REVISTA MATEMÁTICA de la Universidad Complutense de Madrid Volumen 10, número 1: 1997

On minimal non CC-groups.

A. OSMAN ASAR and A. ARIKAN

Abstract

In this work it is shown that a locally graded minimal non CC-group G has an epimorphic image which is a minimal non FC-group and there is no element in G whose centralizer is nilpotent-by-Chernikov. Furthermore Theorem 3 shows that in a locally nilpotent p-group which is a minimal non FC-group, the hypercentral and hypocentral lengths of proper subgroups are bounded.

1 Introduction

Let G be a group. As is well-known, G is called an FC-group (CC-group) if for all $x \in G$,

$$[G:C_G(x)]< \underset{-}{\overset{\infty}{\bigcirc}} (G/C_G(x^G) \text{ is Chernikov }).$$

G is called a **minimal non** FC-**group** if every proper subgroup of G is an FC-group but G itself does not have this property. A minimal non CC-group is defined similarly.

Belyaev in [2] showed that if G is a perfect locally finite minimal non FC-group then either G/Z(G) is simple or G is a p-group (p is always a prime number). Recently Kuzucuoğlu and Phillips in [6] have shown that, in fact, G must be a p-group. More recently F. Leinen and G. Puglisi in [7] have shown that a perfect locally nilpotent

p-group which is a minimal non FC-group can be embedded in the McLain group M(Q, GF(p)). However it is still an open question whether or not a perfect locally nilpotent minimal non FC-group can exist.

Otal and Peña in [9] extended some of the properties of a minimal non FC—group to a locally graded minimal non CC—group. Later the same authors and B. Hartley in [5] have shown that such a group is locally nilpotent p—group for some prime p. (A group is called **locally graded** if every nontrivial finitely generated subgroup has a proper subgroup of finite index).

In this work it is shown that a locally nilpotent p-group which is a minimal non CC-group contains a proper epimorphic image which is a minimal non FC-group in which every proper normal subgroup is nilpotent of finite exponent and there is no element in such a group whose centralizer is nilpotent-by-Chernikov. Also Theorem 3 shows that in a perfect locally nilpotent p-group which is a minimal non FC-group, the hypercentral length and hypocentral length of proper subgroups are bounded.

The main results of this work are stated below.

Theorem 1. Let G be a locally nilpotent p-group in which every proper subgroup is a CC-group. Then every proper subgroup of G/G^0 is an FC-group. Furthermore if G is perfect then it contains a proper normal subgroup K such that $Z(G)G^0 \leq K$ and every proper subgroup of G/K is nilpotent of finite exponent.

(For a group X, X^0 denotes the unique maximal radicable abelian subgroup of X whenever it exists).

Corollary 1. Let G be a locally nilpotent p-group which is a minimal non CC-group. Then G contains a proper normal subgroup K such that G/K is a minimal non FC-group and every proper normal subgroup of G/K is nilpotent of finite exponent.

Proof. By the Corollary on p. 1232 of [9], G is perfect. Therefore the assertion follows from Theorem 1.

Theorem 2. Let G be a locally nilpotent p-group which is a minimal non CC-group. Then $C_G(x)$ is not nilpotent-by-Chernikov (anNC-group) for any $x \in G$.

Theorem 3. Let G be a perfect locally nilpotent p-group which is a

minimal non FC-group. Then for every proper subgroup X of G the following holds.

- (i) $Z_{\omega}(X) = X$.
- (ii) $K_{\omega}(X) \leq Z(G)$.

(As usual for each ordinal α , $K_{\alpha}(X)$ and $Z_{\alpha}(X)$ denote respectively the α th term of the lower and upper central series of X).

2 Proof of the Theorems

Lemma 2.1. Let A be a periodic CC-group and B be a normal abelian subgroup of A such that A/B is radicable abelian. Then A is abelian. If in addition B is radicable abelian then so is A.

Proof. The first part of the lemma follows from Lemma 2 of [3] and the second part is trivial.

Note that if in the following Lemma H is a CC-group, then the conclusion follows from Lemma 1 of [3], but this result is not needed in the proof.

Lemma 2.2. Let H be a locally nilpotent p-group in which every proper subgroup is a CC-group. Then H^0 exists and $(H/H^0)^0 = 1$.

Proof. By (1.1)(3) of [9] every proper subgroup of H is hypercentral, which implies that every subgroup of H is ascendant in H. By Zorn's Lemma, H contains maximal radicable abelian subgroups. Let P and Q be two maximal radicable abelian subgroups. Then [P,Q]=1 by Lemmas 3.2 and 3.4 of [8], since P and Q are ascendant in G. Hence PQ is abelian and so P=Q by the choice of P and Q, which implies that H has a unique maximal radicable abelian subgroup; that is, H^0 exists.

Next let $T/H^0 = (H/H^0)^0$. Then T is radicable abelian by Lemma 2.1 and so $T = H^0$ by the maximality of H^0 , which was to be shown.

Lemma 2.3. Let H be a locally nilpotent p-group in which every proper subgroup is a CC-group. Then every proper subgroup of H/H^0 is an FC-group.

Proof. Since $(H/H^0)^0 = 1$ by Lemma 2.2, we may suppose without loss of generality that $H^0 = 1$. Let K be any proper subgroup of H. Then K/K^0 is an FC-group by Lemma 1 of [3]. Moreover since H contains a unique maximal radicable abelian subgroup by Lemma 2.2, it follows that $K^0 = 1$ and so K is an FC-group which completes the proof of the Lemma.

Lemma 2.4. Let H be a perfect locally nilpotent p-group which is a minimal non FC-group. Then H contains a proper normal subgroup K such that $Z(H) \leq K$, and every proper normal subgroup of H/K is nilpotent of finite exponent.

Proof. By hypothesis H = H', so without loss of generality we may syppose that Z(H) = 1. Let $1 \neq a \in H$ and put $C = C_H(a)$. Then $C \neq H$. Let N be a proper normal subgroup of H and put $D = C \cap N$. Then [N:D] is finite, since N < a > is an FC-group. Hence if

$$L = \bigcap_{x \in N} D^x$$

then L is normal in N and N/L is finite. Next let

$$Y = \bigcap_{h \in H} L^h.$$

Then Y is normal in H and N/Y is nilpotent of finite exponent, since it is embedded into the unrestricted direct product

$$\prod_{h\in H}(N/L^h)$$

where $N/L^h \cong N/L$ for all $h \in H$.

Finally let

$$K = \bigcap_{h \in H} C^h.$$

Then $K \neq H$ since $C \neq H$. Also $Y \leq K$ since $Y \leq L \leq D \leq C$. Therefore NK/K is nilpotent since N/Y is nilpotent. Since N is any proper normal subgroup of H, K is a desired subgroup of H.

Proof of Theorem 1. By Lemma 2.3 every proper subgroup of G/G^0 is an FC-group. Now suppose also that G is perfect. Then G/G^0 is

also perfect and so it is a minimal non FC-group. Therefore by Lemma 2.4 it contains a proper normal subgroup K/G^0 such that $Z(G/G^0) \leq K/G^0$ and every proper normal subgroup of G/K is nilpotent of finite exponent. Obviously $Z(G)G^0 \leq K$. This complete the proof of the theorem.

Proof of Theorem 2. By the Corollary and by (1.1)(3) of [9] G is perfect and every proper subgroup of G is hypercentral. Assume that $C = C_G(a)$ is nilpotent-by-Chernikov (NC-group for short) for some $a \in G$. Then $C \neq G$ since G is perfect by hypothesis. First we show that every proper subgroup of G is an NC-group. So let X be a proper subgroup of G. Clearly G can be expressed as a union of an ascending chain of proper normal subgroups since it is perfect and locally nilpotent. Hence it follows that $a^G \neq G$. Then also $a^G X \neq G$ since G is perfect but a^G and X both are hypercentral. Put $L = a^G X$. Since L is a CC-group, $L/C_L(a^L)$ is Chernikov. Let $R = C_L(a^L)$. Since $R \leq C$, Rhas a normal nilpotent subgroup K such that R/K is Chernikov. By Lemma 4.7 (i) of [4] we may suppose that K is normal in L since R is normal in L. Also L/K is Chernikov since L/R and R/K are Chernikov. Hence it follows that L is an NC-group and then also X has the same property. Consequently it follows that every proper subgroup of G is both a CC-group and NC-group. But then G is an NC-group by the Corollary to Theorem B of [1], which is a contradiction since G = G'. This completes the proof of the theorem.

Proof of Theorem 3. (i) Let X be a proper subgroup of G. By hypothesis X is an FC-group. Therefore applying Theorem 4.38 of [10] yields that

$$Z_n(X) \leq X \leq Z_{\omega}(X)$$

For all $n \ge 1$, since X is an FC-group. Hence it follows that $X = Z_{\omega}(X)$.

To show the second assertion first suppose that Z(G)=1. By Lemma 2.21 of [10]

$$[K_m(X), Z_m(X)] = 1$$

for all $m \geq 1$. Hence since $K_{\omega}(X) \leq K_{m}(X)$ it follows that

$$[K_{\omega}(X), Z_m(X)] = 1$$

for all $m \ge 1$. But since

$$X = \bigcup_{m=1}^{\infty} Z_m(X)$$

by the first part of the proof it follows that $K_{\omega}(X) \leq Z(X)$. Next applying Lemma 6 of [2] repeatedly we can write G as

$$G = \bigcup_{i=1}^{\infty} X_i$$

where $X < X_i < X_{i+1}$ for all $i \ge 1$ since G is countably infinite by the Corollary on p.1232 of [9]. Also it follows from the first part of the proof that

$$K_{\omega}(X_i) \leq Z(X_i)$$

for all $i \geq 1$. But since $K_{\omega}(X) \leq K_{\omega}(X_i)$ it follows that

$$K_{\omega}(X) \leq Z(X_i)$$

for all $i \ge 1$ which yields that

$$K_{\omega}(X) \leq Z(G) = 1.$$

Now in the general case put $\bar{G} = G/Z(G)$. Then $Z(\bar{G}) = 1$ by hypothesis. Therefore $\overline{K_{\omega}(X)} = K_{\omega}(\bar{X}) = 1$ and hence $K_{\omega}(X) \leq Z(G)$ by the preceding paragraph. This completes the proof of the theorem.

References

- [1] A. Arikan and A. O. Asar, On Periodic Groups in Which Every Proper Subgroup is an NC-group, Tr. J. of Mathematics 18 (1994), 255-262.
- [2] V. V. Belyaev, Minimal non FC-groups, Proc. All Union Symposium on Group Theory, (Kiev 1980), pp. 97-108.
- [3] M. R. Dixon, Countable periodic CC-groups as automorphism groups, Proc. Edinburg Math. Soc. 35 (1992), 295-299.

- [4] B. Hartley, Periodic locally solvable groups containing an element of prime order with Chernikov centralizer, Quart. J. Math. Oxford (2) 33 (1982), 309-323.
- [5] B. Hartley, J. Otal, M. Peña, Locally graded minimal non-CC-groups are p-groups, Arch. Math., Vol. 57 (1991), 209-211.
- [6] M. Kuzucuoğlu and R. E. Phillips, Locally finite minimal non FC-groups, Math. Proc. Camb. Phil. Soc. 105 (1989) 417-420.
- [7] F. Leinen and O. Puglisi, Unipotent finitary linear groups, J. London Math. Soc. (2) 48 (1993), 59-76.
- [8] D. McDougall, The subnormal structure of some classes of soluble groups, J. Austral. Math. Soc 13 (1972), 365-377.
- [9] Otal and M. Peña, Minimal non CC-groups, Communications in Algebra. 16 (6) (1988), 1231-1242.
- [10] D. J. S. Robinson, "Finiteness conditions and generalised soluble groups", Vols. I, II, Springer-Verlag, Berlin, 1972.

Gazi Egitim Fakültesi Teknikokullar ANKARA-TÜRKİYE Recibido: 7 de Febrero de 1996