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A unified approach for commutators theorems
in interpolation theory, a survey!.

M. J. CARRO, J. CERDA and J. SORIA

Abstract

We review the main facts that are behind a unified construction
for the commutator theorem of the main interpolation methods.

1 Introduction

Complex and real interpolation methods are the abstract counterpart
of Riesz—Thorin and Marcinkiewicz theorems. They associate to every
couple 4 = (Ag, A1) of compatible Banach spaces a scale of new norms
OT spaces:

Recall that, for the Calderén’s complex method, a Banach space
F(A) is considered. It is the space of all bounded continuous functions
on the strip § = {0 <Rz <1},

F:g—>A0+A1=E(JE),

which are analytic on S= {0 < Rz <1} and such that Fj(t) =
F(j + it) define two continuous functions F; : R — Aj; with the prop-
erty limg—oo || Fj(t)ll; = 0, where we denote | - i=1-lla G =01).
The norm on F(A} is

| Fll7 = max(sup [ F;(t)||5)
=01 4er
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and, for every 0 < @ < 1, we have the interpolated space
[Ale = {F(8); F € F(A)} (1)

with the norm ||zl = inf{||F| 5; F(8) = z}.

In [RW], Rochberg and Weiss considered the rate of change of these
interpolated norms by analyzing estimates of the derivatives FL0(8)
when Fy is almost optimal for = € [A]y, in the sense that F, € F(A),
Fz(0) = z and [|Fz|z = |z]ljg. A corresponding study for the real
method was carried out by Jawerth, Rochberg and Weiss in [JRW].

In both cases, interpolation theorems are derived for commutators of
bounded linear operators with certain operators {2, generally nonlinear
and unbounded, with nice applications to classical analysis. For a useful
survey we refer to [CJMR). _

In [CCS1], the authors have shown that both are in fact special cases
of a general construction where the main ideas of the proofs appear very
neately. Moreover, this construction gives rise to other commutator the-
orems, such that those included in {CCMS] for Lions-Schechter methods.

Here we review (with almost no proofs but with complete references)
the main facts concerning this unified approach. As in [RW], we start by
considering what it happens when in Riesz- Thorin theorem we compare
the derivatives of the functions that appear along the proof with those
of certain modifications of these functions. This is of use to state how
cancelation, optimal selection and a second interpolation method are
involved.

For the sake of simplicity, we consider the “diagonal case”. It states
that if

T : (LP(A), L (A)) — (LP°(u), L7 ()
is linear and bounded (|Tf|lp; < M;||filp;) and po < p < pi, then

T : LP(A) —> LP(u) (with constant M < M3~ °M?if 1/p = (1—6)/po +
8/p1), i.e., for any simple function f such that ||f{l, = 1,

I[g(Tf) d,u| <M. (g simple and {jg||, = 1).

In Thorin’s proof this estimate is obtained as an application of the three—
lines theorem to the function

F@) = [ox(T1) d



A unified approach for commutators theorems. .. 93

with
f2= 1f1F@sgnf, go = |gl D Pegng, a(z) =
(hence p = 1/a(0) and F(8) = [ g(T f)dp). Let also
@) = [ (2 5)zdn

with (Tf), = |Tf|**Psgn (T f), and compare the derivatives

#©) = [ [(Z - E)otoglohrs - (£ ~ 2Yor(s1517D)] an

pPo

z

PO r1

f

a0 = [ - ;,’—:)(g loglg) 7/ ~ (£~ =)o1(1)1g|r 1] dn.
If we denote Lh = hlog |k|, we obtain
c'e)-F )= (- 2) [or@n-caniex @

where, for the circle v = {|z| = r} with r = d(8, 8S),

F(z
FO)| = |5 ,,(z—(a))2

From (2) and (3) it follows that
T Lifll, <€ (IFllp = 1) 4)

Although L is not homogeneous, for the commutator [T, L] = TL — LT
we have [T, L|(Af) = AT, L] f and (4) is equivalent to

1T, Z1£llp < Cll5 llp- ()

For the homogeneous operator

M
az| < =,

@) < >

(3)

_ Al
Qh = hlog —— s (6)

from Riesz—Thorin theorem and from (5) we obtain

T, A1l < Cll NIy, (7)

which is the commutator theorem.
Around (7) several remarks are to be pointed out:



94 M. J. Carro, J. Cerda and J. Soria

1. With evaluation 69 : F +— F(8), evaluation of the derivatives,
8y : F — F'(8), is used.

2. §g and & are combined through cancelation property (2).

3. &9 and 6j can be used in the abstract frame of Calderén’s method (1)
if we take an almost optimal function F,, for every x € [A]q.

4. For concrete examples, an almost optimal election is done to iden-
tify the interpolated spaces, such as [LP0, LPl]y = LP. In this
example Qz = 63(Fy).

For undefined notation and standard definitions of interpolation the-
ory we refer to {[BL]. We write A~ Bif A< Band B< Auptoa
multiplicative constant.

2 Interpolators and commutator theorem

With Calderén’s method as a model, we define an interpolator ® over
spaces H(A) (the function spaces) as a couple (H,®) where H is a
functor from a class C of compatible couples of Banach spaces to normed
spaces,

H:Aw— H(A), H:L(A;B)— L(H(A);H(B)),
and ® is a family of bounded linear operators
PieLH(A)Z(A) (AdecC)

such that L
T®;=dzH(T) (T € L(A; B)). (8)
Remark By T € £(A; B) we mean that T is an interpolation operator,

ie.,

T € L(Z(A);E(B)), T(A;) € As, |IT| = max T 4;.8; < o0

Since'|lalip gy = infa=agta; [| @0 llo + It @1 11, ITlIsgay,58) < IT). We
shall denote

WH (T = | H (T g4y, 118y
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If f € H(A), ||£]l will be the norm of f in H(A).

For a given interpolator @ we define

Ao =4(H(A)), lealle = inf{|fl;a=24(/)} (9)

and, for a fixed ¢ = ¢z > 1, we can associate to every a € Agp an element
he € H(A) such that ®5(h,) = a and |alla < [hef] < cllalle. The we
say that

a€Ap— ho€ H(A) (A€C)

is an almost optimal election.
As for the complex method (1), with the same easy proof, it follows
from (8) that A — Ay is an interpolation method:

Theorem 1 For any interpolator ® and T € L(A;B), T : Ap — Bs
with [T e < |H(T)|.

A couple of interpolators will be a pair (®, ¥) of interpolators on the
same function spaces H(A), and

Ay ={a=V;(f); f € H(A), ®5(f) = 0} = ¥ 5(Ker @)

with ||alty (@) = iﬂf{llfll;‘l’j(f) =0,a=¥1(f)}
We also have (if | T{lv,3) = ITll 4y (o), By (o))

Theorem 2 For any T € £L(A;B), T : .,iq,'(q,) — l_?q,‘(q,) with [|T ||y (2) <
I (T)]|.

For a fixed the couple (@, ¥) of interpolators and a € Ap + hy €
H(A), an almost optimal election, we define the § operator

Qe =V;i(hs) € Ay (a € A).

Remark If there is no danger of confusion, very often we supress the
subscript A. We denote [T, Q) = TStz - Q5T.
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Theorem 3 If T € L(A; B), then [T, 9} : Ap — By (a) ond
[T, Qallg @) < Cllalle-
Proof. Since ®5(H (T)he — h7a) = T® 3fa — ®gh1a = 0 and [T, Qla =
TWhe — Whry, it follows that [T, Qa € By (3) and
1T, Qally @) < |1H(T)ha — hrall < c(|H (T)Hllella + [Talle) < Clialla-

For a second almost optimal election a +— hq we have another oper-
ator €2, but {-and Q are equivalent in the sense that Q- {2 is bounded,
since, for any o € Ag, ®(ha—ha) = 0and (1—N)a = ¥(ha—ha) € Ay (a)
with

12 — Q)allw @) < Iha — hal) < 2clialls-

Remark that Aq, (3) < Aq; with |a]je < llaljy (®)-
"The most interesting examples arise when we have the bounded em-
bedding
V;i(Kerdz) — Imd, (10)

in the sense that, for some constant € = C(4) > 0, for
every g € Ker®4, there exists f € H(A) such that ¥(g) = ®(f) and
I£] € Cllgil. In this case we say that (®, V) is almost compatible and,
since then Ay (@) < Ay, we have the following commutator theorem:

Corollary If (®, ¥) is almost compatible, then
[T,Q): Ap — Ba and - Q: Ap — Bs,

and they are bounded operators.

In many important cases we have the “cancelation property”
¥ i(Ker® ;) = Im® 4 (11)

in the sense that (®, V) is almost compatible and, moreover, for some
constant C = C(A4) > 0, for every f € H(A) there exists g € Ker®;
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such that ¥(g) = ®(f) ard | g|} < C{|f]|- In this case we say that (P, ¥)
is compatible.
As in [CIMR], we associate to ) the twisted direct sums (cf. [Ka])

Ag & Ae = {(a,b) € B(4) x B(A); |lalls + 2 — blla < oo}
and, to every T € £(4; B), the operator T'(a,b) = (Ta, Tb).

Theorem 4 The following properties are equivalent:
(a) [T,Q] : Ap — Bg and it is bounded.

{b) T: As ®dq As — Bas @ Ba and it is bounded.
Moreover, if (®, V) is compatible,
Ap & Ap = Im(®4,®5),

where (95, ®35)f = (Paf, ®5f)-

Over DomQ g = {a € Ag; Q4 € Ap} we define

lelip = llalle + [IS2alle

Theorem 5 If (&, ¥) is compatible, then B
(a) DomQ 5 = ¥ ;(Ker ¥ ), hence it is a linear subspace of Ap, and

lallp >~ {Ilf}; e = 4(F), ¥4(f)} = 0}.

(b) A — Dom$Qj is an interpolation method.

For the proofs we refer to [CCS1].

3 The complex methods

Let § and R be two analytic functionals on the strip S, such as 6y and
85 They are linear and bounded on the function spaces F(A4) (4 € C)
and, by defining F(T)f = T o f, {S, R) is a couple of interpolators on
these function spaces F.
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Interpolation methods such as
[Als = S(F(4)), [A]gs) = R(KerS)

with the natural norms were considered in [Li}, [Sc] and [CC1].
For a fixed almost optimal almost optimal election 2 € [A]g — hy €
F{A)}), the corresponding  operator will be

0%(z) = R(hz)
and the commutator theorem (Theorem 3) reads
[r, 95 ; [Als — [B]Rrs)-

Let us start with the basic example (5, bp)y with 0 < 0 < 1. In
[CCS1] we prove:

Theorem 6 it The couple of interpolators (&g, 85) on the function spaces
F(A) is compatible. Hence

(1,9 : [Als — [Bls (T € L(4, B))
and it is bounded (cf [RW]).
The next results about couples of interpolators (6((,"1), 65"))
spaces F(A) are proved in [CCMS).

on the

Theorem 7 [A] 6,(,"),(69) = [A](gt(;l—'l)l and
(7,99 : [Alp — [Bl o,
a bounded operator.

Theorem 8 Over the class of LP spaces, (65"), 65"“)) are almost com-
patible. Since (cf. [CC1])

[P, Lplla(n) = LP(log L)™™ (l = + _9_)
o P
it follows that
[T, QC] M Lp(].OgL)_np —_— Lq(]_og L)_nq
i T.€ L{(L%, I7), (L%, LD)) (1/qg= (1-6)/q0+0/q1).
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Theorem 9 Let 1 € p,gq < o0 be fired. For weighted LP spaces,
(6£"),6§n+1)) is almost compatible. Hence, for any

T € L{(LP(wo), LP(w1)); (LY (wo), LI (w1))),

(7,99 : [LP(wo), LP (w1 )]5};‘) — qu(WO)qu(wl)]Jgﬂ)-
Moreover (cf. [CC2]), [LP(wo), LP(w1)] g = IP (Wi 0BG "), with S =
1 + {log{wo/w1)|.

|
Applications are obtained when explicit almost optimal elections al-

low to compute the §} operator, as it happens in the following instances
of the complex methods.

Example 1 For weighted L? spaces of vector valued functions,

1 1-¢ g
Pion: A). LPlw: Ao = LP{w: - — - u=wif,0
[Lo(wo; A), LY {w1; A)]g = LP(w; A) (p — +p1, w=wp wl),

TN A S R
h &) = Trea %) 1£15 (:0)

is an almost optimal election.
Then, for (6g, 6p), we have

Crepm=pl(L_ LY 1og WA, _ 2 (w0
? f_hf(e')_p(m PO) (lg £ ll» )f Pop1 (lgwl)f'

In particular,

and

[, 17l = 17, 9Cf = flog AL

£ e’

as in (6), and

[LP(wo), L7 (w1)]o = LP(w), QCFf=F 1og:’—;.
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In this case Q€ is linear.

Example 2 If (4,) is a sequence of Banach spaces and wp, w) are two
weights on N (positive integers), then we also have

(€7 (w03 (An)), £ (w15 (An))lo = €(w; (An)n)

with the similar almost optimal election

p{8—2z)

. u |u| ’ (1"_0‘4-;81-)? w POP1
hu(e) = (m) It (2)

where [u} = ([u1llay U2l ap. ) 80 hu(e) = (hule)s, hul2)a, ).
For the same couple (6g, 63},

1 1
0% = #0) = {p (3 — =) log o = Ltog 2 pu
Pl PO "“"p POP1 w1
Example 3 As stated in Theorem 9,
(L7 (wo), L (1)l g = LP(wg i@ ™),

with & = 1 + |log(wo/w1)|- For this space we have the almost optimal
election (cf. [CCMS])

(sgn log 2)" + 0(2) /uwy\**
hy(a) == = (=) s,
1+ |log g&' w1
with ¢ € H®(8), ™) =1, oD (8) = 0 ( <n+1, 5 #n).
For the couple (6,(,"),6Sn+1)), Q€ is the linear operator

n
nrlr llog% log (wo) f

ch — h(ﬂ‘H-))(g) — -
f 1+ [log 22]

w1y
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4 The real methods

We assume 0 < # < 1 and 1 < p < co. For a given compatible couple A
we denote A(A) = AgN A; and

J(t; 0) = max(|lallo, tlel1)  (a € A(4), > 0).

The J-method corresponds to the interpolator &/ on the function
spaces

HY(A) = {u: RY — A(A4)} measurable; liv]l = ||t_9J(t;u(t))||L,,(%)‘ < oo}

defined as
& (u) = A = u(t)ftf (S(A) — valued). (12)

Again, H/(T) = Tou if T € L(A; B).
in this case,

_ - _ oo dt _
Ags = Agp = {a € L(A); a= f u(t)T, u € HJ(A)}
0
and we shall consider an almost optimal election
— oo dt
ua € HY(A), [ ua®F =, fual < clalley.

To define the §2 operator we need to associate to ® a second in-
terpolator ¥ on the same function spaces H7(4). To gess a definition
for @7, as in [CCMS] we relate the J-method with the complex method
through the reiteration formula

[jgu,Pu! Jelaﬂl]A = ATa.P (13)

with # = (1 — A)8p + A6;. One inclusion is obtained by defining, for a
given a € App,

oy~ - dt
fale) = [ HO N T

and then

0°(a) = £a() = (62~ 00) [ Gogt)ua(t) T
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Thus, we are led to define

V() = L " (log t)u(t) 5

In [CCS1] we prove:

Theorem 10 ($7, \Ii‘]) is a compatible couple of interpolators on the
function spaces H'(A) and 07 (a) = [{°(logt)ua(t)Z.

The K—method is the interpolation method defined by the interpo-
lator

% (ag, a1) = ag + o1
on the function spaces
H¥(A) = {(ag,81); 80(t) + a1(t) = constant, [i(ao, a1)|| < o0}

where we assume (ag,a1) : RT — Ag x A; measurable and

(a0, e}l = it~ (lao(e) lio + thaa () l1)l zogat),-

Moreover H¥(T)(ao,01) = (T 0 ap, T © a1).

Then Agx = ﬁg,p; K and it is known that Ag, x = App with equiv-
alent norms.

Let be

az = (ag, 1) € HX(A), ao(t) + a1(t} = =, fzllop < cli(a0, 1)

an almost optimal selection for z € Ag,, (for this K-method).
Again we can look for a good second interpolator U by observing
that in the reiteration result (13), if for any

a= f(‘x\) € [AOO,PO’ Aal;?l]A

we choose f € F(Agypo, jghm) almost optimal for the complex method
and define
gt(z) — t(z—)\)(91—00)f(z),
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then g;(\) = a and
—+o0 +o0
a= f gt(is) Po(A, 5) ds +/ gt(1 +is)P1(A, s)ds = ao(t) + a1(t)
—oo -0

with a;(t) € fig’.,pj (7 = 0,1). Now we can compute the derivative (as
in [CCMS)) and we get

1 oo
@) =10 = [ a0~ [~ a0

t A
This suggests the definition
1 dt oo
(0.0 = ["a0o®F - [ aot)

and then (cf. [CCS1)),

dit
t

Theorem 11 (3%, ¥X) is o compatible couple of interpolators on the
function spaces HX(A) and 0K (z) = i ao(t) % — [ ao(t) & if (ag, 1) =
az is the almost optimal election for x € Agp.

Moreover X = —QY (as in [JRW] and [CIMR]).

The commutator theorem of [JRW] is our Corollary of Theorem 3,
applied to the couples of interpolators (7, ¥/) and (&%, U¥).
From [JRW)| we also get the following examples:

Example 4 For the K-method also
(LP(wo), P (wi)op = LP(w)  (w=w}%wf)
in this case with the almost optimal election
hr = (xef, (1 = x1)f), with Xt = X{wo<truy )
and

QKf = 1 (logﬂ) f.
P wp

Example 5 Let pg < p1, 1/p = (1—0}/po+6/p1 and 1/a = 1/po—1/p;.
For
(L7, LPY)g, = LPA
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we have the almost optimal election

hy = (Ef, (1 = &) F), with &= xq5>p 02}

and

0K f = —Lflog B(p), with B = |{If1 > £}

5 Some applications
Typical applications are obtained for commutators on LP spaces,
[T, b)f = T(bf) — ¥T(f),

when T is a Calderén-Zygmund operator and &8 € BMO on R", using
the fact that e® is an A,-weight if ||b|pmo is small, and then T' is
bounded on LP(e?).

Since T € L{(LP(e), LP(e™)); (LP(e), LP(e™®))) and in this case
Q€ f = bf (Example 1), the well known result of [CRW]

T, 8] : LP — L? (14)

follows here from the commutator theorem.
In [CCMS] some weighted variants of (14) are given:

Theorem 12 Ifb€ BMO and a > 0, then

[T,b} : Lp(ﬁ!ﬁ) — LP(F}IBF).

The proof is an application of the commutator theorem for the couple of
interpolators (6&") . 65’1“) ).

|
In the same way, but now for {6y, égn)) and for the pair (LP9, L™),

from the fact 1]
QCs ~ {1 " ,
£ (omg,) s

for any T € L((LP°, LP1); (L™, LP1)) in [CCMS| we obtain:
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Theorem 13 If f € L? (1/p = (1 — 8)/po + 8/p1), then

| £] |£| -1

T(( 1o f lo Tf) € LP(log L)~ (» 1P,

(Cos gi3,)"7) = (s gy, ) @) < 22og 1”

]

In [CCS4] we describe new applications to the commutators of BMO

functions with Littlewood-Paley sums and with maximal operators (as

in [ST] but only for the unweighted case) by considering the spaces of
vector-valued functions of our examples.

6 Higher order commutators

Estimates for higher order commutators were obtained in [Ro]
and [CCMS]| for the complex method, and in [Mi] for the real
method. In [CCS2] we have seen how these higher order commutators
theorems extend to our general setting.

To this end, we say that a system of n interpolators &, = (®%,...,9")
on the same function spaces H(A) is compatible if

P*Kerd'n---nd* " =Imd' (k=1,...,n)

with bounds (as (10) and (11) in the case n = 2).
Then, for k= 1,...,n, we set

Er={d=(a1,...,ax); & = Bx(f), f € H(A)}

with the natural norm ||| g, = inf{||f||; ®x(f) = d}.
Moreover, from an almost optimal election & — kg for @ € Ep_j,

ha € H(A): aﬂ—l(hﬁ) =d, "hfi" < c[la."En—l!
we define ©; = Q and
Q@) = "N hz) (@2 <k<n)

If T € £(A; B), as in [Ro| and [Mi] we define C1(T) = [T, 4] and

m—1
CnlT) = [T, 0m] — > UCm_i(T)  (2<m <n).
k=1
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The main result of [CCS2] is then
Theorem 14 Let (®1,...,®"1) be a compatible system of interpolators
such that

(‘I’l, - ,¢"+1)(Ker dlA...NnKer q;.f—l) c Im (q,I, s q,(n+1)—(j—1))

for every indez j =2,...,n +2 (with bounds). o
Then Cp(T) : Ag1 — Bg1, bounded, for any T € L(A;B).

The classical complex method and real J and K methods are as-
sociated to systems of interpolators (®1,...,®"!) which satisfy the
hypoteses of Theorem 14. They are:

(a) Complex method:

1

*f = oy

4.

(b) J-method:

*(u) = -(-k_-{—l)!j(;m(logt)k_lu(t)d—;.

(¢) K-method:

—11k—-1 00
<]>k(a0, a1} = ((kl_)2)! 01 logt)k_zao(t)? "".[1 (logt)k_zal(t)gti,

with ! = @% and 2 = —U¥ of Theorem 11.
From these results, new applications to the boundedness of iterated
commutators [T, b}, 8] are derived {cf. [CCS2]).

Final remark

Obviously our construction applies to other interpolation methods, such
as the real methods with function parameters. The minimal method of
Aronszajn—Gagliardo comes also from an interpolator (cf. [CCS1]). For
the maximal method we need the dual construction described in [CCS3].
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