REVISTA MATEMATICA de la
Universidad Complutense de Madrid
Volumen 9, nimero 2: 1996

Orthonormal bases for spaces of continuous
and continuously differentiable functions
defined on a subset of 4,

Ann VERDOODT
Abstract
Let K be a non-archimedean valued field which contains Q.
and suppose that K is complete for the valuation | - |, which ex-

tends the p-adic valuation. V; is the closure of the set {ag®|n =
0,1,2,...} where a and ¢ are two units of Z,, ¢ not a root of unity.
C(Vy — K) (resp. C(V; — K)) is the Banach space of continu-
ous functions (resp. continuously differentiable functions) from Vv,
to K. Our aim is to find orthonormal bases for C(V, — K) and
cHV, = K).

1 Introduction

The main aim of this paper is to find orthonormal bases for the spaces
C(Vy — K} of continuous and C}(Vy — K) of continuously differentiable
functions. Therefore we start by recalling some definitions and some
previous results. Let F be a non-archimedean Banach space over a
non-archimedean valued field L, E equipped with the norm || - ||.Let
f1, fo, - - - be a finite or infinite sequence of elements of E. We say that
this sequence is orthogonal if ||a1f1 + ... + arfil| = maezi1<i<k{|laifil|}
for all £ in IV (or for all k that do not exceed the length of the sequence)
and for all oy,...,ax in L. An orthogonal sequence fy, f2,... is called
orthonormal if ||fi|] = 1 for all . A sequence fi, fa,... of elements of £
is an orthonormal base of E if the sequence is orthonormal and also a
base. If M is a non-empty compact subset of L whithout isolated points,
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then C(M — L) is the Banach space of continuous functions from M
to L equipped with the supremum norm || - {|oc. Let f be a function
from M to L. The first difference quotient ¢;f of the function f is
the function of two variables given by ¢1f(z,y) = ﬂ%{-yﬂﬂ defined on
M x M\ A where A = {(z,z)|x € M}.We say that f is continuously
differentiable at a point b € M (f is C! at b) if lim(z )by 91f (=, ¥)
exists. The function f is called continuously differentiable ( f is a C1
function ) if f is continuously differentiable at b for all b in M. If f
is a function from M to L then f is continuously differentiable if and
only if the function ¢;f can (uniquely) be extended to a continuous
function on M x M. The set of all C; -functions from M to L is denoted
by CY{(M = L), and CY(M = L)y C C{M = L). For f : M — L we
set ||f|lL = sup{||f|loo, ||#1f|lcc}. The function || - ||1 is a norm on
CY(M — L) making it into an L -Banach algebra. Since M is compact,
[|fl}1 < oo if f is an element of C'(M — L) (these results concerning
continuously differentiable functions can be found in [2] or [5], chapter
27).

Let Z, be the ring of p-adic integers, @), the field of p-adic num-
bers, and K is a non-archimedean valued field, K containing @,, and
we suppose that K is complete for the valuation | - |, which extends
the p-adic valuation. IV denotes the set of natural numbers, and Vg
is the set of natural numbers without zero. Let ¢ and g be two units
of Z;, q not a root of unity. We define V; to be the closure of the set
{eq"|n = 0,1,2,...}. For a description of the set V; we refer to [7],
section 2 or to (8], section 3. In section 3 our aim is to find orthonor-
mal bases for the Banach space C(V; — K). The results in section 3
can be seen as a sequel to the results in [9] and [8], sections 4,5 and
6. In section 4 we give necessary and sufficient conditions for a func-
tion f in C(Vy — K) to be continuously differentiable, and we find an
orthonormal base for the Banach space C1(V, — K).
Acknowledgement : I want to thank professor Van Hamme for the
advice he gave me during the preparation of this paper.

2 Preliminaries

Let us introduce the following :
[n]! = {nlln - 1]...[1] and [0]! = 1, where [n] = £ if n > L.
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7= i fn 2 &, ([ =0ifn < k.

—a)(z— _ag®l) .
k= (aqéia?gg"ﬁzr‘)%%aq?‘qfaq’g‘l) if k21, {§} = 1.

The sequence ({{}) forms an orthonormal base for C(V, — K) ([8],

corollary to lemma 8), analogous to Mahler’s base for C(Z, — K) ([4]).

We also have [] = {{} if z = ag™. If z is an element of @, with Henselde-
+oo n—1

velopment z = Z ajpj, we then put z, = Z ajpj (n € N). We

j=—c J=—o0
write m 4z, if m is one of the numbers zg, z1,... and we say that "m

is an initial part of x” or "x starts with m” (see [5], section 62). If n
3—1

-]
belongs to INg, n = Zajpf where a, # 0, then we put n_ = Zajpj.

—~ —
We remark that n_Jq n. Let us now define the sequence of ftjmctions
(ex(z)) in the following way : write k£ € IV in the form k = i + mj,
0<i<m(i,j € N). Then e; is defined by

ex(z) = eirmj{z) = 1 if z = ag**(g™)*¥* where iy — i,/ d ay, ex(z) = 0
otherwise.

The functions (ex(z)) form an orthonormal base for C(V, — K) ([9]),
analogous to van der Put’s base for C(Z, — K) (see [3] or [5], section 62).
We remark that {f’qJ} = ei(ag?) = 0if j < i and that {fq‘} = ei(agt) = 1.
We shall use this frequently in the sequel. |

We shall construct new orthonormal bases for C(Vy; — K) using the
bases ({£}) and (ex(z)). Therefore we introduce the following : For each
n € IV, let I, be a subset of the set {0,1,...,n} (I, can also be empty
‘or can be equal to {0,1,...,n}). Let p(z) be a continuous function
of the following type p(z) = Z ai{f} + Z aiei(z) where each

i€ln i€{0,1, —n\n
a; € K. For example, if I, = {0,1,...,n}, then p(z) is a polynomial. If
I, is the subset of {0,1,...,n} consisting of all the even numbers, and
if a; = 1 for all 4, then p(z) = Z {1} + Z ei(x)
i€{0,1,...,n},ieven i€{0,1,...,n},i odd

and one can think of several other examples. For functions of this type
we can prove the following lemmas

Lemma 1. Let p(x) be a continuous function of the type

p(z) = Z ai{{}+ Z aiei(z) (ai € K). Then the following
i€ln €{0,1,...n}\In

are equivalent :
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D) |p(eg™)| =1 and |p(ag®)| < 1 if 0 € k < n.
2) lan| =1 and jar| < 1 f0 < k < n.

Proof. .
1) = 2) will be shown by induction. If |p(a)l < 1 then |eg] <
1. Now suppose that lagf < 1 if 0 < k¥ < n»n — 1  Then

Y el Y ae(adt)] = lpleg*t) <

i€Inn{0,1,..k+1} 4€{0,1,. k+1 T
1 and by the induction hypothesis it follows that |apy| < 1
and we can conclude Ja;] < 1 for all 0 < ¢ < n  Since

| Z a,-{,?qn} + Z aiei(ag™)| = |p(ag™)| = 1 we have |a,| = 1.
i€ln i€{0,1,.n N\ In
2) = 1) is obvious.

Lemma 2. Let p(z) be a continuous function of the type

p(z) = Z ai{i} + Z aiei(z) (a; € K). Then the following
i€l i€{0,1,...n N\ I,

are equivalent :

1) |lplloo < 1.

2} |lag| £ 1 for all k with 0 < k < n.

Proof.

1) = 2) can be shown analogous as 1) = 2) of the previous lemma.
2) = 1) is obvious.

Let m be the smallest integer such that ¢™ = 1 (mod p} (1 <m < p-1).
There exists a ko such that ¢™ = 1 (mod p*), ¢™ # 1 (mod p*ot!). If
(p, ko) = (2,1), ie. ¢ =3 (mod 4), then there exists a natural number
Nsuchthat g=1+2+2%, e=ep+ 612+ 622 +..,0=61=...=
en—1 =1, ey = 0. Then we have

Lemma 3.

1) Let g™ = 1 (mod p*), ¢™ # 1 (mod p*o+1) with (p, ko) # (2,1).
Ifz,yeVy, |z —y| < p~*ott) then en(z) = en(y) if 0 < n < mp.

2) Let ¢ = 3 (mod 4), g = 1 +2+2%, ¢ = eg+ 12 + 222 + ..,
co=¢€1=...=en_1=1,ey=0. Ifz,y € V,, |z — y] < p~(N+2+)
then en(2) = en(y) f0<n < 28 (> 1).

Pro6f. This follows immediately from [8], lemmas 2 and 3.
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Lemma 4. Suppose p(x) is a continuous function with ||p|lee < 1 of the
following type : p(x) = Z ai{i} + Z aiei(z) (a; € K).

iel, i€{0,1,...n}\In
1) Let ¢™ = 1 (mod p*0), g™ £ 1 (mod p*t1) with (p, ko) # (2,1). If
o,y €EVy Jz—y| <p %) then ifj € N, 0 < n < mpt : |p(z)f -
p(y)’| < 1/p and |27 — 4’| < /p.
2) Let g = 3 (mod 4}, g = 1 +2+4+2%, e = eg+e12 + €222 + ...,
co=¢e1=...=en-1=1,en=0. Ifz,y € V, [z—y| < p~N+21) then
fieN,0<n <2 (¢>1): |p(zl —p(y)| < 1/2 and |27 — I < 1/2.

Proof. It is clear that |ag| < 1if0 < s < n (lemma 2). Suppose that z,y
and n are as in 1) (resp. 2)}). Then |p(z) — p(y)| £ mazer, {las||{5} —

{¥}}3 € 1/p (resp. < 1/2) by lemma 3 and (8], lemmas 11 and 12.
-1

If j > 1 then |p(z)’ - p(y)’| = Ip(z) — p(v) Ilzp(m) p(y) 1 < 1/p

(resp. < 1/2). So the lemma holds for j E IN (the case j = 0 is

trivial). Further, if j > 1 then |27 — 37| < |z — y|| Zﬂrsyj_l_sl <1/p
s=0

(resp. < 1/2) so |27 — 7] < 1/p (resp. < 1/2) for all j € IV.

Let for each n € IN Jy, be a subset of the set {0,1,...,n}. Then we can
prove

Lemma 5. Let p(z) and ¢{z) be continuous functions with ||p|loc < 1
and ||gllcc < 1 of the form

p)=Y affl+ D aiels), (@i €K)

i€ln €{0,1,...n\Jn
a@)= D u{f}+ D  bieilz), (b € K).
i€Jn i€{0,1,...nN\Ju

1) Let g™ = 1 (mod p*), ¢™ £ 1 (mod p**t1) with (p, kg) #(2,1). If
T,y € Vg, Jx— y| < p*(k"“) then ifi,7 € N, 0 < n < mp® : |q(z)’p(z) -

a(v)'p(y)’| < 1/p and |2'p(z)’ —y'p(z)!| < 1/p.

2) Let q = 3 (mod 4), q = 1+2+42%, 6 =co+612+ 622+ ..,

eg=¢e1=...=eny_1=1,eny=0. Ifa:yGVq,|x—y[<p(N+2+t)
then if i,j € N, 0 S n < 2 (¢ 2 1)  la(e)pla) — ou)p(u)} < 1/2
and |z'p(z) — y'p(=)’| < 1/2.

Proof. Let z,y,n,7 and j be as in 1) (resp. 2)) then



300 Ann Verdoodt

lg()'p(z) — a(@)’p(y)| < maz{|q(z)’p(z)’ — a(z)'p(¥)], la(=)'p(y) -
a@)'rw)l} _ _ _ _ _

< maz{lg(z)*|lp(z)? ~ p(¥)’], Ip(¥)’|la(=)* — a(v)*[}

< 1/p (resp. < 1/2) by lemma 5 and analogous

|z*p(=) — y*p(w)’| < maz{]z’p(z)? — z*p(y)’), |2'p(¥) — v'P(W)’[}

< maz{|z{|p(z)’ — p) | Ip(¥)|lz* — &1}

< 1/p (resp. < 1/2) by lemma 5

We shall need lemmas 6 and 7 for the construction of an orthonormal
base for C1(V, —» K}

Lemmaﬂﬂ.
59 =Yl Gl e
5=0
Proof. This follows immediately from 8], lemma 1} by putting first
s = n — k and then interchanging ¢ and j.

Definition. We define the sequence (pn)} as follows :
pn= () ~1lifn=im+;,0<j<mandi>0, p,=1ifn <m.

Lemma 7.
lon| = mini<ecn{le® — 11}. (n € Ny).

Proof. This follows immediately from {8], lemmas 2 and 3.

3 Orthonormal bases for C(V, — K)

Using the lemmas 1-5 in section 2, we can make orthonormal bases for
C(Vy — K) with the aid of the following theorem :

Theorem 1. Let (pn(z)) and (gn(x)) be sequences of continuous func-
tions of the following form :

for each n pp(x) is of the form pup(z) = Zan,1{f} +
i€ln
Z angei(z) with |ann| = 1 and with |ani] < 1

ic{0,1,.. n}\In
if 0 £ i < n (ang € @), and for each n we have

gn(z) = zbn,i{?} + Z b iei(x) with lgn(ag™)| = 1 and
i€ #€{0,1,...n\Jn
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lbri] €140 <i <n (bps €@). If (jn) is a sequence in IN and
if (kn) is a sequence in NNy, then the sequences (gn(x)mpn(z)*) and
(:r-’"pn(:z:)k") form orthonormal bases for C(V; — K).

Proof. This proof is analogous to the proof of [8], theorem 5. We remark
that for all n we have |[pallcc < 1 and ||gn||lco < 1 (lemma 2), and that
pn(z) and gn(z) are elements of C(V, — @). By [1], 3.4.1 or [6], p.
123-133 it suffices to prove that (gn(z)}**pa(z)*") and (zpy(z)**) form
orthonormal bases for C(V; — @) and by [1] proposition 3.1.5' p. 82 it

suffices to prove that (g,(z)7rpy,(x)*) and (zf»pp(z)*=) form vectorial
bases for C(Vy — Fp) (where f(x) stands for the canonical projection
on C(Vq — Fy), if fis in C(V4 — §) with ||f]le < 1). We distinguish

two cases.

1) Let ¢™ = 1 (mod p*), ¢™ 2 1 (mod p*o+1) with (p, ko) # (2, 1), define
C the space of the functions from Vg toF 'y, constant on balls of the type
{z€Z :|lz—a| < p_(k"“)}, a € V. Since C(Vy — Fp) = Ut<gC; ({81,
lemma 4 and its proof) it suffices to prove that (gn(x)?rpn(z)k=|n < mpt?)
and (z/rp,(z}FIn < mp®) form bases for Cy. By the proof of (8], lemma
4, we can write V, as the union of mp!t disjoint balls with radius p“('“"”)
and with centers ag"(¢™)", 0 < r <m —1, 0 < n < p'. Let x; be the
characteristic function of the ball with center ag®. Using lemma 5, we
have

mpt—1
> xi(z)an(ag'}inpp(agi)s
i=0
mpt—1
= Z Xi(x)Qn(aqi)j"Pn(aqi)k"

i=n

1l

tn(x)npn(z)*n

since |gn(ag*)’"pn(ag’)*| < 1ifi < n (lemma 1) and hence the transition
matrix from (xp|n < mp?) to (gn(z)mpn(zx)*»|n_< mpt) is triangular
since |gn(ag"™)"pn(ag™)| = 1 (lemma 1), so (gn(z)¥~pn(z)*=|n < mp’)
forms a base for C;. The proof for (z/npn(z)*=) is analogous.

2) Let ¢™ = 3 (mod 4), ¢= 1+242%, e=ep 4124622+ ..., e0=
g1 =...=en-1= 1, ey = 0, define C; te space of the functions from
V, to Fa constant on balls of the type {z € Z2: |z — & < 2-(N+2+9)
a € V,. Since C(Vy — F2) = Up1Cy ([8], lemma 5 and its proof) it
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suffices to prove that (gn(z)mpn{zx)*rin < 2) and (zinpn(z)*=|n < 2%)
form bases for C;. By the proof of (8], lemma 5, we can write V, as the
union of 2t disjoint balls with radius 2-(V+2+t) and with centers ag®,
0 < n < 2%. From now on the proof is analogous to the proof of 1).

Some examples.

1) If (pn(z)) is a sequence of polynomials with coefficients in @, such
that for all n we have that the degree of p, is n, |pn(eg™)| = 1 and
Ipn(agi)| < 1if0 < i < n, and if (ky,) is a sequence in ¢, then (pn(z)*)
forms an orthonormal base for C(V; — K). This follows immediately
from lemma 1 and theorem 1, by putting j, = 0 and I, = {0,1,...n}
and this for all n. The case k, = 1 for all n can also be found in (8],
theorem 4. ' '

2) If (ky) is a sequence in IVg, then ({Z}*") forms an orthonormal base
for C(Vy — K). Put therefore pa(z) = {f} in 1). If f is an element
of C(Vy — K), and if s is a natural number different from zero, there

oo
exists a uniformly convergent expansion f(z) = Z B{Z}° and we are
n=0

able to give an expression for the coefliecients ﬁ,(—f). This can be found

in {8}, proposition 1.

3) If (pn(z)) is a sequence in C(Vy — @,) such that for all n we have
"

pn(z) = Zanﬁei(:t) with |pn(ag™)| = 1 and |pp{ag®)| < 1if 0 < i < n,
i=0 )

and if (kn) is a sequence in INg, then (pn(z)*) forms an orthonormal

base for C{Vy — K). This follows immediately from lemma 1 and theo-

rem 1, by putting j, = 0 and by putting I, equal to the empty set. The

case k, = 1 for all n can also be found in [9], theorem 2.

Remark. We can make an analogous result for the space C(Zp — K) :
if we replace the polynomials ({¥}) by ((F)) ( Mahler’s base ) and the
functions (e;(z)) by van der Put’s base, then we can prove the following
(we shall denote van der Put’s base by (gi(z)) :

Let (pn(z)) and (gn{z)) be sequences of continuous functions on
Z, of the following form: for each n pnp(z) is of the form
pnlz) = Zan,,-(f) + E anigi(z) with |ann| = 1 and with

i€la i€{0,1,....n M\
lanil < 10 < i < n (ans € @), and for each n we have
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() =D ba@)+ Y. bnigi(z) with |ga(r)| = 1 and b <
icJy €{0,1,..n\Jr

1if0<i<n (bp; € @) If (n) is a sequence in IV and if (kn) is a se-

quence in N g, then the sequence (gn(z)’"pn(z)*) forms an orthonormal

base for C(Z, — K).

4 Continuously differentiable functions on V,

In this section we give necessary and sufficient conditions for a contin-
uous function defined on V; to be continuously differentiable, and we
find an orthonormal base for the space C1(V, — K). The result we’ll
find is analogous to the result for continuously differentiable functions
on Z, ([5], theorem 53.5) where we replace Mahler’s base by the base
({Z}). We remark that there is a one-to-one correspondence between
(u,v) € Vg x Vg and (ZE, z) with (z,y} € Vg x Vg (see [7], section 2).
We shall use thls several times in this section. Let p, be as defined in
section 2, then we can prove the following :

Proposition 1. Let f be an element of C(Vy; — K) with uniformly
convergent expansion f(zx) = f: an{Z}. If limn_colan(pn) 1| = 0, then
f is an element of C1(V, — I’{E?

Proof. Let f be in C(V; — K) with uniformly convergent ex-
pansion f(z) = ian{z}. Analogous to [5]|, theorems 53.4 and

53.5, we want to find an expression for ¢1f(u,v) for special val-
ues for u and v. Therefore, let x,y be in {ag"|n = 0,1,2,...},
r = ag, y = a¢’ and suppose ¥y # @ (ie i # 0). Then

arE) = o) = SEE =5 s -

= Z
_ i ~(n—s)(~t+8)
| ): ;:)[ ~Jllilg

since 1[3_5] = m[ﬂﬂs 1], we find, by putting n = s + k + 1, that

aq,(q_, (Z[’ -[la @) ) (by lemma 6)
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yz xtar1g T
¢1f(-;, Z Z akii—J(rlkH——) T ZHYY)
k=0s5=0 9
and replacing y by yq this gives us, for all z,y in {ag™|ln=10,1,2,...}
s{k+
qyxr Ok 19
W) =33 Sl — LRI )

k=0 =0
Now SUPk+s+1= nf;;}ff—l| = |aﬂ|max1<k<n}—k—| = lan(pn) 1| (lemma
7), so if limpsoolan(rn)7t| = 0, then Izmk+_.,__,oo|a-;=$f—%| 0 and it

is clear that (*) can be extended to a continuous function ([5], exercise
23.B). So we conclude : if limp_o0|an(rn) 1| = 0, then f € C}(Vy — K).
This finishes the proof.

Remark. It is easy to prove that the functions (z¥{Z}{}}) are orthonor-
mal in C(Vy X Vg — K).

Let A be the subset of C(V, — K) defined as follows : if f is an element

0
of C(V4 — K) with uniformly convergent expansion f(z)= Zan{ﬁ},
n=0

then f is an element of A if and only if limp_colan(pn) | = 0.

Proposition 2. The sef A satisfies the following properties :
1) A is o subset of C1(V, — K) containing the polynomials 2) A is
closed for || - |11 8) A is o subalgebra of C*(V, = K)

Proof.

1) From proposition 1 it follows that A is a subset of C}(Vy — K). It is
clear that A contains the polynomials.

2) Suppose f = limp oo fn for the norm || - ||; where fn, € A for all n.

Then f is clearly continuous. So there exists the following uniformly
(e o} oo

convergent expansions : f(z)= Zak{i}, fnlz) = Zan’k{ﬁ}, with
k=0 -
limgoo | 6k |= 0, limg_oo | ani [= 0 for all n, limy oo | an k(o)
0 for all n. Suppose that limk_.colax(pr) 2| # 0. This will lead to a con-
tradiction. Since limg_,o | ax{pi) ! |# 0 there exists an € > 0 such that
for all 7 € IN, there exists an n > 5 such that Jan(pn) "} > €. Let I be
the set defined as follows : T = {k € INg : [ax(px) ~!| > €}. Then I is infi-
nite. Let ¢ be as above. Then there exists a J € IV, such that for all n >
J we have ||f — falli < e. In particular, sup,:#y{](‘f f")(z)_(f f")(y)l} <
e, -and from the calculations in proposition 1 it g:)llows that

-1 '=
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o~ o= (@ktar — G.I,k+a+1)q_s(k+l) krzy (¥
61(f — £2) Z Z B - 1) " {THEH <
k=0s=0
¢ for all z,y in {aq”ln = 0, 1,2,...}. From this it is easy to see that
I%{'—i‘fiﬂ-[ < e for all k and s, so supk,s{-{ﬁﬁq;‘;;éf—‘m’-ll} < e and
thus supp{|(an—ajn)(pn) !} < e. Then, ifn € I we have lagnlpn) Y =
[(@gn—an){pn) "1+ an(pn) 1| > ¢, and from this it follows that limg_,co
| agk(pk) ™! |# O since 7 is infinite. This is impossible and we conclude
that A is closed.
3)If f,g € A, k,j € K, then we immediately have that kf + jg € A,
and if r and u are polynomials (€ A) then ru is a polynomial and also
an element of A. From the Weierstrass-theorem for C!-functions ([2],

theorem 1.4) it follows that for each f,g € A we have fg € A since A is
closed.

Theorem 2. Let f be an element of C(Vy — K) with uniformly conver-
o0

gent ezxpansion f(z) = Z an{Z}. Then f is an element of C1(V4 — K)
n=0

if and only if imn—oolan{pn) 1| = 0.

If f is an element of C1(V, — K) then {|f|l1 = mazn>0{lan(on) |}

and the functions (pn{Z}) form an orthonormal base for CYH(V, — K).

Proof. From proposition 2 and the Weierstrass-Stone theorem for C!-

functions ([2], theorem 2.10) it follows that A = C}(V, — K). So f is

an element of A = CY(V, — K) if and only if

limp_00|an{pn) 7t| = 0. Let us first remark the following : since

limnooolan(pn) ™t = 0, we have supp>i{len(pn)t} =
—_ . a a —_—

mazn>1{lan(pn) "'} and since supk,s>o{ | |} = supn>1{lan(en) 7'}

with k 4+ s + 1 = n, we have

mazk,s>0{| FHET|} = supksxo{| LT[} = maznz1{lan(pn) "}[}. From

(*) it follows that for all 2,y in {ag"|n=10,1,2,...}

a(k+1)
b1 f(@_"j z) = E Z a’;ii*(’;gﬂ ) k{f}{,’;} and by continuity it then
k=0s=

follows that for all z,y in Vg w1th y different from ag
T appsirg "D
11 (== Z;)ETi(m__l) GHE
—0
Then we immediately have |¢; f(ZZ, z)| < mazkvszo{lé’&‘ﬁ” for all

-1 we have
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z,y in Vy with ¥ # ag~! and so we have ||¢1f[|cc < mawk,szo{lgk'ﬁ_,‘:'f{%ﬂ.
Ifmaxk,320{|£7c"‘—ﬁ‘—fi1|} = 0it is clear that ||¢1 f||ce = mawk,szoﬂgﬁtﬂ—if}.
If mazk,,;_,o{;gatgﬂ} > 0, then put I = {(i,j) € N x IN

t;—;’f}%| = mamk,gzg{lgﬁtﬂ%”}. Now let S = min{: € IN: there
exists a j € IN such that (3,5) € I} and T = min{t € N :
(S,t) € I} then it is easy to see that |¢1f(§aqsaqT,aqS)|

f

IZ%i.?f—il = mamk,azoﬂfﬁf—*}lﬁ} and so we conclude ||¢1fllec =
mazks20f | FHEE) = mazpzi{lan(en) ). Since [Iflh =
maz{||fllo, l#1fllc} = maz{mazpzo{lanl}, mazn>1{lan(pn)~[}}

and since |(ps)”l] = 1 for all n we conclude that [|f|i =
mazn>0{{an(pn)"'|}. From this it follows that |[{Z}|[, = |(pn)”}| so
o X0

llen{#}lli = 1. Furthermore, f(z)= Zan{ﬁ} = Z%ﬁpn{ﬁ} with

n=0 n=0
Il = maznzo{lan(on) "} = maznz0{l{22pn{5}[1} so the functions
(pn{%}) form an orthonormal base for C1(V; — K). This finishes the
proof,
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