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Abstract

In the paper we study the existence of nonzero positive invari-
ant elements for positive operators in Riesz spaces. The class of
Riesz spaces for which the results are valid is large enough to con-
tain all the Banach lattices with order contimious norms. All the
results obtained in earlier works deal with positive operators in
K B-spaces and in many of them the approach is based upon the
use of Banach limits. The methods created for K B-spaces cannot
be extended to our more general setting; that is why our approach
is different. We do not use Banach limits and the invariant ele-
ments we come up with are much easier to describe than the ones
constructed involving Banach limits.

1 Introduction

Let E be a Riesz space and let T : E — E be a positive linear operator
(all the operators considered in this paper are linear operators). Given
u € E we say that u is an invariant (or a T-invariant) element if Tu = u.

QOur goal in this paper is to study the existence of nonzero positive
invariant elements of posilive operators in a class of Riesz spaces which
is large enough to contain all the Banach lattices with order continuous
norms.

The problem of the existence of nonzero positive invariant elements
of positive operators in K B-spaces has been studied in the papers of
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Akcoglu and Sucheston [2], Brunel and Sucheston [4], Millet and Suche-
ston [7], Shields [10], and in our paper [12]. The methods used in the
above-mentioned works are well-suited for K B-spaces and it does not
seem to us that they can be extended to Banach lattices with order
continuous norms in a straightforward manner. Moreover, the results
obtained for K B-spaces, generally, do not remain valid in Banach lat-
tices with order continuous norms.

In order to illustrate this last idea, let us consider a theorem de-
scribed by Brunel and Sucheston [4], which summarizes results of Shields
[10], Akcoglu and Sucheston [2], and Brunel and Sucheston [4]. (For our
purposes we will not state all the equivalent assertions discussed in [4],
as we do need only four of them.)

Theorem A. Let E be a K B-space, let E' be the dual of E, let T : E —
E be a positive power bounded operator, assume that E has weak order
units, and let e be such a weak order unit of E. Then, the following
assertions are equivalent:

(i) There erists a weak order unit v of E such that Tv=v.

(it) If t € E', 2 20, 2 # 0, then lim inf(T"e, z) > 0.

lnnl ‘
(i#) The inequality limninf <;ZT"£,£> > 0 holds for every x € E',

k=0
z2>0,z#0.

1n—1
(iv) The inequality lim sup <—-ZTke, :.-:> > 0 is true wheneverz € E',
n n
k=0
x>0,z #£0.

Theorem A does not remain true if, instead of assuming that E is a
K B-space, we only require E to be a Banach lattice with order continu-
ous norm (even if we assume that T is a positive contraction of E). In-
deed, let co be the Banach lattice of all real valued sequences which con-
verge to zero, and let S : eg — cp, S{a1, a9, a3,---) = (a1, 01,4a2,as,---)
for every (a},a2,a3,---) € co. It is well-known that ¢y has order contin-
uous norm, and it is obvious that S is a positive contraction of cp. Also,
it is not difficult to see that the assertions (ii), (iii), and (iv) of Theorem
A are true for S even though (i) fails to be true.
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Let E be a Riesz space. Givenu € E, u > 0, u # 0 and v € E,
v >0, v +# 0 we say that v dominates u if v Aw # 0 for every w € E,
0<w<uw#.

Our concern in the work is to obtain sufficient conditions for the
existence of T-invariant positive elements which dominate a given u € E,
u > 0, u # 0. Consequently, we will also obtain conditions for the
existence of T-invariant weak order units.

Let T : E — E be a positive operator and set A,(T) = ZT" for
B k=0
every n € IN.
' Basically, our approach can be described as follows: given u € E, we
will find conditions under which each of the elements limsup Ap(T)u
n

and limninf An(T)u (whenever they exist) is a T-invariant element and

dominates u. If u is a weak order unit, we obtain 7-invariant weak order
units.

The idea to comsider limninf Anp(T)u and imsup A,(T)uv as candi-

dates for T-invariant elements appears in a paper of Roth [8] in which he
shows that if £ = L1(X, X, u) for some o-finite measure space (X, X, p),
if T is a positive contraction of L1(X,E, ), and if v € LY(X, X, p),
u > 0, then lim inf A, (T)u is in L1(X, T, p) and is a T-invariant element

(he also chscusses (among many other things) invariance propertles of
limsup An(T)u (which may or may not be an element of L!(X, L, x))).

n
Qur results should be compared with a classical theorem concerning
the existence of finite invariant measures of positive contractions of L!-
spaces (see, for example, Theorem 4.2, pp. 137-138 of [5]}.

The setting for our results will be described in terms of Riesz dual
systems. In the next section (Section 2) we will discuss several facts
needed later on. In Section 3 and Section 4 we present sufficient condi-
tions for limsup An(7T)u and ]J'mninf An{(T)u to be T-invariant elements

n

and to dominate u, respectively.
Unless otherwise stated, the terminology and the notations used here

can be found in the books by Aliprantis and Burkinshaw [3], Luxemburg
and Zaanen [6], Schaefer [9], and in our papers [11, 13-15].
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2 Preliminaries

The aim of this section is to present several notions and results that will
be used later in the paper.

Let E be an order complete Riesz space. Given u € E, we will denote
by B(u) the principal projection band in E generated by the singleton
{u} and by P, the band projection associated with B(u).

As in [14], given a sequence (un),cpv of positive elements of £ we
will use the notation Buo((un),py) for the largest band in £ on which
(4n),cpv is unbounded.

Lemma 1. Let (un), . py be e sequence of positive elements of E and
v € E,v20,v#0. If Bo((un),cqv) N B(v) = 0, then for every
t € B(v}),t>0,t+#0 there exists s € B(v), 0 < s <¢t, s £ 0 such that
the sequence (Psuy), . pv is order bounded in E.

Proof. The proof of the lemma is similar to the proof of Lemma 6 of
[15].

n

Thus, as in [15], set v, = V“’k for every n € IN.

k=1

Let t € B(v), t>0, t#0. Since B(f) C B(v), and since
Boo({ttn),cpv) N B(v) = 0, it follows that Boo({tin) e pv) N B(t) = 0.
Thus, the sequence (up),.py is not unbounded on B(t); consequently,
(vn)pepv 18 not unbounded on B(t), either. Using Lemma 9-(a) and
Lemma 7 of [13], the same arguments as in Lemma 6 of [15] show that
there exists even a nonzero component s of ¢ such that (P-’““)ne v is
order bounded in E. Q.E.D.

Now let E be a Riesz space (not necessarily order complete), let E*
be the order dual of E, assume that E* separates the points of E, and
let J be an ideal in E* such that the pair (E, J) is a Riesz dual system
(that is, such that J separates the points of E).

Let T : E — E be a positive operator, and let T* : E* — E* be the
dual of T. We say that T has property M(J) if T*(J) C_J, that is, if
the restriction of T* to J is a well defined operator (denoted by T*, as
well), T*: J — J.

Examples. (a) If E is a Riesz space whose order dual £* separates the
points of E, then any positive operator T : E — E has property M(E*).
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(b) Let F be a Riesz space, let F* and #** be the first and the
second order duals of F, respectively, and assume that F* separates the
points of F, so F can be thought of as a Riesz subspace of F** (see,
for example, Theorem 5.4, p. 58 of [3]). Assume also that, as a Riesz
subspace of F**, F is an ideal. Let § : F — F be a positive operator,
let $*; F* — F* be the dual of S, and set T = S*. Then (F*,F) is a
Riesz dual system and T has property M(F).

(c) It is not difficult to find a Riesz dual system (E, J) and a positive
operator T : E — E which fails to have property M{J). For example,
let cg, 11, and I°° be the usual Banach lattices of real valued sequences,

and let T : I* = 1Y, T((e1,az,a3,---) = (Zan,0,0,---) for every
n=1

(@n)pem € {1. Clearly, T is a positive operator (actually, T is a positive
contraction of 11), and it is easy to see that the dual T of T is defined
as follows: T* : 1% — [, T*((a1, ag, a3, --)) = (a1, 61,81, - -) for every
(@n)pemv € 1%°- Thus, it follows that 7' does not have property M{co).

Given a Riesz dual system {(E,J)} as before, let J* be the order
dual of J. In order to avoid possible confusions we will sometimes use
the notations supg(infg) or sup;.(infs+) in order to indicate that the
suprema (infima) are taken in E or J*, respectively. Now, let ¢ : E —
J*, ¥(u)(z) = z(u) for every u € E, z € J be the canonical embedding.
It is well-known (see, for example, pp. 58-59 of [3]) that ¢ is a one-to-one
lattice preserving operator; thus, given u € E, we will not distinguish
between u and v (u); that is, we will think of u not only as an element
of E but also as a linear functional on J. We say that the Riesz dual
system (E, J) has property C if E is order complete and if the canonical
embedding ¥ preserves countable suprema and infima.

Examples of Riesz dual systems which have property C are easy to
find: if E is an order complete Riesz space, and if any element of J is an
order continuous linear functional on E, then, by a theorem of Nakano
(see Theorem 5.5, p. 59 of [3]), the Riesz dual system {E, J} has property
C; in particular, if F is a Banach lattice with order continuous norm,
then both Riesz dual systems {E, E*) and (E*, E) have property C.

Lemma 2. Let {E,J) be a Riesz dual system which has property C, let
T : E — E be a positive operator and assume that T has property M(J).
Then T is a o-order continuous operator.
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Proof. Since T is a positive operator, it follows that it is enough to

show that T ( Sup guy | = sup gTuy, for any order bounded monotonic
nclN nelV
nondecreasing sequence (tn),cpv of positive elements of E. To this

end, let (un),. pv be such a sequence of positive elements of E and set
U = SUp Etn.

nelV
Let T* be the dual of 7" and let T** : J* — J* be the dual of the

restriction of T* to J.
Since Tuy, < T'u for every n € IN, and since F is order complete, it

follows that sup gTu, exists.
nclN
Since (E, J) has property C, using Proposition 4.2, p. 72 of |9], we
obtain that

(Tu, 2)={u, T*z) = (T*x, sup j*u,)

nclV
= sup (T*z,up) = sup {x,T**u,) = (z, sup ;*T** u,)
neIN neN nelV
=( sup gTun, z
nelV

foreveryz € J, z > 0.
* Since J separates the points of E, we conclude that Ty = sup g Tun.

ncIN
Q.ED.
Let (E,J) be a Riesz dual system, let T : E — E be a positive
operator, and set

oo
T v, z2)=0 oo f
Ic(T.J)={uveE g( vi@) =0 or + oo for every

v_GE, 0<v<|ul end z€J, z2>0.

Note the similarity between the notion of the conservative ideal gen-
erated by a positive operator (see [11]) and the definition of I (T, J)} (if
J is the order dual E* of E, then I¢(T, E*) is exactly the conservative
ideal defined in [11]). Arguments similar to the ones used in Theorem
1 of [11] show that Ic(T, J) is an ideal in E. We will call I¢(T, J) the
conservative ideal with respect to J generated by T.



On Invariant Elements for Positive Operators 91

Lemma 3. Let (E, J} be a Riesz dual system which has property C, and
let T : E — E be a positive operator which has property M(J). Then
Ic(T,J) is a o-ideal.

Proof. Since Ic(T, J) is an ideal in E, in view of Theorem 17.2-(ii), pp-
94-95 of [6], it follows that it is enough to prove that supguy, € Ic(T, J)
n

for every monotonic nondecreasing sequence (un),.py of positive ele-
ments of Ic(T, J) such that supgu, exists.
n

To this end, let (un),cpv be such a sequence and set u = supgun.
n

Clearly, we may assume that u # 0.

oo
let v € E, 0 € v £ u and assume that E(T"v,:z) > 0 for some
n=0

z € J, z > 0. Then there exists ng € IV U {0} such that {T™v,z) > 0.
As in Lemma 1, let 7** : J* — J* be the dual of the restriction of
T* to J.
Taking into consideration that {E,J) has property C, that T is o-
order continuous by Lemma 2, and using Proposition 4.2, p. 72 of [9],
we obtain that

0 < {T™y,z) = (T’“’ ( sup g{ug A v)) ,:c>

keIN

= < sup g7 (ug A v),x>

kcIN

keIN
= sup {x,T*"*"™(ugx Av))
keIN
= sup {T™(ux Av),z).
keIN

= <::, sup T ** ™0 (ug A v)>

Thus, there exists kg € IN such that (T™(uj, A v),z) > 0. Since
[ ]
up, € Io(T, J), it follows that Z(T“(uko Av), z) = +00.

. n=0
Taking into consideration that 0 < ug, A v < v, we conclude that
o

Z(T"v,:c} = +00.

n=0
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o
We have therefore proved that Z(T"v, z) = 0 or +oo for every
n=0
v€ E,0<v < uandforevery z € J, z > 0. Accordingly, u € Ic(T, J).
Q.E.D.
Let E be a Riesz space, let J be an ideal in the order dual E* of
E and let T : E — E be a linear operator. We say that T is J-weakly

power bounded, if sup [{T"u,z)| < +oo for every u € E and z € J.
nelN

Lemma 4. Let (E,J) be a Riesz dual system, let T : E — E be a
positive operator, assume that Ic(T,J) is T -invariant (that is, assume
that T(Ic(T,J)) C Ic(T, J)), and let u € Ic(T,J), u > 0.

(a) If Tu < u, then Tu = u.

(b) If T is J-weakly power bounded, and if u < Tu, then Tu = u.

Proof. (a) Assume that Tu # u. Since J separates the points of E it
follows that there exists € J, z > 0 such that {u — Tu,z) # 0. Since
I¢(T,J) is T-invariant, we have that v — Tu € I¢(T, J). Accordingly,
[~ o]

Z(T"(u —Tu),z) = +0o.
n=0
On the other hand,

o0 n

Z(T"’(u —Tu),z) = nEE—loo Z (T™(u — Tu), z)
n=0 m=0

= ﬂii.lfoo((u,x) - (T"y 2)) < (u,2) < +o0.

We have obtained a contradiction. Accordingly, Tu = u.

(b) As at (a), assume that Tu # u and pick z € J, z > 0 such that
00
(Tu —u,z) # 0. Since Tu — u € Ig(T, J), it follows that Z(T"(Tu —

n=0
u),z} = +00.
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However,

Z(T"‘(Tu —u),z) = lim 2 (T™(Tu— v),z)
n=0

n—>+oo
—. n+l
= lim (T™,2) - (u,2)
< | sup {T" 1w, :c)]) + {u,z} < +o0
nelN

since T is J-weakly power bounded.

We have obtained a contradiction, so, we conclude that Tu = w.
Q.E.D.

3 The Invariance of limsup A,(T)u

Let (£, J) be a Riesz dual system which has property C,let T: E - E

be a positive operator which has property M(J), and let u € E, u > 0,

u # 0. Our goal in this section is to describe sufficient conditions

for limsup Ap(T)u to be T-invariant and to dominate u, whenever
n

limsup An(T)uv exists in E.
n

As pointed out in Section 2, given v € E, we may think of v as an
element of J*; moreover, as an element of J*, v is an order continuocus
linear functional on J and has a carrier which will be denoted I'(v).

Theorem 5. Assume that T is J-weakly power bounded and that the
conservative ideal Ic(T, J) is T-invariant. Let u € Ic(T, J) be such that
u>0, us# 0 Iflim  sup An(T)u exists in E, then llmsup An(T)u is

T-invariant. If, in addttwn, lim sup(An(T Ju,x) > 0 for every r € I'(u),
z >0, £#0, then limsup An(T)u dominates u.
n

Proof. Since u € Ic(T,J) and since we assume that Ic(T,J) is T-
invariant, it follows that A(T)u € Ic(T,J) for every n € IN. Thus,
limsup An(T)u € Io(T,J) since by Lemma 3 the conservative ideal
N ,
1c(T, J) is a o-ideal.
Set v = limsup An(T)u.
n

We first prove that v is T-invariant.
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Since T is a positive operator, and since, by Lemma 2, the operator
T is o-order continuous, it follows that
T(lim sup(An(T)u)) = inf T { sup(Ax(T)u)
n n k>n
> inf sup(TAg(T)u) = limsup(T An(T)u)
" k>n n

T+T+---+T" )
k7

= limsup
n n
. n+1I+T+T24+... 470 1
= lim sup U — —u
n n n+1 n

= lim sup(Ans1(T)e + ~(Ans2 (T)u - w)).

Taking into consideration that (An(T)u), gy is an order bounded
sequence, we obtain that (An+1(T)u — ), gy is also order bounded.
Since E is an Archimedean Riesz space, it follows that

timsup (%(A,,H (T)u - u)) = lim inf G(Anﬂ(r)u - u)) =0,
Accordingly,
lim 5up (A1 (7)) = lim sup(Awsn(T o) +liminf (7 (Ansa (T — u)
< limsup(An 1 (T)e + =(Anca(Th — w)
< Hm:uP(An-!-l(T)u) + lim sup (%(AnH(T)u - u))

= limsup(An1(T)u).

Thus,
T(0) 2 lmsup(Ansa (T)ot = (Ansa(Tu-v)) = bimsup(Anss (7)) = v,

Since T is J-weakly power bounded, by Lemma 4-(b), we conclude
that Tv = v. '
Now assume that lim sup{An(T)u,z) > 0 for every z € T'(u), z > 0,
n

z # 0 and assume that v = limsup A,(T")u does not dominate u. Then,
n
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there exists w € E, 0 € w £ u, w # 0 such that v Aw = 0. Since w
as an element of J* is a nonzero order continuous linear functional on
J, we infer that w has a nonzero carrier I'(w) in J. Thus, there exists
z €TN(w), z 20,z #0.

By a theorem of Nakano (see, for example, Theorem 5.2, pp. 56-57
of [3]), it follows that » and w have disjoint carriers, so {v,z) = 0

Since (E, J) is a Riesz dual system, it follows that J* separates the
points of J, so we may think of the elements of J as elements of the
order continuous dual of J*; hence, we may think of = as a positive
order continuous linear functional on J*.

Clearly, z € I'{(u) since z € I'(w) and 0 < w < u.

Teking into consideration that {E,J) has property C we obtain a
contradiction since

0= {v,z)= (z,limsupJ*An(T)u) = inf(x, supJ*An(T)u)
> mf sup(z:, An(T)u) hmsup(An(T)u z) > 0.

Q.E.D.

Theorem 5 can be used in order to obtain a sufficient condition for
the existence of T-invariant weak order units. Indeed, assume that E has
weak order units, that T : E — FE is a J-weakly power bounded positive
operator, and that Ic(7T,J) = E; if v is a weak order unit of E such
that hmsup Ap(T)u exists in E and such that hmsup(An(T)u z) >

0 for every z € Iu), 2 2 0, x # 0, then Theorem 5 implies that
limsup Ap(T)u is a T-invariant weak order unit of £. In particular, if

E ig a Banach lattice which has order continuous norm and weak order

units, if J = E*, if T : E — E is a (norm) power bounded positive

operator such that Io(T, E*) = E and if u is a weak order unit such

that limsup An(T)u exists in E and such that limsup{An(T)u,z) > 0
n n

for every x € E*, x > 0, £ # 0, then limsup Ap(T)u is a T-invariant
n

weak order unit of E.

4 The Invariance of lim inf A,(T)u

Let E be an order complete Riesz space, let (E,J) be a Riesz dual
system and let 7' : E — E be a positive operator which has property
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M(J).
As mentioned in Introduction our goal in this section is to study
conditions under which limninf An(T)u is T-invariant and dominates u

whenever u € E, u > 0, u # 0 is such that limninf An(T)u exists in E;

that is, we will study the same problems as in the previous section for
limninf An(T)u, rather than limsup Ap(T)u. It is of interest to point
n

out that even though the existence of limsup A,(T)u implies the exis-
L]
tence of lim inf An(T)u, finding conditions under which lim inf An(T)u
dominates u is more difficult than in the case of limsup A, (7).
n

Throughout this section we will assume that all the elements of J are
order continuous linear functionals on E. Like in the previous section,
given u € E we will denote by I'(x) the carrier of u in J (provided, of
course, that we think of « as an order continuous linear functional on
J)

Lemma 6. Let u€ E, u >0, u # 0, and assume that
limsup({An(T)u,z) > 0 for every z € ['(u), z >0,z #0. If

n
Boo((An(T)u) e pv) N B(u) = 0, then for everyz € T(u), 2 >0,z # 0
there erists a nonzero component y of ¢ and a € R, o > 0 such that
lim sup{An(T)u, z) > alu, z) for every component z of y.

n

Proof. Let u € E, u > 0, v # 0 be such that limsup(T™u,z) > 0 for
n

every € I'(u), z > 0, z # 0, assume that Bo((An(T)u),cpv) N B(u) =
0, and assume that the assertion of the lemma fails to be true for w.
Then there exists 2z’ € ['(u), 2’ > 0, 2’ # 0 such that for every nonzero
component y of £’ and for every a € IR, a > 0 there exists a nonzero
component z of y such that limsup{An(T)u, z) < afy, 2).

n

Since 2’ is an order continuous linear functional on E, it follows that
the carrier and the null space of =’ are projection bands and E is their
order direct sum (see Proposition 4.10, pp. 78-79 of [9]). Thus, if ¢
denotes the projection of u on the carrier of =’ in E, then ¢t is a nonzero
component of u since (u,z’} # 0.

As Boo({An(T ) ,,e v ) N B(u) = 0, we can apply Lemma 1; accord-
ingly, there exists s € B(t), 0 < s <.t, s # 0 such that the sequence
(Ps(An(T)u)), v is order bounded in E.
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Since we may think of s as an order continuous linear functional on
J, we can consider the projection (which will be denoted by z) of z’ on
the carrier I'(s) of s in J.

Since s is in the carrier of z’, it follows that (s,z') # 0; as J is the
order direct sum of the carrier and the null space of s in J, we infer that
(s,z} = (s,2’), so x is & nonzero component of x’. Accordingly, = enjoys
of the property which was used in order to pick z', that is, for every
nonzero component y of z and for every o € IR, a > 0 there exists a
nonzero component z of y such that limsup{A4,(T)u, z) < o{u, z).

n

Set
I'n = {zE J

for every a € IR, a > 0. Qur goal is to show that z € Iy for every
a€R, a>0.

To thisend, let a € R, o > 0.

We will now show that at least one of the following two situations

z is a component of r such that
lim sup{An(T)u, z) < afy, z)
n

occurs:
(a) there exists a finite number of mutually disjoint nonzero compo-

m
nents zj, z9, - -+, z;m of z in I, such that Vzk =
k=1
(b) there exists a sequence (zx),.py of mutually disjoint nonzero
o0

components of z in ', such that V Zp = .
k=1
Set yo = 0 and Iy = 0. Then, either (u,z} < %(u, z) for every
z € I’y or else there exists a finite number of mutually disjoint elements
z1,22,- -, 25, of [a such that (u,zx) > %(‘u,z) for every k= 1,2,---, j1,
51
and (u,z} < %(u,x) for every 2 € Ty, 2 <z — Vzk (actually, j; < 2

k=1
since if we assume that j; > 2, then we obtain a contradiction since

J1
{u,z) > <u, Vzk> > {u,zy V 22V 23)
k=1
= {u, z1}) + {u, z2) + {u, z3) > %(u, x)).
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If {u,2) < %(u,z) for every 2z € 'y, then set y; = 0 and {; = 0;
7
otherwise, set y; = \/z;c and l; — 7.
k=1 :

If y1 = z, then the situation (a) occurs and the procedure stops.

If y1 # =z, then either (u,2) < %(u,z) for every z € T'a, 2 £ z —
y1, or else, there exists a finite number of mutually disjoint elements
ZU 41> 42, s 2y 44a Of To such that zx <z~ yp, (u, zx) > %(u, z) for
every k=1 +1,,+2,---,1; +3j9, and {u,2) < %(u,a:) for every z € Iy,

hi+j2
z<z—-|wnv ( V zk)) (similar arguments as the ones used for j;
k=l +1
show that j; < 3).
If {u,2) < %(u,a:) for every z € Ty, 2 < z — y1, then set yo = y; and
I1+72
lz = ly; otherwise, set yo = y; V ( V zk) and ls = {; + jo.
k=li+1
If yo = z, then stop since we are in the situation (a); otherwise,
continue the procedure.
In general, assume that we obtained y1,¥9,---,¥s, 1,02, --,1s, and
that y; % z. Then either (u,z) < ;i—g(u, z} for every z € Ty, z <
Z — ys, or else, there exists a finite number of mutually disjoint elements

215 2ly+2: s Zy g 41 Of Lo such that zx < @ — ys, (u, z) > #ﬁ(“s )
for every k=1l3+ 1,1, +2,- -+, I+ jsi1, and {(u,z) < ﬁg(u,x) for every
Li+ja+a
z€lq, 2 <z~ (y_., A% v zk)) (as in the case of jy, it follows that
k=ls+1
j5+1 S s+ 2)
If (u,z) < -‘#ﬁ(u, z) for every z € ', 2z < £ — ys, then set ysy1 = y4
Is+gs41
and I, = I,; otherwise, set y,1 1 = y,V( v zk) and 11 = lg+Jat1-
k=l,+1

If ys+1 = =, then the procedure stops as the situation (a) occurred;
if 541 # z, then the procedure is continued.

Assume that the situation (a) does not occur; then, the above pro-
cedure generates a sequence (zx)..zy of mutually disjoint nonzero com-
ponents of z in I'y. Thus, in order to prove that in this case (b) occurs,

oo
we have to show that V zp = x.
k=1
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o0 o0
To this end, assume that Vzk #x andset y =z — Vzk. Since J

k=1 k=1
is an ideal in the order dual E* of E and since E* is order complete, it

follows that J as a Riesz space in its own right is also order complete;
hence, using Theorem 3.15, pp. 37-38 of [3] we infer that y is a compo-
nent of z. Since y # 0 it follows that there exists a nonzero component
z of x such that z < y and z € T',,.

Since z € ['(u), we obtain that z € I'(u), so there exists ! € IV U {0}
such that [ is the first nonnegative integer with the property that (u, z) >

3, 7).

oo oc
Since 0 < z A (Vzk) < yA (Vzk) = 0, it follows that z A
k=1 k=1

(Vzk) =0, so z Ay;41 = 0, where y;4, is the component of x which
k=1
appears in the procedure used to construct the sequence (zx)..pv- Tak-

ing into consideration the way in which y; was defined in the proce-

oo
dure, we obtain a contradiction. We conclude that \/z,r‘7 = z, so the
k=1
sequence (zx) gy satisfies the conditions of (b).
Since at least one of the situations (a) or (b) occurs, it is obvious
that in order to prove that = € [y it is enough to show that ¢ € 'y
whenever (a) or (b) occurs.

Assume that (a) occurs and let z, 29, --, 2z, be mutually disjoint
. )
nonzero components of z in 'y such that V Zk = .
k=1
Then,

2]

sup{A;(T)u,z) = s;j? (Z(Ai(T)u, Zk))
23 \k=1

m
Z sup{A;(T)u, zx)
k=127

1A

for every j € IN.

Taking into consideration that the sequence | sup{A4;(T)x, zk))
2§ jelN
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is monotonic nonincreasing for every k = 1,2, --, m, we obtain that
limsup{An{T}lu,z) = inf su Ai(T)u, z
Sup(An(T}u, o) Jewg;( (T, 20
< inf sup{A;(T)u, z
28, (S mwuain )
m
= inf sup(A;(T)u, zx)
kZ:_‘,lEW z_J< (
i
< Za(u, 2g) = alu, z),
k=1

so, z € ', whenever the situation (a) occurs.
Now assume that (b) occurs and let {zx), v be a sequence of mu-
oo

tually disjoint nonzero components of 2 in I', such that V =
k....
Since the sequence (Ps(An(T)u)),cpv is order bounded in E and

since E is order complete, it follows that sup gP,(An(T)u) exists. Set
nclN
u* = sup £Py(An(T)u).
nciN

Let n € IN, let w be a component of z, and let (B(s))? be the disjoint
complement of B(s) in E.

Since Ap(T)u — Ps{An(T)u) is an element of (B(s))Y, it follows that
An(T)u — Ps(An(T)u) and s are lattice disjoint as elements of E; thus,
An(T)u — Py(An(T)u) and s are lattice disjoint in J*, as well, whenever
we think of them as elements of J*. Thus, we can apply a theorem of
Nakano (see Theorem 5.2, pp. 56-57 of [3]), and taking into consideration
that w is in the carrier I'(s) of s (since 0 < w < z and z € I['(s)), we
obtain that

(An(T)u,w) = (An(T)u — Ps(An(T)u),w)
+(Ps(An(T)u),w) = Ps(An(T)u),w).

Set x; = Vzk for every ! € IN.
k=1

The sequence { sup{Ax(T)u, z;) . converges to inf sup(Ax(T)u, z;)
k>n nelN R k>n
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since (sup(Ak(T)u, ZI)) is a monotonic nonincreasing sequence of
k>n

ncIN
nonnegative numbers for every [ € IN. Accordingly,

m
lim sup{An(T}u,zm) = infsup Z(Ak(T)u, 1)
n " k2n \j5

inf g (i‘éﬁ(A"(T)"’ zz)%

A

m

=3 (ig‘f i‘;‘,’,‘A"(T)"’ z1)

=1
m

= Z ﬁmrfuP {(An(T)u, z1)
=1

NE

< alu, z;) = alu, zm)

=1
for every m € IN. Since z,, is a component of z, it follows that z,, € 'y
for every m € IN.

Let € € R, € > 0. Since u*, as an element of J*, is an order con-
tinuous linear functional on J, and since z,, / z, it follows that there
exists mg € IV such that {(u*,z — z,,) < € for every m > my.

We obtain that

kim sup{An(T)u, z) = inf it;g((Ak(T)u: Timg)
) HAR(T), T — Tmg))
inf (i‘iﬁ(<Ak(T)"’ Tmg))

IA

+ sup({Ap(T)u,z — -Tmo)))
k>1

. (igg(mk(f)u,zm))

+il;1;((Ak(T)"- T~ Trmg))
limnsup((An(T)u: Tmg))

+ i?l}(P’(Ak(T)u)’ T = Tmp)

< ot Tmg) + (45,7 — Tmg) < a{tt, Tmp) + €
< afu,z) +e
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Since limsup(An(T)u z) < afu,z) + € for every e € R, ¢ > 0, it
follows that lun sup(A,,(T)u,x) < afu,z), 80 z € [',.

We have therefore proved that z € Ca, so hmsup(An(T)u z) £
af{u,z) foreverya € R, a > 0. Thus, lim sup(An(T)u z) = 0; therefore,

we have obtained a contradiction. Q.E.D.
Let v« € E, u 2 0, u # 0. We say that u has property D if the

following conditions are satisfied:
(i) Boo((An(T)u)peqy) N B(u) =0
(ii) imsup{An(T)u,z) > 0 for every x € I'(u), z 2 0, = # 0;
n
(iii} for every z € I'(u), = 2 0, = # 0 there exist y € ['(u), 0

<
y <z,y# 0and p € R, p > 0 such that i%f(A,,(T)u, z) >
p limsup{An(T)u, 2} for every component z of y.
n

Theorem 7. Assume that the conservative ideal Ic(T, J) is T -invariant
and let u € Ic(T,J), u 20, u # 0. If Iimninf An(T)u exists in E, then
limninf An(T)u is a T-invariant element. If, additionally, u has property
D, then lim inf An(T)u dominates w.

Proof. Assume that Iimninf An(T)uexistsin E and set v = ]jmninf Ap(T)u.
We first prove that v is T-invariant.
Since T is a positive operator and since ‘—Ti > %1 for every € IN,

n € IN, ! < n, it follows that

r( mf(AnT)0)) < ST (AR(TII0)
_ inf I+T+T2+---+T"u_ E)

n>l Tt

2 n
. N &
<inf (LHTHTH 4 u)
n>l n
. n+1
n>l
Sl+1. +1
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for every 1 € IN. Accordingly,

I+1

T(inf(A,,,(Tu <T|inf(Ap(Tiu) ) < v
n>k n>

for every k € IN, I € IN, I > k, so, taking into consideration that

1+1
inf (%‘D)Tv—(ﬂince E is Archimedean), we obtain that
eIV

>k

. P
T (mf(An(T)u)) < inf

n2k eIV

>k

Since we assume that every element of J is an order continuous linear
functional on E, by a remark made just before Lemma 2, it follows
that the Riesz dual system (£, J) has property C, so by Lemma 2 the
operator T is o-order continuous. Accordingly, we obtain that Tv =
sup T (inf (An(T)u)) <w.
kelN \n2k
Sinceu € I¢(T, J}, since Ic(T, J) is T-invariant, and since by Lemma

3 the conservative ideal Io(T, J) is a o-ideal, it follows that v € Io(T, J),
so Tv = v by Lemma 4-(a).

Now, assume that u has property D; our goal is to prove that in this
case limninf Ap(Te dominates u.

To this end, let w € F, 0 < w < u, w % 0. Since w as an order
continuous linear functional on J has a nonzero carrier I'(w) in J, it
follows that we may and do pick z € I'(w), z > 0, = # 0.

Since u has property D and since I'(w) C I'(u) we obtain that
there exist y € '(u), 0 < y € z,y # 0 and p € IR, p > 0 such
that, iﬂf(An(T)u,z) > p lim’f;up(An(T)u, z) for every component z of

v=v for every k € IN.

y; furthermore, by Lemma 6 there exist a nonzero component yg of y
and @ € IR, a > 0 such that limsup{A,(T)u,z) > a{u,z) for every
n

component z of y3. Accordingly, i%f(A,,,(T)u,z) > aplu,z) for every
component z of o in J.
Set up = 151%£nE(Ak(T)u) for every n € IN.
n_ n
Clearly, Z(Ak(T)u, 2k} = Z ap{u, zx) = ap{u, yo) foreveryn € IN
k=1 k=1 .
and for every mutually disjoint components z, 2o, - -, 2 of yp such that

z1+ 22+ - + 2n = yo, %0 using a result of Abramovié [1} (which is also
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discussed in Theorem 3.16, pp. 38-39 of [3]), we obtain that

{un,yo) = (o, Inf s+(Ak(T)u)) |
zk € J, 2z A (yo — zx) = 0 for every

n k=1,2..-,n; zx Az; =0 for every
= inf { > (Ap(T)u,zx) |k =12, ,n, 5 =12, ,n, j#k,
k=1 n
and sz='yo
k=1

> aplu,yo) # 0

for every n € IV.
Clearly, (un), <INV is a monotonic nonincreasing sequence such that

m}v pun = inf EAn(T)u Thus, if we think of (un), .y as a sequence
ne nelN
of elements of J*, if we use Proposition 4.2, p. 72 of [9] and the fact

that (E, J) has property C, then we obtain that

< 1%3 An(T)u, yu> = <ﬂ1€nﬂfV E'Unsy0> <yo,n2ngv J*Un>

= inf (yo,un) > ap(u,yo) > 0.
nElN

It follows that yg does not belong to the null space of izng(An(T)u).
ne

Since yg € I'(w), using a well-known theorem of Nakano (see, for exam-

ple, Theorem 5.2, pp. 56-57 of [3]) we infer that ( inng(An(T)u)) Aw #£
ne

0; hence (limﬂinf(An(T)u)) Aw #0. QED.

In a similar way as in the case of Theorem 5, Theorem 7 yields
conditions for the existence of T-invariant weak order units. Indeed, if
E has weak order units, if Ig(T,J) = E, if u is a weak order unit of
E such that limﬂinf(An(T)u) exists in £ and such that « has property

D, then Theorem 7 implies that limninf(An(T)u) is a T-invariant weak
order unit of E.
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