Corollary 4.4, we have a commutative diagram | ~ 1,
cC — D
where D = C|z1,...,zal/(f1,---, fx) and Hp, € q. Let ¢; be the image

of z; in B. Define

E= C[l'l,'--,zh,y,zl,---,Zn]/(yfl,---'yfk,yzlg---ayzn)

and the morphism o : E — B by ¢(x;) == &, ¥(y) = w and ¥ (z;) = b;.

e Let us check that £ is smooth at q. Since y € q, we deduce that y
is invertible in Eq. We have Ey = C|z,y, z]/(f, h) = Clz,yl/(f} =
Dly), and hence Eq =~ (D[y]}q. Since Dgq is smooth over A, so is
Eq. : ’

e Let us check that JHC/AB cC \/'HE/AB. Let vt € SpecB
such that Hg/uB t. Since q is a minimal prime divisor
of He, B, we necessarily have ¢ ¢ t, and we get Kerj ¢ ©
Choose an index ¢ such that b; € t. Then b; is invertible in Er.
We have the isomorphism Ey = (Clz,y,z|/(vf, (¥2i)j2i,¥))c =
(Clz,y, 2]/ (¥})r = (Clz, 2])r, and E is smooth at T.

Which completes the proof.

5 Lifting of the smoothing

This section contains the technical part of the proof. It consists of some
explicit constructions of new algebras. The main computations gives
Proposition 5.2 and Proposition 5.4. The result of the lifting of the
smoothing is Proposition 5.8.
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5.1 First computation
We need a refinement of the notion of standard elements.

Definition 5.1. Let A be a ring, C be a finite type A-algebra and
w € C. We say that w is purely standard over A if there ezists a finite
presentation C = Alzy,...,z,|/1, o subideal (g1,...,9m) C I and an
element w in Alz1,..., 5] such thet w € Ay,C and w € ['yC where
Fg=((g1,---,9m) : I).

It is not difficult to see that an element is standard if and only if one of
its powers is purely standard.

Let A be a ring and X an A-module. Let w € X. We recall that
Ann zw is the ideal of A defined by {a € A | a x w = 0}.

D
.
Proposition 5.2. Consider a commutative diagram A A B , where
' N T
c

C and D are of finite type over A. Let w € A such that its image in
C is purely standard over A, Ann sw = Ann sw? and Ann gé(w) =
Ann g¢(w?). For any A-algebra X, denote by X the algebra X JwiX .
We assume that there ezists a morphism C — D such that there is a
factorization C — D — B.

Then, there exists a factorization ¢ : A — E — B, where E is a finite
type A-algebra, and morphims of A-algebras C — E and D — E such

D
7 1N
that the diagram A — E — B commutes, and Hp/aE C HEgy4.
N TS
C

Proof. Consider the presentation C' = A[xy,...,zy]/I and the subideal
(91,---29m) C I such that w € Iy + 1 and w € Ay + I. Let J be the
m X n-matrix whose entries are (8¢;/8z;) € Alx], I, the n X n-identity
matrix and K the (n — m) x n-matrix obtained by removing-the n — m
last lines of I,. Let N be the set of all subsets of n — m elements in
{1,...,n}. The cardinality of N is ¢ = (%). Hence, we identify an
element of N with an element k € {1,...,q}.



W)

The Artin conjecture for. .. 253

We define Hy the n x n-matrix obtained by adding n — m lines of I,
to J. Let Mg =det Hp for 1 £ k < g = (). Let Fi be the tranposition
of the cofactor matrix of Hy. We have HpFy = MgI, = FpH. Since
(Mr)i<k<q generate Ay and w € Ay + I, there exist some elements
Ly € Alz] such that w — > LyMi € 1.

Let ¢ = (c1,...,¢cn) € C™ be the image of z = (z1,...,2Zn) in C™
Ther the image of w in C, which we still denote by w, is :

w =3 (LeMr)(0) (1)
k

Let G be the n x n matrix defined by G = LgFr for 1 < k < q.
We get the relations :

HiGp = LiMply, = GHy, and JGp= L MK (2)
We introduce the new variables x = (x1,...,Zn), 2 = (21,...,2n)
and
(n.-.. ,ym,ygfll, ... ,y,(a.k))lgksq. For practical reasons, we will prefer
the variables y = (ygk), cen ,y,(,k))lskgq with the relations y_,.(;k) = y; for
i=1,...,m.

Denote by d = (d;)1<j<n a lifting to D™ of the image of ¢ = (¢;)1<j<n
by the morphism €' — D. Let § and T be the multiplicative subsets of
D and Dlz,y,z] given by S = 1+ wD and 7" = 1 + wD|z, y, z]. We have
w—3" (LxMg){(d) € wiD, hence there exists s € 1+w?D C § such that
in 1) we have :

sw=Y (LeM)(d) (3)
k
We define for j = 1,...,n the elements h; of D[z, y,z]| by :
hj = s(z; — dz) — w? D (Cr(d)y®); +w?z; (4)
k .

Note that the h;’s are affine in the variables z, y, z.
We will need the following lemma :

Lemma 5.3.

1. For any f € 1, there exist o € § and 7 € Dy, 2| such that :

ow? Y (8f/0z;)(d)(Gild)y™); = osf + w'r  mod (n)
7.k
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2, Fori=1,...,m, there exists s; € S and p; € Dy, z] such that :

Sigi = w°l; mod (r) with ;= sipi + piw (5)

Proof.

1. Since the element f is in I, we have f(d) € w*D and it suffices to
show the congruence for f — f(d). We apply the Taylor formula
to get :

s(f(z) — f(d)) = s (z; — d;)(8f/9z;)(d) mod (h,w")
]
(since s%(z;, —dj,) X ... x (4, —dz,) =0 mod (h,w*) according
to (4)). Again using (4), we have :

S*(f(z) — F(@)) = sw? Y (81 /02;)(@)(Cr(d)yP); mod (h,w)
Jk '

Since each sz; is congruent to an element of D[z,y| modulo & by
(4), we may assume that 7 € Dly, z] after multiplying both sides
of the congruence by an appropriate power of s. :

2. Fori=1,...,m, we have :

Z(agi/axj)(d) (Gk(d)y(k))j = Z(Jck(d)y(k))i
3k k
= Y (LM Ky by (2)
%
= > (LeMi)(d)yi
%

= swy; by (1)

Applying (1) for f = g;, we get :

cwl(swy;) = 0sgi+wir mod (k) and osg; = w?(osy;—Tw) mod (k)
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Which conclude the proof of the lemma.

We take E = D|z,y, 2]/U with the ideal U generated by I,(hj)1<j<n,
(I:)1<i<m. Remenber that we included the equations (y_g-k) —y;)in U.

Denote by D L BandC 2 B the morphisms given in the
hypothesis. For j = 1,...,n, there exists w; € wB such that y(c;) —
6(d;) = wiwj. Define

n® = H(8(d))w (6)
where w = (w1,...,wy). Note that forj =1,...m, 7?5 ) does not depend
on k since Kn®) = K Hy(6(d))w = J(6(d))w. Hence, we may denote by
n; the common value oquk forj=1,...,m. Moreover, forj=1,...,n,

we have 1;( o € wh.

The natural morphisms D — E and C = A[z]/I — E are well defined. .

We define the morphism 8 : D(z,y,z] — B by z; — 'y(cj,), k), , qj(k)

and z; — 0. Let us check it induces a homomorphism E 2. B which we
still denote by 6.
We have 6(I) = 0 by definition of 4. Then :

o(h;) = s(y(c;) — 6(d;5)) — 2Z(c:,c(w) m®); by (4)
= swiwj— QZ((Gka (6(2))); by (6)
= swawj-w ZLkMk’y(d)wj by (2}
k .
— 0 by(3)
Furthermore 8(1;) € wB since I; = s;y; + piw and 0(y;) = nfl) cwh.

The relation (5) and 6(g;) = 0 give 8(i;)w® = 0. By hypothesis, we
have Anngw? = Annpgw, hence Anngw® = Annpw, and ;) €

wB N Anngw = 0. Thus, 8 factorises through the equations (I), (k)
and 7.

Let us check that Hp /4 E C Hya-
Let ¢ € Hps4. We have D¢ smooth over A and we show that E¢ is
smooth over A. Since E¢ = D¢lz,y, z]/(I, h, 1), it suffices to see that E
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is smooth over D¢. Since the morphism E — Ey X T7'E is faithfully
flat, if D¢ — (Ey x T 1E)¢ is regular then so is the morphism D¢ — E.

We first show that E, ¢ is smooth over D;. Since w is purely
standard in C over 4, C, is smooth over 4 and by base change
(D[x]/I)w is smooth over D. Moreover (D|z,y, z|/(I, h))w is a smooth
(Dlz)/1)w-algebra since det (8h/8z) = w*™ by (4). And according to
(5), the images in {(D{x, y, z]/(I, 2))w of the elements {; are zero. Then,
Ew = (D[z,y, 2]/(I, b, )} = (Dx,y, 2|/{I, h))}w is smooth over D by
transitivity.

Next, we show that (T7!FE); is smooth over D. Let F =
dhjox 81/8z )

Diz,y,z|/(h, 1) and § = (i1, ..., ym).- Wehave det onjdy Bl/0F

; sin 0

8h/8y Immod (w)
us show that I C (w) N Ann (w) in T7}F.

Lemma 5.3 gives the existence of t € T such that 1 =0 mod (h, w).

Since w is purely standard in C, there exists e € Alz| such that
elc) =w, e € Ag+ I and e € T'y. Let f = e—w € I. By (5), there
exists ¢ € § and T € D[z,y,z] such that of = w?r mod (k). Then
t'w = 0 mod(e,h) with t/ = o + wr € T. Since ¢ € [y, we have
el C (g) and we get twI =0 mod (g, k), in Dz,y, z].

Thus I C (w) N Ann(w) in T-'Dfz,y,z]/(g.h) and hence I C
(w) N Ann (w) in T7'F. From Annsw = Ann qw?, we deduce that
(w) N Ann (w) = 0 in A, then also in D¢ by flatness (smoothness) of
D¢ over A. Moreover (w) N Ann (w) = 0 in (T'"1F), since D — T-F
is regular. It shows that the image of [ in (I'~'F)¢ is zero. Then the
isomorphism (I'~1F)¢ ~ (T} E)¢ allows us to conclude to the regularity
of (T1E) over D.

de =t e T. Hence D — T-1F isregular. Let

5.2 Second computation

Proposition 5.4. Let C be a finite type A-algebro presented as the
quotient C o~ A[x1,...,z,)/1 with the morphism I1: Alz;,...,z5] = C
and I == KerIl. Let ¢; = Il{z;i). We consider a commutative diagram
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¢

A — B
l }. . Suppose we have w € A such that Ann gw = Ann qw?

Alz]

and Ann g¢(w) = Ann B¢(w2). Assume moreover that the image in C
of w? is zero and 8(J) C w?B. Let A = Ajw?A. Then, there erists
a finite type A-algebra D factorizing 8 : Alz] = D — B, such that
ID CwD and I (Mc/3)D C Hpya.

Proof. Let I = (p1,...,pm). For any j € {1,...,m} there exists
o; € wB such that 8(p;) = wo;. Let us introduce the new variables
(y1,---,ym). We extend 8 to a morphism Afzy,...,Zn,¥1,.--,¥m] = B
such that 8(y;) = o, and we still denote it by 8. Define :

Vj=1,...,m szpj-—wyj (7)

Since the image of w? in € is zero, the morphism II induces
a morphism I : Alzy,...,zp] — C. Let I = Kerll and p; =
pi mod{w?). Then I = (py,...,5m)

We choose a family (¥*)1<u<a of purely standard elements in Heyi

such that \/(v1,...,v%) = Hg 5. By definition, for each v = 1,...,d,
there is a family ¢ = (g¢',..., 4"} in I and an element v* € T3A,; C Alz]
such that v* = II{+y¥). :

We choose liftings ¢* = (g,...,qf) of g% ; we have {¢*) C I. Let
Tou= {a € Alz] | ol C (g% wd)} (T'qu is the inverse image of 'yu in A[z]
and I'gn C ['ju). We may choose liftings 7% € Tgulgu € Alz] of 3%

There exists 7y € wB such that 8(g}) = wrg, foru=1,...,d and
k=1,...,tu. Let usintroduce the new variables z}}, foru=1,...,d and

k=1,...,ty. The morphism @ extends to a morphism A[z,y, 2| LA B,
where 8(z}) = ¢, and we still denote it by 8. Then Ker 8 contains the
elements :

gr = gk — wzp € Alz, 2} (8)
Since v* € T'ju, we have :
Vi=1,...,m

Ve=1,...,d v#u ¥Yi=1,..., ¢,
YU+ Xi<k<ts "::5.37; + WQ-;? =90

1 v’u_m
Y+ X<kt Tik Ok Fws;” =0

9)
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where r%, s¥, rii, s € Alz].
Then, we define :

Vi=1...,m

Vo=1,...,d vfu Vi=1...,
hi = v*vi+ Yick<r, Tikzk +wsi

B = e 4 gk, i 7w

(10)

We clearly have the relations :

Vi=1,...,m

Vo=1,...,d v#u Vi=1...,1
Whr+7ufi+z:15kgtu T‘-‘,kgi.‘ =0
why™ 4+ vgf + X cret. Tin 9E =0

We denote by k¥ the family of ¥ for alli = 1,...,m and h]"* for all
=1,...,d,v#Auandi=1,...,t,. Let h be the family of all A" for
alu=1,....,ny =m + Ypsut’. Weset D = Alz,y,2)/(f, g, k) with
h = (A*)1<ucd- |
We have 8(f) = 6(¢) = 0 by (7) and (8), and hence by (11)
wd(h) = 0. Since #(y;) and 6(z}) are elements of wB, we have
6(h¥) € (wB) N Ann g(w) and 6(h}) = 0 since Annpgw = Ann gu?.
It shows that # factorizes through a morphism g : D — B. Moreover,
since p; = wy; mod (f;) by (7), we have o(p;) € wD and o(I) C wD.

(11)

It remains to check that II"! (M, 5)D C Hpa-
Let D¥ = Alz,y,2|/(f,g,h*) for 1 <v < d.

Lemma 5.5. For v=1,...,d, u=1,...,d end i=1,...,n% we
have :
wh C (f,g,h°) and (v°)%h C (g, k", w)

Proof. The first assertion is obvious by (11).
Since v¥ € Agv, there exists a n x ty-matrix (c}) whose entries are
v : _
in Alz], such that }7; ;< (8q}/8z5)cip = {7 if k=&,

0  otherwise.
Let of = 3 1cket, Cir2k for j = 1,...,n. We get the relations :

VE=1,...,t Z a(8qk/dx5) = 1"z
1<5<n
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From this, we deduce the following property for any linear form ¢ in the

variables z¥ = (2, ..., 2} ) with coefficients in A[z] :
D a}(8/8z)(¢lv=gv) =2"¢ mod(¢") (12)
1<G<n .

We also use the following property coming from (10) : if ¢ is a linear form

in the variables y and z with coefficients in A[x], then we can find a linear

form ¢ in the variables z* such that v%y = ¢ mod (h", w). Remark that

the polynomials (h%)ye given by (10) satisfy this last condition : they

are linear homogeous in the variables y and z medulo w. Denote by ¢*

the family of linear forms such that v'A* = ¢* mod (A", w).
Moreover, using (9) they also satisfy :

7vh;‘|y=p,z=q = ¢’:‘lz”=q" mod (w)
Then, by (12) :

(")PhE = D a¥(8/0z)(dtlv=gr) = D @}(8/025)(1 b} ly=p,z~q)
1<5<n 1<5<n .

mod (g, h*, w)
Furthermore, the relations (8) gives (hY,g,w) = (hY,q,w) and for

u=1...,d i=1,..,n" we have h¥|;=qy=p € (w) by (9) and (10).
This shows that (v%)%r® C (g, A", w).

Lemma 5.6. The ring D}, is smooth over 4, ie. v¥ € Hpeya-

Proof. According to (11), we have ~f; € (g", k") and ~"g} €
(g%, hY). Then 7* € T'(gopey = {a € Afz,y,7] | a(f,g,h") C (¢*,R")}.
. . ahv/o hY/8z%)yty ORY/Ex
Let us consider the matrix Bg"j 33 E Bg"; azu;u:v ag”; or ) =
( I, 0 0
0 0 a8¢%/0x )
A(ge he)- Since 17 € Ay, we have (v?)ymtt e Ago 3T (go,av) a0d We are
done.

, where iy = m + 3., t*. We get (79)"*Agv C
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It follows from Lemma 5.5 that hY € (w) N Ann(w) in D, for u =
1,...,d and i = 1,...,n% By hypothesis, (w) N Ann(w) = 0 in A since
Ann 4w = Ann qw?. Since D7, is smooth over A by Lemma 5.6, it is
flat over A and (w) N Ann(w) = 0 in D}.. Hence &% = 0 in DS and
Dy ~ DY. Thus Do is smooth over A forv=1,...,4d.

To establish the wanted property H‘l(?ic/g)D C Hpsa, we need
to show that a(I) € Hps4 (remark that H_-]'(Hc/j) C Alz] is the
intersection of all prime ideals containing I + (v)). Since a(I) C wD, it
suffices to see that w € Hp/,.

Consider the subfamilly (f,g) of (f,g,k). We have by (11) the
relation wh C (f,g), and hence w € 'y, The determinant of the

. Bf/ay Bf/az . _ ("+Eut“)
matrix ( 990y 9g)0z is equal to (—w) and consequently

w € /Tg8¢g, and hence w € Hp/a.

5.3 Lifting the smoothing, the result

Proposition 5.7. Let ¢ : A — B be a morphism, q be a prime ideal

of B and R and S be two finite type A-algebras. Suppose that we have

d € A, whose image in R is purely standard for some presentation and

d® = 0 in S. Suppose moreover that d € ¢~ '(q), Ann ad = Ann zd?

and Annpg¢(d) = Ann Bd(d?). For any A-algebra X, we denote by

X the algebra A/d®A. Suppose there is a commutative diagram of A-
R 4% B |

algebras g 5 B with ‘HR/AB-C Hs/géqfq}}. Then, there erists
N T

S
a factorization p: R — T — B, where T is a finite type A-algebra and

HpaB C \J/Hr/aB € 9.

Proof. We choose a surjective mapping II : Alz] — 5§ and we set
I = KerlIl. We choose 8 : A[z] — B a lifting of Afz] = § — B.
We have #(I) C d®B in B. Then, we can apply Proposition 5.4 with
w = d* and € = 5. There exists a finite type A-algebra D such
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A 2 B
that the following diagram commutes ! } 1 and ID C wD,
Alz] 2D

0~Y(Hg/5)D C Hpja.

Then we show that Hg/sB C /Hp/aB ¢ q. Remark that d® €
H_I(HS/A)B C /Hp/aB (d®=01in S). Since HS/,;B = H_l(HS/,;)B
and HR/AB C \/W, we get HR/Aﬁ C \/TT/AE and Hp/aB C
W. Besides, if \/H—D,M—B C gthen m C (, and hence

1‘[‘1(7‘{3/5)5 C gB (the ideal qB is prime in B since d € ¢1(q))

and \/7?/35 C qB). Which is impossible by assumption. Then
HpiaB € q

The morphism Afz] = D induces a morphism 8 : S — D/d*D since

ID C d*D. Since we have a morphism R = R/d®R — § LA D/d*D,
we get a factorization R/d‘R — S/d*S — D/d*D — B/d*B. Hence

D
'
we may apply Proposition 5.2 to the situation 4 LA B with w = d.
N T
R
Thus, there exists a finite type A-algebra T which factorizes the diagram
D .
7 LN
A —- T — B with HD/AT C HT/A-
N T/
R

We finally get Hp/aB C /Hr/aB ¢ q and we are done.

]
We end with the wanted result on the lifting of the smoothing.
A% B
Proposition 5.8. Consider a commautative diagram | Va , where

C
C is of finite type over A. Let q be a prime ideal of B and w € dfl(q).

261
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Suppose that the image of w in C is a standard element for some
presentation of C over A. For an integer k, and any A-algebre X,
let X = X/uw*X.

Then, there exists o non zero integer k such that :

if there exist a finite type A-algebra S which factorizes

U — o

é
L4
e
—

Que— oy

with \/HcfAB C \/HS/EB ¢ qB,

P

A =

then, there exists a finite type A-algebra T which factorizes |
C —

MN—Q

with \/HC/‘AB C ‘/HT/AB Zq.

Proof. Choose an integer j such that w/ and w?t! have same annihi-
lators in A and B (it is possible by noetherianity), and such that w!
is purely standard in the A-algebra C. Set k = 8j and d = w!. The
assumptions of Proposition 5.7 are satisfied with R = C, and the result
follows.
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