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Abstract

We formulate recursive characterizations of the class of elemen-
tary functions and the class of functions computable in polynomial
space that do not require any explicit bounded scheme. More
specifically, we use functions where the input variables can occur
in different kinds of positions - normal and safe - in the vein of the
Bellantoni and Cook’s characterization of the polytime functions.

1 Introduction

This paper is concerned with two well-known sub-recursive classes. Firs-
tly, the class £ of elementary functions, introduced by Kalmar (1943) [9]
and Csillag (1947) [6], and which can also be described as the class of the
functions computable in iterated exponential time. Secondly, the class
Pspace of functions computable in polynomial space: see, for instance,
[1] for a more detailed characterization.

The usual inductive formulations of £ and Pspace use explicit boun-
ded schemes; here our proposal is to establish characterizations without
any explicit bounded scheme. In order to accomplish this we use the
techniques that Bellantoni employed to get a similar result for the class
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of functions computable in linear time and for the class of functions
computable in polynomial time, [3] or (4] (recently and independently,
Bellantoni announced in [4] a similar characterization for the elementary
functions).

In the next section we are going to work in numeric notation, ie.,
we will be talking about functions defined in cartesian products of w
and assuming values in w. However, when studying the class Pspace,
it is convenient to abandon the numeric notation and adopt, instead,
the binary notation. Therefore, we will work with functions defined in
cartesian product of {0, 1}* and assuming values in {0, 1}*, where {0,1}*
is the set of 0-1 words. This change of notation is not mandatory. In fact,
we could rewrite all this work in numerical notation, although - in our
opinion - the binary notation is more adequate to express simultaneously
the recursion on z and the recursion on the length of z. The reasons for
which we made this change of notations will become more clear along
the work.

2 Characterizations of £

2.1 Classic characterization

We use a characterization of the elementary functions which can be
easily deduced from the characterization given in [10]. The class £ of
the elementary functions is the smallest class of functions containing
the Projection functions, the Zero and Successor functions and which
is closed under ordinary composition f(z) = h(g(#))* and the following
scheme:

Bounded primitive recursion

1(0,z) = ¢(z)

F'2) = by, 2, F (4, B)) ey 2)
where ¢ is a bounding function and U}y, = min{u, v} is the truncation
function. Throughout this section, we mean by a bounding function
a function in 7, where 7 is the smallest class of functions, closed un-
der composition, that includes the projection functions and the sum,
product and exponential functions.

'We adopt the standard notation: Z for a n—tuple of variables and 7 for a k—tuple
of n—ary functions.
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It can be proved, by induction on the complexity of f, that if f € £
then there exists b € T such that VZf(z) < by(Z), i.e., the “size”
of the £ functions is dominated by the “size” of functions in 7. To
obtain this conclusion it is essential the presence of the truncate at the
7 functions in the bounded primitive recursion scheme (otherwise, we
would obtain all the primitive recursive functions). Observe that the
bounding functions are monotone. We will use this fact several times.

2.2 A new characterization

Following ideas of Bellantoni and Cook, 2] or [3], the functions in E will
have a “normal” input and a “safe” input. We separate the two kinds of
inputs by a semicolon, putting the normal ones in the left and the safe
ones in the right.

The class E is the smallest class of functions containing the follow-
ing initial functions 1’ — 6’ which is closed under the schemes of safe
composition and safe recursion:

') EGz)=0 (Zero)

2') P (21,1 TniTatls s Inim) =251 < j<nt+m (Projections)
3) SGz)=12' (Successor)
4') D(;z) =2z (Duplication)
5) PGO)=0P(;a') =2 (Predecessor})
) QGz,y,2) = { ;iﬁe;wgw (Conditional)

Safe composition: f(z;§) = h(7(z;);3(Z; 7))
Safe recursion:f(0,z;y) = g(z; )
F(Z,&;§) = h(z,%;4, f (=, ;7))
In the safe composition scheme the absence of some the functions 7, 5 is
allowed.

All initial functions can be contructed into £, if we ignore the differ-
ent kinds of variables. The asymmetry of the safe composition scheme
allows us “to change” variables from safe positions to normal posi-
tions, but not the opposite. This means that if f(Z,w;z,a) € E then
f(z,w, z;a) € E but, in general, we cannot say that if f(z,w;z,a) € E
then f(%;w,z,a) € E. Also remark that in the safe recursion scheme,
the recursion is done on a variable in a normal position and the recur-
sive value f(z,%;§) is substituted into a safe position of A. Finally, note
that only the safe recursion scheme enables us to introductive into E
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functions that grow “substantially” faster than the functions involved
in their definitions. For example, we can construct the sum based on
successor -sum(0;z) = z, sum(y’;z) = S(; sum(y; x)) - or the product
based on sum - prod(0, z;) = 0, prod(y’, ;) = sum(z;prod(y, z;)) - but
we cannot define something growing “substantially” faster than prod
based on it. More generally, functions without safe inputs do not pro-
duce great increasings because, as we have already pointed out, in the
safe recursion scheme the recursive value is placed into a safe position;
hence, the strength of the safe recursion scheme is lost if & is a function
without variables in safe positions. If we return to the aforementioned
examples, it will become clear that the special constraints of safe re-
cursion prevent us from defining sum(;z,y), and without it e can not
define prod(y; ). Therefore, by safe recursion, we are only able to de-
fine prod(y, ;) and the asymmetry of safe composition does not allow
us to change any variable from a normal position to a safe one. The
basic idea is that each time we use safe recursion in an essential way we
increase the complexity but we lose a safe position forever. When no
safe position is available we can no longer “increase the growth” of the
class. Therefore, to evaluate how far we can go into this class we just
have to pick the most powerful initial function and apply repeatedly safe
recursion. In this case we obtain f(x;) = 2% by safe recursion based on
the function D, which is the “strongest” initial function of E. Since f
does not have safe inputs, we are already at the top, i.e., no function in
E grows “substantially” faster than 2. At this point it is clear that if
ty € T then there exists r € E such that Vzr(z) > t4(z).

Next, our purpose is to show that the class E above coincides with
£, in the sense that the elementary functions are exactly those functions
of E which only have normal inputs.

2.2.1 E “contains” the class £
In order to prove that E contains £ we need the following lemma:

Lemma 2.1. If f € £ then

3F € Edty € T s.t. f(z) = F(w; ) VEVw : w > t5(3) (*)
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Proof. The result follows by induction on the complexity of f. For the
initial functions the result is straightforward.

Assume that f is defined by the composition scheme, ie. f(Z) =
h(§(z)) where, by induction hypothesis, h, § satisfy (+). Since g belongs
to € there exists by in T such that ¥z §(z) < by(z). Hence F(w;%) =
H(w,G(w;z)) and t£(z) = ta(by(Z)) + Tty (%) satisfy () trivially.

The most difficult case happens when f is defined by bounded prim-
itive recursion. In this case, we are given G, H in E and tg,t, in T
satisfying (*) by induction hypothesis. Since f € £, there is by in T
such that Yy, zf(y, ) < bs(y, ). The natural course of action would be
to define F by recursion on y, but that is not possible because y is not in
a normal position. Hence, we introduce a “new variable” z and use it to
simulate recursion on y. Since f is defined by recursion on y, in order to
compute f(y, ) we must calculate all the values £(0,%), f(1, %), f(2,5),
until f(y,z): it is thus expected that the simulation we are seeking
reproduces this process.

Preliminarily, we define some useful functions. We start
with the “modified difference”, which can be defined into E
by Ti(0;x) = =, Ti(y';2) = P(;T1(y; ) or by To(y, z;} = Ta(y;z). If
our notation allowed it, we would certainly write z—y instead of Ty (y; x)
and T2(y, z;), but as we have to distinguish the positions occupied by
the input variables we must leave the standard notation. We also define
the auxiliary function Y (z,w;y)} = T1(T2(2, w;);y), which gives us the
(w—2z)—th predecessor of y or, more informally, ¥ (z, w;y) = y—(w—2).
We should note that, for each w, y(w > y), when z increases from w—y
to w, Y (2, w,y) increases from 0 to y and, hence, there are functions
7, ty such that f(z w;y,z) = f(Y(z,w;y),Z), provided w -y £ 2 < w
and w > t#(y,Z). Thus, defining F(w;y,z) = f(w,w;y,a‘:), we have
F(w;y,z)} = f(y, %), since Y (w,w;y) = y. This finishes the argument.

The function, f and iy, can be defined as follows:

f(O,w;y, z)=10
- Glw; z fY(S(Gz),w;y)=190
1wy, 3) = { H((w;Y)(z,w;y),:E,f(z,w;y,:f)) othe(rw(ise) v
tr(y, z) = taly, 2, b5(y, £)) + t5(Z) + v + 1,
which are, by construction, in E and 7, respectively. Once fixed y and
%, let w be such that w > t¢(y, ). We must check that for u such that
w—y <u<w, we have f(u,w;y,i) = f(Y (u,w;y), Z). This is proven
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by induction on u. Take an arbitrary u such that w — y < u < w. Note
that there exists z € w such that u = 2/ (since w — y > 1).

Case 1: If u = 2’ = w — y then Y(8(; z),w;y) = 0. Hence, by the
definition of f, f(',w;y,%) = G(w,z) = f(0,%) = f(Y(S(;2), w;¥),%).

Case 2: If u = 2’ > w ~ y then Y(S(;z), w;y) # 0. Using the fact
that ¢y and t; are monotone we have

w tr(y, &)

th(Y (z,w;9), 2, by (Y (2, w;9)), T)
th(Y (2, w;9), 7, f(Y (2,w;y), %))

v v IV

Hence, using the induction hypothesis f(z,w;y,:f) = f(Y{(z,w;y), %),
we get

H(w;Y (z,wiy), %, flz,w;9,5)) = H@w;Y(z,wiy), % £(Y (2, w;p), %))
= h(Y(z,w;y), T, f(Y(2,w;9), %))

It is easy to see that Y (', w;y) = (Y (2,w;y))’. From this and from the
definitions f and f, we may conclude that

F' wiy,5) = H(w;Y(z,w;y), %, flz,w;y'z))

h(Y(z! w§y)1 z, f(Y(za w;y), i))
F(Y (2, wiy), 2)

I

as we wanted.

The inclusion we want to establish is readily deduced from the pre-
vious lemma.

Theorem 2.2. Let f(£) be in £. Then f(z;) is in E.

Proof. Let f(Z) be in £. F and t; satisfying (*) are given by the
previous lemma. We have already observed that there exists r € E s.t.
VZ r(Z;) = ty(%). Thus, defining f(z) = F(r(%;)Z), we get the result.
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2.2.2 & “contains” the class E

We saw that E is inclusive enough to contain all elementary functions.
Now, we must see that it only contains the elementary functions. Firstly,
we prove an important lemma, which enables us to bound each function
in E by some function in 7.

Lemma 2.3. If f € E then

gy € T 5.t.Y2,5 f(z;9) < q7(Z) - maz{maz; y;, 1} (*x)

Proof. We will argue by induction on the complexity of f. For the
initial functions the result is trivial

If f is defined by the safe composition scheme, then
f(z;5) = h(7(%;)5(z; §)) where, by induction hypothesis, k,7, 5 satisfy
(**). Therefore, we have gy, g, and §; bounding h, 7 and 5 respectively.
Thus,

h(7(%;);3(%; 7))

qn(7(z;)) - maz{mas; 3;(z;7), 1}

an(§-(2)) - maz{mazi(gs,(z) - maz{maz; y;,1}),1}
an(§-(Z)) - (244,(Z)) - moaz{maz;y;, 1}

i

5 (Z:9)

IAIA A

and, therefore, we can take g¢(£) = qa(Gr()) - Tgs, (Z).

If f is defined by the safe recursion scheme then, by
induction hypothesis, we have g, and g; in 7 bounding ¢ and h
respectively. These bounds can be assumed to be positive, Hence, if we
define gf(w,z) = ga(w,Z)" - go(z) we will have F(0,%;3) = ¢(z;5) <
99(Z) - maz{maz; y;, 1} = ¢(0, Z) - maz{maz; y;, 1}. Now, let us assume
that f(z,%;¥) < g7(z, %) - maz{maz; y;,1}. Then we have

f(Zh%:9) £ M%7, f(2,57)
qn(z, ) - maz{maz; y;, f(z,%;§), 1}
qn(2, Z) - maz{maz; yi, ¢5(2, T) - mez{meaz; yi, 1}, 1}
gn(z, %) - g7z, T) - mez{maz; yi, 1}
an(z,Z) - qa(2, %)° - g4(2) - moz{maz; s, 1}
an(z,z)* - gg(Z) - maz{maz;yi, 1}

IAIA A TA

i
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< qu(2, 2 - 0(F) - maz{maz; yi, 1}
< qp(7, 7) - maz{maz;y;, 1}.

Therefore such ¢y satisfy (+x), as expected.

This lemma is all we need to conclude that EC £.

Theorem 2.4. Let f(Z;5) be in E. Then f(x,7) is in £.

Proof. Once more, the proof is by induction on the complexity of f.
There is no problem if f is an initial function.

If f is defined by the safe composition scheme, ie,
f(z;5) = h(7(%;);3(z;7)), let h,7,§ € £ be given by the induction
hypothesis. At this point we just have to take f(z,7) = h(7(z), 3(z, ¥}).

If f is defined by the recursion scheme, i.e.,

7(0,2;9) = 9(z; 9}

(2 &) = h(2, 89, f(2.%9)),
let g,h € £ and gy € T be given by induction hypothesis and the
previous lemma, respectively. Thus, taking

70,2, 3) = ¢(z, %)

f(z!v z, g) = h(z, z,y, f(z? z, g))lq;(z',i-)-(1+2y,-)
we get the result.

3 Characterizations of Pspace

As we have already remarked, in this section we effect a change of nota-
tion to binary notation. Therefore we will have in our mind the binary
tree and all standard notation related with it: | = | for the length of the
sequence/word ., € for the sequence of length zero, zy for the concatena-
tion of the sequence x with the sequence y, the “product” s xy=z---2
(similar in growth to Samuel Buss’ smash function, see [5]) for the con-
catenation of = with itself | y | times, and z' for the sequence that follows
immediately after z when we consider the binary tree ordered according
to length and, within the same

zif |z |<|y]|

cifzCan|z|=ly] ©F'he

length, lexicographically. Finally,z|, = {
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truncature of x to y, where z C r abbreviates Jy 2y = z.

3.1 Classic characterization

It is known that Ptime (the class of functions computable in polyno-
mial time) is the smallest class of functions containing the Projection,
i-Concatenation and Conditional functions, and that it is closed under
the composition and bounded recursion on notation schemes (see [7] or
{8]). 1t is also known that if we close Ptime under bounded primitive re-
cursion we will get Pspace. This is the case because the number of steps
that a Pspace machine may carry is exponential on the length of the
input. In other words, Pspace is the smallest class of functions contain-
ing the initial functions 1-3 and that is closed under the composition,
bounded recursion on notation and bounded primitive recursion:

1) PMzx1,--+,zn) =25, 1 <j<n (Projections)

2) Ci(z)==i,i=0,1 (i-Concatenation)

3) Qe 1z w) = { Py

w otherwise {Conditional)

Compeosition: f(z) = h(g(z))

Bounded primitive recursion (exhaustive):
fle, ) = 9(z)

', 2) = k(y, 2, F (¥, 2N jate,2)

Bounded recursion on notation (over the branches):
f(e,z) = g()
) f(ytai) = h‘i(y! z, f(y?i‘.))lt(‘y,i)i =01
where t is a bounding function, ie., is a function of the smallest class
of functions containing the projection functions and the concatenation
and “product” functions and which is closed under composition and
assignment of values to variables.

It is easy to prove that the bounding functions are monotone and
that for all f € Pspace there exists a polynomial, py {with coefficients
in IV), such that | £(z) < ps(|  |)

3.1.1 A new characterization

We are going to consider a class of functions, Ps, where the input vari-
ables can, once more, occur in two kinds of positions: “normal” and
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“safe”. As we did before we will write the normal and safe inputs in this
order and separate them using a semicolon as follows: f(%;¥). We say
that Ps in the smallest class of functions containing the initial functions
1’ — 7' and which is closed under the safe composition, the safe recursion
and the safe recursion on notation schemes:

l’) P;;m(xlx TR T4l xn—i-m) = &4,
1<jgn+m (Projections)

ot { Bzl i |
) Cilziz) =4 otherwise ,i=0,1 (Bounded i-Concatenation)
¥)D(e)=€¢ D(zi)==z,i=0,1 (Deleting)
4YP(i;e)=¢ P(;2')== (Predecessor)
5YQ(Gz,y, 2 w)= { ;lit:‘;legr::me {Conditional; )

1ifIyCz:yl=zx »

! . —
YU(z)= { 0 otherwise (Conditionalsg)
7) x(z,p5) =z xy (Product)

Safe composition: f(z;¢) = h(F(z;);3(z; %))
Safe recursion: f(e, z;¥) = ¢(z; 7)
f(,2:9) = h{(z,%;7, f (2, ;7))
Safe recursion on notation: f{¢, #;7) = 9(%; %)
f(zi,:i;ﬁ) = h‘i(zl zy, f(zl i;g))ri = 0,1
In the safe composition scheme the absence of some of the functions
7, § is allowed.

The initial functions do not increase the length of the variables in
safe positions, with exception of the functions C;(z; ), i = 0, 1; however,
even in this case the increase is bounded by the variable in the normal
position . This fact is indispensable, since we have the recursion scheme
involving safe positions, but is limits so much our capability to construct
functions into Ps that we need to introduce U as an initial function. The
asymmetry of safe composition scheme allows us “to change” variables
from safe positions to normal positions, but not the opposite. Regarding
the recursion schemes, we have the obvious separations between the
positions occupied by the recursion variable and by the values obtained
recursively.

To prove that Pspace=Ps we are going to follow, almost step by step,
the reasoning used in the precedent section.
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3.1.2 Ps “contains” Pspace
Firstly, we show:

Lemma 3.1. If f € Pspace then there exists F € Ps and a polynomial
py such that

VEvw : | w |> ps(| £ |) = f(&) = F(w; 7). (*)

Proof. The proof is by induction on the complexity of f. We only

discuss the case when the function f is obtained by bounded recursion

on notation. The other cases are easy or follow methods already used in
- the previous section.

If f is defined by the bounded recursion on notation then, by induc-
tion hypothesis, there exists G, Ho, H; in Ps and polynomials pg, ppy, Ph,
satisfying (). We assume, for simplicity, that py = pp, + pn,- Since
we cannot define F(w;y,Z) by recursion on notation on y, we intro-
duce a “new variabe” z and use it to simulate the recursion on y.
To accomplish this, we need to have some functions available in Ps.
One of them is Y (z,w;y) = T1(T2(z,w;);y), where T is defined by
Ti(e;x) = =, Ti(yi;z) = D(Ti(y;2)), i = 0,1 and To(y, z;) = Tuly;z)-
Informally we may say that Ti(y;z) and Ta(y,z;) are z),; therefore
Y (2, w;y) can be kept in mind as y|(y), )- To understand the importance
of Y in the simulation process just notice that, for each w,y(| w |>| ¥ |),
when | z | increases from | w | — | y | to | w |, ¥ (2, w;y) increases
from € to y. Thus, our goal will be to construct into Ps a function f ,
satisfying f(z w;y, %) = f(Y(z,w;y),%) when | w | - |y |<] 2 || w |
and | w |> ps(l v |.| Z ). Since f is defined by recursion on nota-
tion, this means that if Y (z,w;y) = ¢ then f(Y(z,w;y), %) = g(&);
otherwise f(Y (z,w;y), %) is given by ho or h;, depending on whether
the last digit of Y (z,w;y) is 0 or 1. Therefore, we need to have in Ps
the function that picks up the last digit of Y (z,w;y), That functions is
I(z wiy) = U(Y (21, w,y)) Now, we can define
f (E w;y,I)=¢€

G(w;Z)HY (21, wiy) =¢
h(z;, 1Y, T) { Ho(w; I{z,w;y), Y (2, w;¥), Z, fz w;y, 2)))if I{z,w;y) =0

Hi(w; I(2,w;p), Y (2, w39), 7, jr“(z w;y, 2))) if Iz, w;9) = 1
Or more formally
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>"*->

(E wiy, :I:) =¢€
f(zj,wiy, ) = Q(Y (21, wiy), ¢, Gw; T),
R N h(w; I(z,w;y), Y (2, w;9), %, f(2,w; 9, &)
where h(w;i,a,b,¢) = Q(;4,1, H1(w;a,b,¢), Hy(w;a,b, c))

Therefore, we just have to put F(w;y,Z)= f(w,w;y,£) and
prlly Iz D =pally b1Z b5y 112 1)) +pg(l 2 )+ |y | +1, where
by is a polynomial bounding the lengths of the outputs. It is easy to
see that when | z | increases from |w | —~ |y | to | w |, 7 simulates the
process of recursion on y in the function f.

Given y and z, let w be such that | w [> ps(| v |,| Z |). We prove,
by induction on | u |, that if | w | — | y |<| v |<| w | then

f(u: w;y,:E) = f(Y(uvw;y)s 5)
This implies that

F(w;y,%) = f(w,w;y,z) = f(y, &),

as expected. Let u be such that | w | — | y |<| v |€] w |, and take
z € {0,1}* and j € {0, 1} such that u = zj.
_Case 1: If | u [=] 25 |=| w | — | y | then Y(zj,w;y) = ¢, and so
flzd, wiy, %) = G(w,z) = f(e,2) = f(Y (2], w; 9}, ).

Case 2: If | u |=| 2j |>| w | — | y | then Y (zj,w;y) € €. Assuming

f(z:w;y:i) = f(Y(ZSW;y)!f) we have

prlly 12 1)

pr (| Y(z,wi9) || Z |, bg(| Y (2, w59) 17 [))
ph.‘(l Y(z:w;y) Irl z |:| f(Y(z,w;y),o':) D

and so, by the general induction hypothesis over h;,

|w

v IV v

Hy(wiY (z,w;9),2, [z, wiy,8)) = Hi(w;Y (2,050}, 3, (Y (2,w1v),5))
) hi(Y (z,w39), %, f(Y (2, w;9), F)).

Hence, by definition of f and by the observation that ¥ (zj,w:y) =
Cf(z'wm)(;y(zaw;y)), we have

2 wi5,8) = Higugy(ws Y (2,03 y), 5, Flz, w9, )

hI(z,w;y)(Y‘(zl w;y)s T, f(Y(z,w;y), :E))
= f(¥(zj,w;y), %)
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The proof of the lemma is finished.

Theorem 3.2. Let f(z) be in Pspace. Then f(x;) is in Ps.

Proof. Let f(z) be in Pspace and, by the previous lemma, take F and
py satisfying (*). It is easy to show that there exists » € F's such that
Va | r(z;) |2 ps(| £ |). Thus, just put £(z) = F(r(z;); )

3.1.3 Pspace “contains” Ps

The inclusion Ps € Pspace is a simple consequence of the fact that it
is possible to bound polynomially every functions in Ps:

Lemma 3.3. If f € Ps then there ezists a polynomial q5 such that
vz, 7 | f(Z:9) |< max{qs(| % ), momi | vi |} ()

Proof. The proof is by induction on the complexity of f. The initial
functions pose no problems.

If f is defined by the safe composition scheme, then we have gn, r, @s
satisfying (**) and, therefore, we may take,

gr(|z ) =qnla-(l Z ) +qu¢(| z |).

If f is defined by safe recursion then, considering g{|z|,
[Z]) = an(l2z},] 1) + go(] T ]), the result follows by induction
on the recursion variable, since g4, gn verify (*x). We have
| 7(e,5;5) | < maz{as(l € |,| % |),maz: | 3: |} and, since | f(u,%7)|
< maz{qr(Ju |, 12|}, maz | yi |}, we get,

| F(u', 35 9) | | h(u, 235, f(u, 2:8)} |
maz{qn(l u |,| % |), maz{mazi | yi |, f(u, %55 9))}}
maz{gn(| ¢ ),| Z ), maz{maz: |y L aa(lu | Z ) +ao(l 2 D}}
maz{gn(l ul,| Z |} + qo(| Z ), maz: | i 1}
maz{ga(| u'|,| Z 1) + go(| £ [}, max: | y: [}
maz{qe(| v’ .| £ 1), maz | i |}

il

IATA A A A
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If f is defined by recursion on notation ther, if we set gn = ga, + gn,
and gf(l z .| Z |} = qu(] 2 |,| Z ]} + g4(| Z |), we may carry on the result
by induction on variable recursion length, since gg, gny, gn; satisfy (xx).
Thus,

[ flez;8)| = |a(Z¥) |
< maz{gy(l Z |), maz; | 4 |}
= maz{gs(| e|,} Z |}, maz | v |}

Now, since | f(z,z;y) |< maz{qs(| z |,| T |), mazi | yi |}, we get

| f(zi,3:9) | = |hi(z,Z4, f(2,58) |
< maz{gn(| 2 |,| Z |), mar(mar | i |, | £z % 9) )}
< maz{gn(] 2 1,{ 2 ), mar(maz; | y; |, maz{qs(| 2 |,{ Z [}, mazi | 3 |}}}
= maz{qn(| 21| % |), maz{qs(| z |,] & |), maz: | ys }}
= maz{gn(l 21, ), maz{qn(| z || 2 |) + a4(| Z |}, maz: | i [}}
< maz{qn(l z ||| #|) + go(]| £ |), maz: | y: [}
< maz{qn(| zi |,} 2 |) + g4(| Z |), maz: | y: |}
< maz{gr(} zi |,| 2 |), maz: | s |}

Therefore, Vz, 3 | f(Z;¥) |< maz{gs(| 2 ), mazi | y: |}
(]

At this point is obvious that the length of the functions in Ps is poly-
nomially bounded. It can also be easily shown that, for all polynomials, p
there exists a bounding function ¢ such that p(]  |) =| £(z) |. For exam-
ple, if p(x1, z2) = x1-2§+2-z5 then, for t(x1, z2) = (z1 xzaxx2){11xx3),
we will have p(| z; |,| z2) =| t(x1,z2) |. Therefore, in order to prove the
following theorem, we just have to check that it is possible to bound the
safe recursion schemes,

Theorem 3.4. Let f(z;y) be in Ps. Then f(%,4) is in Pspace.

Proof. The proof is standard and need not be reported here in detail.
The key step is when f is obtained by safe recursion or by safe recursion
on notation. In both cases we know, by the previous lemma, that for
some polynomial g5 we have

Vz,%,9 | f(2,%;§) |< maz{gs(| z |, | Z |), maz: | v |}
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Thus, defining p(| z [,|Z 1 g ) =gl z|,) 2 |) +Xi | vi |, there is a
bounding function t such that p(| z |,| z |, | # |) =| t(2, %, §) |. Therefore,
we define f by the correspondent bounded recursion scheme, with bound
i,

We have just established a characterization of Pspace without bounds.
To finish this paper some final remarks are in order.

Remarks.

Some people expressed their concern about our inclusion of the product
function amongst the initial functions of Ps. They would prefer to have
only initial functions of linear growth. We observed in subsection 3.1.1
that we must be very careful about operations involving safe positions
because - having safe recursion involving safe position - if they increase
the safe input lengths even just a bit, we would get functions of expo-
nential growth, which lie outside Pspace. Therefore, in order to remove
the product from the initial functions we seem to have to introduce an
intermediate input position, say semi-safe, and use it to construct the
product. Therefore, if we start with simpler initial functions we will
arrive at a more elaborate characterization. Let us give a brief glance
over this alternative characterization of Pspace. Here, there are three
kinds of input positions in the functions: “normal”, “semi-safe” and
“safe”. We write the normal, semi-safe and safe inputs by this order
and separate them by semicolons. We say that Ps* is the smallest class
of functions containing the following initial functions 1’ — 7’ and which
is closed under the safe composition, the safe recursion and the double
recursion on notation schemes:

1’) P;;m;‘(-":la e BTty IntmrIndbm+l zn+m+l) = Zj,
1<iji<n+m+! (Projections)
Norgon_ §ozise|zl<fz| y .
2"} Ci(z;32) = + otherwise ,i=0,1 (Bounded i Co.ncatenatmn)
¥) D(;;¢) =eD(;52i) =2,i=0,1 (Deleting)
Y)Y P(;;e)=€¢P(32') == {Predecessor)
n - - J zeezCy -
5) Q2,4 2, w) = { w otherwise {Conditional,)
§)UG;a)={ LeIEavl=2 (Conditionals)

0 otherwise
7) Ci(;x;)==i,i=0,1 (i-Concatenation)
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Safe composition: f(z;y;z) = h{5(Z;:);F(Z;7;); H(Z;;2))
Safe recursion: f(c,#;;¥) = g(%;;¥)
f(2,%;39) = Mz, %39, f(2, %53 9))
Double recursion on notation:
fle, 2;9;2) = 9(z;45 2)
fwi, 2;5;2) = hi(w, Z; 3, f(w, 7;9;€); 2 (v, %;§ 7)), i = 0,1
The goal of the double recursion on notation scheme is to join two

schemes in one. However, it could be replaced by the two following
schemes:

Semi-safe recursion on notation:
fle,z;4;) = g(z;%;)
fwi, %;5;) = hi(w, %;§, f(w,%;5;);),: = 0,1

Safe recursion on notation:
fle,z;;2) = g(z;; 2)
flwi, ;;2) = hi(w,Z;; 2, f(w,%;;2)),i = 0,1

The basic facts are as follows:

Lemma® 3.1. If f € Pspace then there exisis F € Ps* and o polynomial
ps such that

VEVw :|w |2 ps(| # [} = f(Z) = F(w;; 7). (x)

Theorem® 3.2. Let f(X) be in Pspace. Then f(z;;) is in Ps*.

Lemma* 3.3. If f € Ps* then exists a polynomial g5 such that

VZ, 5,2 | f(&;8;2) |< maz{ge(| T |) + mazi | yi |, maz; | zi |}, (x%)

Theorem* 3.4. Let f(z;y;z) be in Ps*. Then f(&,y, %) is in Pspace.
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