REVISTA MATEMÁTICA de la Universidad Complutense de Madrid Volumen 9, número 2: 1996

Orthonormal bases for spaces of continuous and continuously differentiable functions defined on a subset of \mathcal{I}_{v}

Ann VERDOODT

Abstract

Let K be a non-archimedean valued field which contains Q_p , and suppose that K is complete for the valuation $|\cdot|$, which extends the p-adic valuation. V_q is the closure of the set $\{aq^n|n=0,1,2,\ldots\}$ where a and q are two units of \mathbb{Z}_p , q not a root of unity. $C(V_q \to K)$ (resp. $C^1(V_q \to K)$) is the Banach space of continuous functions (resp. continuously differentiable functions) from V_q to K. Our aim is to find orthonormal bases for $C(V_q \to K)$ and $C^1(V_q \to K)$.

1 Introduction

The main aim of this paper is to find orthonormal bases for the spaces $C(V_q \to K)$ of continuous and $C^1(V_q \to K)$ of continuously differentiable functions. Therefore we start by recalling some definitions and some previous results. Let E be a non-archimedean Banach space over a non-archimedean valued field L, E equipped with the norm $||\cdot||$. Let f_1, f_2, \ldots be a finite or infinite sequence of elements of E. We say that this sequence is orthogonal if $||\alpha_1 f_1 + \ldots + \alpha_k f_k|| = \max_{1 \le i \le k} \{||\alpha_i f_i||\}$ for all k in \mathbb{N} (or for all k that do not exceed the length of the sequence) and for all $\alpha_1, \ldots, \alpha_k$ in L. An orthogonal sequence f_1, f_2, \ldots is called orthonormal if $||f_i|| = 1$ for all i. A sequence f_1, f_2, \ldots of elements of E is an orthonormal base of E if the sequence is orthonormal and also a base. If M is a non-empty compact subset of L whithout isolated points,

¹⁹⁹¹ Mathematics Subject Classification: 46S10

then $C(M \to L)$ is the Banach space of continuous functions from M to L equipped with the supremum norm $\|\cdot\|_{\infty}$. Let f be a function from M to L. The first difference quotient $\phi_1 f$ of the function f is the function of two variables given by $\phi_1 f(x,y) = \frac{f(x) - f(y)}{x - y}$ defined on $M \times M \setminus \Delta$ where $\Delta = \{(x,x)|x \in M\}$. We say that f is continuously differentiable at a point $b \in M$ (f is C^1 at b) if $\lim_{(x,y)\to(b,b)}\phi_1f(x,y)$ exists. The function f is called continuously differentiable (f is a C^1 function) if f is continuously differentiable at b for all b in M. If f is a function from M to L then f is continuously differentiable if and only if the function $\phi_1 f$ can (uniquely) be extended to a continuous function on $M \times M$. The set of all C_1 -functions from M to L is denoted by $C^1(M \to L)$, and $C^1(M \to L) \subset C(M \to L)$. For $f: M \to L$ we set $||f||_1 = \sup\{||f||_{\infty}, ||\phi_1 f||_{\infty}\}$. The function $||\cdot||_1$ is a norm on $C^1(M \to L)$ making it into an L-Banach algebra. Since M is compact, $||f||_1 < \infty$ if f is an element of $C^1(M \to L)$ (these results concerning continuously differentiable functions can be found in [2] or [5], chapter 27).

Let \mathbb{Z}_p be the ring of p-adic integers, \mathbb{Q}_p the field of p-adic numbers, and K is a non-archimedean valued field, K containing \mathbb{Q}_p , and we suppose that K is complete for the valuation $|\cdot|$, which extends the p-adic valuation. \mathbb{N} denotes the set of natural numbers, and \mathbb{N}_0 is the set of natural numbers without zero. Let a and q be two units of \mathbb{Z}_p , q not a root of unity. We define V_q to be the closure of the set $\{aq^n|n=0,1,2,\ldots\}$. For a description of the set V_q we refer to [7], section 2 or to [8], section 3. In section 3 our aim is to find orthonormal bases for the Banach space $C(V_q \to K)$. The results in section 3 can be seen as a sequel to the results in [9] and [8], sections 4,5 and 6. In section 4 we give necessary and sufficient conditions for a function f in $C(V_q \to K)$ to be continuously differentiable, and we find an orthonormal base for the Banach space $C^1(V_q \to K)$.

Acknowledgement: I want to thank professor Van Hamme for the advice he gave me during the preparation of this paper.

2 Preliminaries

Let us introduce the following: [n]! = [n][n-1]...[1] and [0]! = 1, where $[n] = \frac{q^n-1}{q-1}$ if $n \ge 1$.

$$\binom{n}{k} = \frac{[n]!}{[k]![n-k]!}$$
 if $n \ge k$, $\binom{n}{k} = 0$ if $n < k$.

$${x \choose k} = \frac{(x-a)(x-aq)...(x-aq^{k-1})}{(aq^k-a)(aq^k-aq)...(aq^k-aq^{k-1})} \text{ if } k \ge 1, \ {x \choose 0} = 1.$$

corollary to lemma 8), analogous to Mahler's base for $C(\mathbb{Z}_p \to K)$ ([4]). We also have $\binom{n}{k} = \binom{x}{k}$ if $x = aq^n$. If x is an element of Q_n with Henselde-

velopment
$$x = \sum_{j=-\infty}^{+\infty} a_j p^j$$
, we then put $x_n = \sum_{j=-\infty}^{n-1} a_j p^j$ $(n \in \mathbb{N})$. We

write $m \triangleleft x$, if m is one of the numbers x_0, x_1, \ldots and we say that "m is an initial part of x" or "x starts with m" (see [5], section 62). If n

belongs to
$$I\!\!N_0$$
, $n=\sum_{j=0}^s a_j p^j$ where $a_s\neq 0$, then we put $n_-=\sum_{j=0}^{s-1} a_j p^j$.

We remark that $n_{-} \triangleleft n$. Let us now define the sequence of functions $(e_k(x))$ in the following way: write $k \in \mathbb{N}$ in the form k = i + mj, $0 \le i < m \ (i, j \in \mathbb{N})$. Then e_k is defined by

 $e_k(x)=e_{i+mj}(x)=1 ext{ if } x=aq^{i_x}(q^m)^{\alpha_x} ext{ where } i_x=i,j \triangleleft \alpha_x, \ e_k(x)=0$ otherwise.

The functions $(e_k(x))$ form an orthonormal base for $C(V_q \to K)$ ([9]), analogous to van der Put's base for $C(Z_p \to K)$ (see [3] or [5], section 62).

We remark that $\begin{Bmatrix} aq^j \end{Bmatrix} = e_i(aq^j) = 0$ if j < i and that $\begin{Bmatrix} aq^i \end{Bmatrix} = e_i(aq^i) = 1$. We shall use this frequently in the sequel.

We shall construct new orthonormal bases for $C(V_q \to K)$ using the bases $\left(\begin{Bmatrix} x \\ k \end{Bmatrix} \right)$ and $\left(e_k(x) \right)$. Therefore we introduce the following: For each $n \in \mathbb{N}$, let I_n be a subset of the set $\{0, 1, \ldots, n\}$ (I_n can also be empty or can be equal to $\{0, 1, \ldots, n\}$). Let p(x) be a continuous function of the following type $p(x) = \sum_{i \in I_n} a_i \{x_i^x\} + \sum_{i \in \{0, 1, \ldots, n\} \setminus I_n} a_i e_i(x)$ where each

 $a_i \in K$. For example, if $I_n = \{0, 1, ..., n\}$, then p(x) is a polynomial. If I_n is the subset of $\{0, 1, ..., n\}$ consisting of all the even numbers, and if $a_i = 1$ for all i, then $p(x) = \sum_{i=1}^{n} \{i \}_{i}^{x} + \sum_{i=1}^{n} e_i(x)_{i}^{x}$ $i \in \{0,1,...,n\}, i even$ $i \in \{0,1,...,n\}, i \ odd$

and one can think of several other examples. For functions of this type we can prove the following lemmas

Lemma 1. Let p(x) be a continuous function of the type $p(x) = \sum_{i \in I_n} a_i \{ x \} + \sum_{i \in \{0,1,\dots,n\} \setminus I_n} a_i e_i(x)$ $(a_i \in K)$. Then the following are equivalent:

- 1) $|p(aq^n)| = 1$ and $|p(aq^k)| < 1$ if $0 \le k < n$.
- 2) $|a_n| = 1$ and $|a_k| < 1$ if $0 \le k < n$.

Proof.

1) \Rightarrow 2) will be shown by induction. If |p(a)| < 1 then $|a_0| < 1$. Now suppose that $|a_k| < 1$ if $0 \le k < n-1$. Then $|\sum_{i \in I_n \cap \{0,1,\dots,k+1\}} a_i \{a_i^{aq^{k+1}}\} + \sum_{i \in \{0,1,\dots,k+1\} \setminus I_n} a_i e_i (aq^{k+1})| = |p(aq^{k+1})| < 1$ and by the induction hypothesis it follows that $|a_{k+1}| < 1$ and we can conclude $|a_i| < 1$ for all $0 \le i < n$. Since $|\sum_{i \in I_n} a_i \{a_i^{aq^n}\} + \sum_{i \in \{0,1,\dots,n\} \setminus I_n} a_i e_i (aq^n)| = |p(aq^n)| = 1$ we have $|a_n| = 1$. 2) \Rightarrow 1) is obvious.

Lemma 2. Let p(x) be a continuous function of the type $p(x) = \sum_{i \in I_n} a_i \begin{Bmatrix} x \\ i \end{Bmatrix} + \sum_{i \in \{0,1,\dots,n\} \setminus I_n} a_i e_i(x) \ (a_i \in K)$. Then the following

- are equivalent: 1) $||p||_{\infty} \leq 1$.
- 2) $|a_k| \leq 1$ for all k with $0 \leq k \leq n$.

Proof.

- 1) \Rightarrow 2) can be shown analogous as 1) \Rightarrow 2) of the previous lemma.
- 2) \Rightarrow 1) is obvious.

Let m be the smallest integer such that $q^m \equiv 1 \pmod{p}$ $(1 \le m \le p-1)$. There exists a k_0 such that $q^m \equiv 1 \pmod{p^{k_0}}$, $q^m \not\equiv 1 \pmod{p^{k_0+1}}$. If $(p, k_0) = (2, 1)$, i.e. $q \equiv 3 \pmod{4}$, then there exists a natural number N such that $q = 1 + 2 + 2^2 \varepsilon$, $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \ldots$, $\varepsilon_0 = \varepsilon_1 = \ldots = \varepsilon_{N-1} = 1$, $\varepsilon_N = 0$. Then we have

Lemma 3.

- 1) Let $q^m \equiv 1 \pmod{p^{k_0}}$, $q^m \not\equiv 1 \pmod{p^{k_0+1}}$ with $(p, k_0) \not= (2, 1)$. If $x, y \in V_q$, $|x y| \le p^{-(k_0 + t)}$ then $e_n(x) = e_n(y)$ if $0 \le n < mp^t$.
- 2) Let $q \equiv 3 \pmod{4}$, $q = 1 + 2 + 2^2 \varepsilon$, $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \ldots$, $\varepsilon_0 = \varepsilon_1 = \ldots = \varepsilon_{N-1} = 1$, $\varepsilon_N = 0$. If $x, y \in V_q$, $|x y| \leq p^{-(N+2+t)}$ then $e_n(x) = e_n(y)$ if $0 \leq n < 2^t$ $(t \geq 1)$.

Proof. This follows immediately from [8], lemmas 2 and 3.

Lemma 4. Suppose p(x) is a continuous function with $||p||_{\infty} \leq 1$ of the following type: $p(x) = \sum_{i \in I_n} a_i \begin{Bmatrix} x \end{Bmatrix} + \sum_{i \in \{0,1,\ldots,n\} \setminus I_n} a_i e_i(x) \ (a_i \in K).$

- 1) Let $q^m \equiv 1 \pmod{p^{k_0}}, q^m \not\equiv 1 \pmod{p^{k_0+1}}$ with $(p, k_0) \neq (2, 1)$. If $|x,y| \in V_q, |x-y| \le p^{-(k_0+t)}$ then if $j \in \mathbb{N}$, $0 \le n < mp^t : |p(x)^j - p(x)|$ $|p(y)^j| \le 1/p \text{ and } |x^j - y^j| \le 1/p.$
- 2) Let $q \equiv 3 \pmod{4}$, $q = 1 + 2 + 2^2 \varepsilon$, $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \ldots$ $\varepsilon_0 = \varepsilon_1 = \ldots = \varepsilon_{N-1} = 1$, $\varepsilon_N = 0$. If $x, y \in V_q$, $|x-y| \le p^{-(N+2+t)}$ then if $j \in \mathbb{N}$, $0 \le n < 2^t$ $(t \ge 1) : |p(x)^j - p(y)^j| \le 1/2$ and $|x^j - y^j| \le 1/2$.

Proof. It is clear that $|a_s| \leq 1$ if $0 \leq s \leq n$ (lemma 2). Suppose that x, yand n are as in 1) (resp. 2)). Then $|p(x) - p(y)| \le \max_{s \in I_n} \{|a_s||_{s}^{x}\} - \|a_s\|_{s}^{x} \|$ $\{\frac{y}{8}\}\}$ $\leq 1/p$ (resp. $\leq 1/2$) by lemma 3 and [8], lemmas 11 and 12.

If j > 1 then $|p(x)^j - p(y)^j| = |p(x) - p(y)| |\sum_{i=1}^{j-1} p(x)^s p(y)^{j-1-s}| \le 1/p$

(resp. $\leq 1/2$). So the lemma holds for $j \in \mathbb{N}$ (the case j = 0 is

trivial). Further, if j > 1 then $|x^j - y^j| \le |x - y| |\sum_{j=0}^{j-1} x^s y^{j-1-s}| \le 1/p$ (resp. $\leq 1/2$) so $|x^j - y^j| \leq 1/p$ (resp. $\leq 1/2$) for all $j \in \mathbb{N}$.

Let for each $n \in \mathbb{N}$ J_n be a subset of the set $\{0, 1, \ldots, n\}$. Then we can prove

Lemma 5. Let p(x) and q(x) be continuous functions with $||p||_{\infty} \leq 1$

$$p(x) = \sum_{i \in I_n} a_i \{x\}^x + \sum_{i \in \{0,1,...,n\} \setminus I_n} a_i e_i(x), (a_i \in K)$$

and
$$||q||_{\infty} \le 1$$
 of the form
$$p(x) = \sum_{i \in I_n} a_i \begin{Bmatrix} x \end{Bmatrix} + \sum_{i \in \{0,1,\dots,n\} \setminus I_n} a_i e_i(x), (a_i \in K)$$

$$q(x) = \sum_{i \in J_n} b_i \begin{Bmatrix} x \end{Bmatrix} + \sum_{i \in \{0,1,\dots,n\} \setminus J_n} b_i e_i(x), (b_i \in K).$$

- 1) Let $q^m \equiv 1 \pmod{p^{k_0}}$, $q^m \not\equiv 1 \pmod{p^{k_0+1}}$ with $(p, k_0) \not= (2, 1)$. If $|x,y \in V_q, |x-y| \le p^{-(k_0+t)}$ then if $i,j \in \mathbb{N}, 0 \le n < mp^t : |q(x)^i p(x)^j - q(x)^i p(x)^j - q(x)^j | q(x)^j - q(x)^j | q(x)^j - q(x)^j | q(x)^j | q(x)^j - q(x)^j | q(x)^j$ $|q(y)^{i}p(y)^{j}| \leq 1/p \text{ and } |x^{i}p(x)^{j} - y^{i}p(x)^{j}| \leq 1/p.$
- 2) Let $q \equiv 3 \pmod{4}$, $q = 1 + 2 + 2^2 \varepsilon$, $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \ldots$ $\varepsilon_0 = \varepsilon_1 = \ldots = \varepsilon_{N-1} = 1$, $\varepsilon_N = 0$. If $x, y \in V_q$, $|x - y| \le p^{-(N+2+t)}$ then if $i, j \in \mathbb{N}, \ 0 \le n < 2^t \ (t \ge 1) : |q(x)^i p(x)^j - q(y)^i p(y)^j| \le 1/2$ and $|x^i p(x)^j - y^i p(x)^j| \le 1/2$.

Proof. Let x, y, n, i and j be as in 1) (resp. 2)) then

$$\begin{aligned} &|q(x)^{i}p(x)^{j}-q(y)^{i}p(y)^{j}| \leq max\{|q(x)^{i}p(x)^{j}-q(x)^{i}p(y)^{j}|,|q(x)^{i}p(y)^{j}-q(y)^{i}p(y)^{j}|\}\\ &\leq max\{|q(x)^{i}||p(x)^{j}-p(y)^{j}|,|p(y)^{j}||q(x)^{i}-q(y)^{i}|\}\\ &\leq 1/p \text{ (resp. } \leq 1/2) \text{ by lemma 5 and analogous}\\ &|x^{i}p(x)^{j}-y^{i}p(y)^{j}| \leq max\{|x^{i}p(x)^{j}-x^{i}p(y)^{j}|,|x^{i}p(y)^{j}-y^{i}p(y)^{j}|\}\\ &\leq max\{|x^{i}||p(x)^{j}-p(y)^{j}|,|p(y)^{j}||x^{i}-y^{i}|\}\\ &\leq 1/p \text{ (resp. } \leq 1/2) \text{ by lemma 5} \end{aligned}$$

We shall need lemmas 6 and 7 for the construction of an orthonormal base for $C^1(V_q \to K)$:

Lemma 6.

$${\binom{i+j}{n}} = \sum_{s=0}^{n} {\binom{j}{n-s}} {\binom{i}{s}} q^{-(n-s)(-i+s)}$$

Proof. This follows immediately from [8], lemma 10 by putting first s = n - k and then interchanging i and j.

Definition. We define the sequence (ρ_n) as follows: $\rho_n = (q^m)^{i-i} - 1$ if n = im + j, $0 \le j < m$ and i > 0, $\rho_n = 1$ if n < m.

Lemma 7.

$$|\rho_n| = \min_{1 \le s \le n} \{ |q^s - 1| \}. \ (n \in \mathbb{N}_0).$$

Proof. This follows immediately from [8], lemmas 2 and 3.

3 Orthonormal bases for $C(V_q \to K)$

Using the lemmas 1-5 in section 2, we can make orthonormal bases for $C(V_q \to K)$ with the aid of the following theorem:

Theorem 1. Let $(p_n(x))$ and $(q_n(x))$ be sequences of continuous functions of the following form:

for each
$$n$$
 $p_n(x)$ is of the form $p_n(x) = \sum_{i \in I_n} a_{n,1} {x \} + \sum_{i \in \{0,1,\dots,n\} \setminus I_n} a_{n,i} e_i(x)$ with $|a_{n,n}| = 1$ and with $|a_{n,i}| < 1$ if $0 \le i < n$ $(a_{n,i} \in \mathbb{Q}_p)$, and for each n we have $q_n(x) = \sum_{i \in J_n} b_{n,i} {x \} + \sum_{i \in \{0,1,\dots,n\} \setminus J_n} b_{n,i} e_i(x)$ with $|q_n(aq^n)| = 1$ and

 $|b_{n,i}| \leq 1$ if $0 \leq i \leq n$ $(b_{n,i} \in \mathbb{Q}_p)$. If (j_n) is a sequence in \mathbb{N} and if (k_n) is a sequence in \mathbb{N}_0 , then the sequences $(q_n(x)^{j_n}p_n(x)^{k_n})$ and $(x^{j_n}p_n(x)^{k_n})$ form orthonormal bases for $C(V_q \to K)$.

Proof. This proof is analogous to the proof of [8], theorem 5. We remark that for all n we have $||p_n||_{\infty} \leq 1$ and $||q_n||_{\infty} \leq 1$ (lemma 2), and that $p_n(x)$ and $q_n(x)$ are elements of $C(V_q \to \mathbb{Q}_p)$. By [1], 3.4.1 or [6], p. 123-133 it suffices to prove that $(q_n(x)^{j_n}p_n(x)^{k_n})$ and $(x^{j_n}p_n(x)^{k_n})$ form orthonormal bases for $C(V_q \to \mathbb{Q}_p)$ and by [1] proposition 3.1.5 p. 82 it suffices to prove that $(q_n(x)^{j_n}p_n(x)^{k_n})$ and $(x^{j_n}p_n(x)^{k_n})$ form vectorial bases for $C(V_q \to \mathbb{F}_p)$ (where f(x) stands for the canonical projection on $C(V_q \to \mathbb{F}_p)$, if f is in $C(V_q \to \mathbb{Q}_p)$ with $||f||_{\infty} \leq 1$). We distinguish two cases.

1) Let $q^m \equiv 1 \pmod{p^{k_0}}$, $q^m \not\equiv 1 \pmod{p^{k_0+1}}$ with $(p, k_0) \not= (2, 1)$, define C_t the space of the functions from V_q to \mathbf{F}_p constant on balls of the type $\{x \in \mathbf{Z}_p : |x-\alpha| \leq p^{-(k_0+t)}\}$, $\alpha \in V_q$. Since $\underline{C(V_q \to \mathbf{F}_p) = \bigcup_{t \leq 0} C_t}$ ([8], lemma 4 and its proof) it suffices to prove that $(q_n(x)^{j_n}p_n(x)^{k_n}|n < mp^t)$ and $(x^{j_n}p_n(x)^{k_n}|n < mp^t)$ form bases for C_t . By the proof of [8], lemma 4, we can write V_q as the union of mp^t disjoint balls with radius $p^{-(k_0+t)}$ and with centers $aq^r(q^m)^n$, $0 \leq r \leq m-1$, $0 \leq n < p^t$. Let χ_i be the characteristic function of the ball with center aq^i . Using lemma 5, we have

$$\frac{q_{n}(x)^{j_{n}}p_{n}(x)^{k_{n}}}{q_{n}(x)^{j_{n}}p_{n}(x)^{k_{n}}} = \sum_{i=0}^{mp^{t}-1} \chi_{i}(x)\overline{q_{n}(aq^{i})^{j_{n}}p_{n}(aq^{i})^{k_{n}}}$$

$$= \sum_{i=n}^{mp^{t}-1} \chi_{i}(x)\overline{q_{n}(aq^{i})^{j_{n}}p_{n}(aq^{i})^{k_{n}}}$$

since $|q_n(aq^i)^{j_n}p_n(aq^i)^{k_n}| < 1$ if $i \le n$ (lemma 1) and hence the transition matrix from $(\chi_n|n < mp^t)$ to $(q_n(x)^{j_n}p_n(x)^{k_n}|n < mp^t)$ is triangular since $|q_n(aq^n)^{j_n}p_n(aq^n)^{k_n}| = 1$ (lemma 1), so $(q_n(x)^{j_n}p_n(x)^{k_n}|n < mp^t)$ forms a base for C_t . The proof for $(x^{j_n}p_n(x)^{k_n})$ is analogous.

2) Let $q^m \equiv 3 \pmod{4}$, $q = 1 + 2 + 2^2 \varepsilon$, $\varepsilon = \varepsilon_0 + \varepsilon_1 2 + \varepsilon_2 2^2 + \ldots$, $\varepsilon_0 = \varepsilon_1 = \ldots = \varepsilon_{N-1} = 1$, $\varepsilon_N = 0$, define C_t te space of the functions from V_q to F_2 constant on balls of the type $\{x \in \mathbb{Z}_2 : |x - \alpha| \leq 2^{-(N+2+t)}\}$, $\alpha \in V_q$. Since $C(V_q \to F_2) = \bigcup_{t \geq 1} C_t$ ([8], lemma 5 and its proof) it

suffices to prove that $(\overline{q_n(x)^{j_n}p_n(x)^{k_n}}|n<2^t)$ and $(\overline{x^{j_n}p_n(x)^{k_n}}|n<2^t)$ form bases for C_t . By the proof of [8], lemma 5, we can write V_q as the union of 2^t disjoint balls with radius $2^{-(N+2+t)}$ and with centers aq^n , $0 < n < 2^t$. From now on the proof is analogous to the proof of 1).

Some examples.

- 1) If $(p_n(x))$ is a sequence of polynomials with coefficients in \mathbb{Q}_p such that for all n we have that the degree of p_n is n, $|p_n(aq^n)| = 1$ and $|p_n(aq^i)| < 1$ if $0 \le i < n$, and if (k_n) is a sequence in \mathbb{N}_0 , then $(p_n(x)^{k_n})$ forms an orthonormal base for $C(V_q \to K)$. This follows immediately from lemma 1 and theorem 1, by putting $j_n = 0$ and $I_n = \{0, 1, \ldots n\}$ and this for all n. The case $k_n = 1$ for all n can also be found in [8], theorem 4.
- 2) If (k_n) is a sequence in \mathbb{N}_0 , then $(\binom{x}{n}^{k_n})$ forms an orthonormal base for $C(V_q \to K)$. Put therefore $p_n(x) = \binom{x}{n}$ in 1). If f is an element of $C(V_q \to K)$, and if s is a natural number different from zero, there

exists a uniformly convergent expansion $f(x) = \sum_{n=0}^{\infty} \beta_n^{(s)} {x \choose n}^s$ and we are

able to give an expression for the coefficients $\beta_n^{(s)}$. This can be found in [8], proposition 1.

3) If $(p_n(x))$ is a sequence in $C(V_q \to Q_p)$ such that for all n we have

$$p_n(x) = \sum_{i=0}^n a_{n,i} e_i(x) \text{ with } |p_n(aq^n)| = 1 \text{ and } |p_n(aq^i)| < 1 \text{ if } 0 \le i < n,$$

and if (k_n) is a sequence in \mathbb{N}_0 , then $(p_n(x)^{k_n})$ forms an orthonormal base for $C(V_q \to K)$. This follows immediately from lemma 1 and theorem 1, by putting $j_n = 0$ and by putting I_n equal to the empty set. The case $k_n = 1$ for all n can also be found in [9], theorem 2.

Remark. We can make an analogous result for the space $C(\mathbb{Z}p \to K)$: if we replace the polynomials $\binom{x}{i}$ by $\binom{x}{i}$ (Mahler's base) and the functions $(e_i(x))$ by van der Put's base, then we can prove the following (we shall denote van der Put's base by $(g_i(x))$:

Let $(p_n(x))$ and $(q_n(x))$ be sequences of continuous functions on \mathbb{Z}_p of the following form: for each n $p_n(x)$ is of the form $p_n(x) = \sum_{i \in I_n} a_{n,i} \binom{x}{i} + \sum_{i \in \{0,1,\ldots,n\} \setminus I_n} a_{n,i} g_i(x)$ with $|a_{n,n}| = 1$ and with

 $|a_{n,i}| < 1$ if $0 \le i < n$ $(a_{n,i} \in Q_p)$, and for each n we have

$$q_n(x) = \sum_{i \in J_n} b_{n,i}\binom{x}{i} + \sum_{i \in \{0,1,\dots,n\} \setminus J_n} b_{n,i}g_i(x)$$
 with $|q_n(n)| = 1$ and $|b_{n,i}| \le 1$ if $0 \le i \le n$ $(b_{n,i} \in \mathcal{Q}_p)$. If (j_n) is a sequence in \mathbb{N} and if (k_n) is a sequence in \mathbb{N}_0 , then the sequence $(q_n(x)^{j_n}p_n(x)^{k_n})$ forms an orthonormal

4 Continuously differentiable functions on V_a

base for $C(\mathbb{Z}_p \to K)$.

In this section we give necessary and sufficient conditions for a continuous function defined on V_q to be continuously differentiable, and we find an orthonormal base for the space $C^1(V_q \to K)$. The result we'll find is analogous to the result for continuously differentiable functions on \mathbb{Z}_p ([5], theorem 53.5) where we replace Mahler's base by the base $\binom{x}{n}$. We remark that there is a one-to-one correspondence between $(u,v) \in V_q \times V_q$ and $(\frac{qyx}{a},x)$ with $(x,y) \in V_q \times V_q$ (see [7], section 2). We shall use this several times in this section. Let ρ_n be as defined in section 2, then we can prove the following:

Proposition 1. Let f be an element of $C(V_q \to K)$ with uniformly convergent expansion $f(x) = \sum_{n=0}^{\infty} a_n \begin{Bmatrix} x \\ n \end{Bmatrix}$. If $\lim_{n \to \infty} |a_n(\rho_n)^{-1}| = 0$, then f is an element of $C^1(V_q \to K)$.

Proof. Let f be in $C(V_q \to K)$ with uniformly convergent expansion $f(x) = \sum_{n=0}^{\infty} a_n \binom{x}{n}$. Analogous to [5], theorems 53.4 and 53.5, we want to find an expression for $\phi_1 f(u, v)$ for special values for u and v. Therefore, let x, y be in $\{aq^n | n = 0, 1, 2, ...\}$, $x = aq^i, y = aq^j$ and suppose $y \neq a$ (i.e. $j \neq 0$). Then $\phi_1 f(\frac{yx}{a}, x) = \phi_1 f(x, \frac{yx}{a}) = \frac{f(\frac{yx}{a}) - f(x)}{\frac{yx}{a} - x} = \sum_{n=1}^{\infty} \frac{a_n}{aq^i(q^j - 1)} ([i^{i+j}] - [i])$ $= \sum_{n=1}^{\infty} \frac{a_n}{aq^i(q^j - 1)} (\sum_{s=0}^{n} [i_{n-s}] [i] q^{-(n-s)(-i+s)} - [i]) \text{ (by lemma 6)}$ $= \sum_{n=1}^{\infty} \frac{a_n}{aq^i(q^j - 1)} \sum_{s=0}^{n-1} [i^{j-1}] [i] q^{-(n-s)(-i+s)}$ since $\frac{1}{a^{j-1}} [i^{j-1}] = \frac{1}{q^{n-s-1}} [i^{j-1}]$, we find, by putting n = s + k + 1, that

$$\phi_1 f(\frac{yx}{a}, x) = \sum_{k=0}^{\infty} \sum_{r=0}^{\infty} \frac{a_{k+s+1}q^{-s(k+1)}}{a^{k+1}(q^{k+1}-1)} x^k {x \brace s} {y/q \brack k}$$

and replacing
$$y$$
 by yq this gives us, for all x, y in $\{aq^n | n = 0, 1, 2, ...\}$

$$\phi_1 f(\frac{qyx}{a}, x) = \sum_{k=0}^{\infty} \sum_{s=0}^{\infty} \frac{a_{k+s+1}q^{-s(k+1)}}{a^{k+1}(q^{k+1}-1)} x^k {x \brace s} {x \brack s} {y \brack k} {*}$$

Now $\sup_{k+s+1=n} \left| \frac{a_{k+s+1}}{a^{k+1}-1} \right| = |a_n| \max_{1 \leq k \leq n} \left| \frac{1}{a^{k-1}} \right| = |a_n(\rho_n)^{-1}|$ (lemma 7), so if $\lim_{n\to\infty} |a_n(r_n)^{-1}| = 0$, then $\lim_{k+s\to\infty} \left| \frac{a_{k+s+1}}{a^{k+1}-1} \right| = 0$ and it is clear that (*) can be extended to a continuous function ([5], exercise 23.B). So we conclude: if $\lim_{n\to\infty} |a_n(r_n)^{-1}| = 0$, then $f \in C^1(V_q \to K)$. This finishes the proof.

Remark. It is easy to prove that the functions $(x^k \begin{Bmatrix} x \\ x \end{Bmatrix} \begin{Bmatrix} y \\ k \end{Bmatrix}$ are orthonormal in $C(V_q \times V_q \to K)$.

Let A be the subset of $C(V_q \to K)$ defined as follows: if f is an element of $C(V_q \to K)$ with uniformly convergent expansion $f(x) = \sum_{n=1}^{\infty} a_n \begin{Bmatrix} x \\ n \end{Bmatrix}$, then f is an element of A if and only if $\lim_{n\to\infty} |a_n(\rho_n)^{-1}| = 0$.

Proposition 2. The set A satisfies the following properties:

1) A is a subset of $C^1(V_q \to K)$ containing the polynomials 2) A is closed for $||\cdot||_1$ 3) A is a subalgebra of $C^1(V_q \to K)$

Proof.

- 1) From proposition 1 it follows that A is a subset of $C^1(V_q \to K)$. It is clear that A contains the polynomials.
- 2) Suppose $f = \lim_{n \to \infty} f_n$ for the norm $||\cdot||_1$ where $f_n \in A$ for all n. Then f is clearly continuous. So there exists the following uniformly convergent expansions : $f(x) = \sum_{k=0}^{\infty} a_k {x \brace k}, f_n(x) = \sum_{k=0}^{\infty} a_{n,k} {x \brack k},$ with $\lim_{k\to\infty} |a_k| = 0$, $\lim_{k\to\infty} |a_{n,k}| = 0$ for all n, $\lim_{k\to\infty} |a_{n,k}(\rho_k)^{-1}| = 0$ 0 for all n. Suppose that $\lim_{k\to\infty} |a_k(\rho_k)^{-1}| \neq 0$. This will lead to a contradiction. Since $\lim_{k\to\infty} |a_k(\rho_k)^{-1}| \neq 0$ there exists an $\epsilon > 0$ such that for all $\eta \in \mathbb{N}$, there exists an $n > \eta$ such that $|a_n(\rho_n)^{-1}| > \epsilon$. Let I be the set defined as follows: $I = \{k \in \mathbb{N}_0 : |a_k(\rho_k)^{-1}| > \epsilon\}$. Then I is infinite. Let ϵ be as above. Then there exists a $J \in \mathbb{N}$, such that for all $n \geq \infty$ J we have $||f - f_n||_1 < \epsilon$. In particular, $\sup_{x \neq y} \{|\frac{(f - f_J)(x) - (f - f_J)(y)}{x - y}|\} < \epsilon$, and from the calculations in proposition 1 it follows that

 $|\phi_1(f-f_J)(\frac{qyx}{a},x)| = |\sum_{k=0}^{\infty} \sum_{s=0}^{\infty} \frac{(a_{k+s+1} - a_{J,k+s+1})q^{-s(k+1)}}{a^{k+1}(q^{k+1} - 1)} x^k {x \brace s} {y \brack k}| \le$

 ϵ for all x,y in $\{aq^n|n=0,1,2,\ldots\}$. From this it is easy to see that $|\frac{a_{k+s+1}-a_{J,k+s+1}}{q^{k+1}-1}| \le \epsilon$ for all k and s, so $\sup_{k,s}\{|\frac{a_{k+s+1}-a_{J,k+s+1}}{q^{k+1}-1}|\} \le \epsilon$ and thus $\sup_{n}\{|(a_n-a_{J,n})(\rho_n)^{-1}|\} \le \epsilon$. Then, if $n \in I$ we have $|a_{J,n}(\rho_n)^{-1}| = |(a_{J,n}-a_n)(\rho_n)^{-1}+a_n(\rho_n)^{-1}| > \epsilon$, and from this it follows that $\lim_{k\to\infty} |a_{J,k}(\rho_k)^{-1}| \ne 0$ since I is infinite. This is impossible and we conclude that A is closed.

3) If $f,g \in A$, $k,j \in K$, then we immediately have that $kf + jg \in A$, and if r and u are polynomials $(\in A)$ then ru is a polynomial and also an element of A. From the Weierstrass-theorem for C^1 -functions ([2], theorem 1.4) it follows that for each $f,g \in A$ we have $fg \in A$ since A is closed.

Theorem 2. Let f be an element of $C(V_q \to K)$ with uniformly convergent expansion $f(x) = \sum_{n=0}^{\infty} a_n \begin{Bmatrix} x \\ n \end{Bmatrix}$. Then f is an element of $C^1(V_q \to K)$ if and only if $\lim_{n \to \infty} |a_n(\rho_n)^{-1}| = 0$.

If f is an element of $C^1(V_q \to K)$ then $||f||_1 = \max_{n \geq 0} \{|a_n(\rho_n)^{-1}|\}$ and the functions $(\rho_n {n \brace n})$ form an orthonormal base for $C^1(V_q \to K)$.

Proof. From proposition 2 and the Weierstrass-Stone theorem for C^1 -functions ([2], theorem 2.10) it follows that $A = C^1(V_q \to K)$. So f is an element of $A = C^1(V_q \to K)$ if and only if

 $\lim_{n\to\infty} |a_n(\rho_n)^{-1}| = 0$. Let us first remark the following: since

 $\lim_{n\to\infty} |a_n(\rho_n)^{-1}| = 0$, we have $\sup_{n\geq 1} \{|a_n(\rho_n)^{-1}|\} = \max_{n\geq 1} \{|a_n(\rho_n)^{-1}|\}$ and since $\sup_{k,s\geq 0} \{|\frac{a_{k+s+1}}{q^{k+1}-1}|\} = \sup_{n\geq 1} \{|a_n(\rho_n)^{-1}|\}$ with k+s+1=n, we have

 $\max_{k,s\geq 0}\{|rac{a_{k+s+1}}{q^{k+1}-1}|\} = \sup_{k,s\geq 0}\{|rac{a_{k+s+1}}{q^{k+1}-1}|\} = \max_{n\geq 1}\{|a_n(\rho_n)^{-1}|\}.$ From (*) it follows that for all x,y in $\{aq^n|n=0,1,2,\ldots\}$

 $\phi_1 f(\frac{qyx}{a}, x) = \sum_{k=0}^{\infty} \sum_{s=0}^{\infty} \frac{a_{k+s+1}q^{-s(k+1)}}{a^{k+1}(q^{k+1}-1)} x^k {x \brace s} {y \brace k} \text{ and by continuity it then}$

follows that for all x, y in V_q with y different from aq^{-1} we have

$$\phi_1 f(\frac{qyx}{a}, x) = \sum_{k=0}^{\infty} \sum_{s=0}^{\infty} \frac{a_{k+s+1}q^{-s(k+1)}}{a^{k+1}(q^{k+1}-1)} x^k {x \brace s} {y \brack k}$$

Then we immediately have $|\phi_1 f(\frac{qyx}{a}, x)| \leq \max_{k,s \geq 0} \{|\frac{a_{k+s+1}}{q^{k+1}}|\}$ for all

 $x,y \text{ in } V_q \text{ with } y \neq aq^{-1} \text{ and so we have } ||\phi_1 f||_{\infty} \leq \max_{k,s \geq 0} \{|\frac{a_{k+s+1}}{q^{k+1}-1}|\}.$ If $\max_{k,s \geq 0} \{|\frac{a_{k+s+1}}{q^{k+1}-1}|\} = 0$ it is clear that $||\phi_1 f||_{\infty} = \max_{k,s \geq 0} \{|\frac{a_{k+s+1}}{q^{k+1}-1}|\}.$ If $\max_{k,s \geq 0} \{|\frac{a_{k+s+1}}{q^{k+1}-1}|\} > 0$, then put $I = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |\frac{a_{j+i+1}}{q^{j+1}-1}| = \max_{k,s \geq 0} \{|\frac{a_{k+s+1}}{q^{k+1}-1}|\}.$ Now let $S = \min\{i \in \mathbb{N}: \text{ there exists a } j \in \mathbb{N} \text{ such that } (i,j) \in I\} \text{ and } T = \min\{t \in \mathbb{N}: \text{ there exists a } j \in \mathbb{N} \text{ such that } (i,j) \in I\} \text{ and } T = \min\{t \in \mathbb{N}: \{s,t\} \in I\} \text{ then it is easy to see that } |\phi_1 f(\frac{a}{a}aq^Saq^T,aq^S)| = |\frac{a_{T+S+1}}{q^{T+1}-1}| = \max_{k,s \geq 0} \{|\frac{a_{k+s+1}}{q^{k+1}-1}|\} \text{ and so we conclude } ||\phi_1 f||_{\infty} = \max_{k,s \geq 0} \{|\frac{a_{k+s+1}}{q^{k+1}-1}|\} = \max_{k,s \geq 0} \{|a_n(\rho_n)^{-1}|\}.$ Since $||f||_1 = \max_{k,s \geq 0} \{|a_n(\rho_n)^{-1}|\} = \max_{k,s \geq 0} \{|a_n(\rho_n)^{-1}|\} \} \text{ and since } |(\rho_n)^{-1}| \geq 1 \text{ for all } n \text{ we conclude that } ||f||_1 = \max_{k,s \geq 0} \{|a_n(\rho_n)^{-1}|\}.$ From this it follows that $||f_n||_1 = |(\rho_n)^{-1}| \text{ so } ||f_n||_1 = \max_{k,s \geq 0} \{|a_n(\rho_n)^{-1}|\}.$ From this it follows that $||f_n||_1 = |(\rho_n)^{-1}| \text{ so } ||f_n||_1 = \max_{k,s \geq 0} \{|a_n(\rho_n)^{-1}|\}.$ From this it follows that $||f_n||_1 = |(\rho_n)^{-1}| \text{ so } ||f_n||_1 = \max_{k,s \geq 0} \{|a_n(\rho_n)^{-1}|\}.$ So the functions $||f_n||_1 = \max_{k,s \geq 0} \{|a_n(\rho_n)^{-1}|\}.$ From an orthonormal base for $C^1(V_q \to K)$. This finishes the proof.

References

- [1] Y. Amice, Les Nombres p-adiques. Presses Universitaires de France, Paris, 1975 (Collection SUP, Le Mathématicien, 14).
- [2] J. Araujo and W. H. Schikhof, The Weierstrass-Stone Approximation Theorem for p-adic Cⁿ -functions, Annales Mathématiques Blaise Pascal, Volume 1, No 1, Janvier 1994, p. 61-74.
- [3] L. Gruson and M. van der Put, Banach Spaces, Table Ronde d' Analyse non-archimédienne (1972 Paris), Bulletin de la Société Mathématique de France, Memoire 39-40,1974, p. 55 - 100.
- [4] K. Mahler, An Interpolation Series for Continuous Functions of a p-adic Variable, Journal für reine und angewandte Mathematik, vol. 199, 1958, p. 23-34.
- [5] W. H. Schikhof, *Ultrametric Calculus: An Introduction to p-adic Analysis*, Cambridge University Press, 1984.

- [6] A.C.M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, 1978 (Pure and Applied Mathematics, 51).
- [7] A. Verdoodt, Jackson's Formula with Remainder in p-adic Analysis, Indagationes Mathematicae, N.S., 4 (3), p. 375-384, september 1993.
- [8] A. Verdoodt, Normal Bases for Non-Archimedean Spaces of Continuous Functions, Publicacions Matemàtiques, vol. 37, 1993, p. 403-427.
- [9] A. Verdoodt, Normal Bases for the Space of Continuous Functions defined on a Subset of Z_p, Publicacions Matemàtiques, vol 38, nr 2, 1994, p. 371-380.

Vrije Universiteit Brussel, Recibido: 6 de Febrero de 1995 Faculty of Applied Sciences, Pleinlaan 2, B-1050 Brussels, Belgium.