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Bases of the Homology Spaces of the Hilbert
Scheme of Points in an Algebraic Surface

C. HERMOSO and 1. SOLS

ABSTRACT. We find two basis of the spaces of rational homology of the
Hilbert scheme of points in an algebraic surface, by exhibiting two candidates
having as cardinalities the known Betti numbers of this scheme and showing
that both intersect in a matrix of nonzero determinant.

Let § be a complex algebraic surface, proper, smooth and con-
nected. Gotsche and Soergel ([G], [GS]) have found the rational homo-
logy H,(Hilb?S)g of the Hilbert scheme of subschemes of S of length
d. We find in this article two bases for these spaces, one of them de-
scribed by nonreduced subschemes, and another one described by re-
duced schemes i.e. by sets of distinct points (thus more interesting for
potential applications in numerative geometry). In fact, our work only
uses the value of the Betti numbers, thus providing an alternative con-
struction of these homology spaces. The technique consists in showing

1991 Mathematics Subject Classification: 14C05, 14C17, 14J99

Servicio publicaciones Univ. Complutense. Madrid, 1996.



54 C. Hermoso and 1. Sols

that the elements of the two candidates intersect with a triangular ma-
trix of nonzero diagonal entries, as in Mallavibarrena’s work [M] on a
base of H,(Hilb* P?). In fact our candidates are generalizations of types
O’ and 2 in work [MS] of Mallavibarrena and the second author, al-
though the proof in that article was different, not based in intersection
theory. The role of the vertical lines of P% (i.e. passing by (0,0,1)) is
now played by a pencil of very ample divisors, which we call “verticals”.

Fantechi [F] has arrived independently to essentially the same re-
sults. We are gratefull by generously sharing her manuscript. In partic-
ular it helped us to provide to our candidates the natural structure of
oriented cycles in an easier way than we previously intended.

0. PRELIMINARIES AND STATEMENT

We choose a linear pencil V of very ample divisors, with no fixed
components, and call “vertical” to such divisors (to help intuition). If
P € S is not a base point of the pencil, we denote V(P) the vertical
divisor passing by it, and say a subscheme of § is vertical if it is contained
in one vertical divisor.

For each 1 = 0,...,4, we consider classes of oriented cycles

Cily.--sCip; € H,ﬁ(S); €ily..-2Cip; € H4_;(S)

(where b; = dim H;(S)q = dim H,_;(5)g) such that ¢;; - ciy = 0
if 5 # j'. It is a consecuence of Poincaré duality theorem H;(S); =
Hy_i(S)q for the compact oriented manifold §, that we can find such
classes. (We could have simplified using rather classes ¢; € H;(§)g
and & € Hy_;(S)g so that furthermore ¢; - & = 1, but this introduces
unnecessary restrictions in potential applications. This is the case if, for
instance, we want to work only with one base: &; = ¢;; for all 7,7 which
amounts to diagonalize the symmetric bilinear form of intersection in
H,(95)q; or, in cases other than ¢(S) = py(S5) = 0 where all homological
classes are realized by algebraic cycles, if we want to use the result to
bound the dimension of the space of such classes).

We can represent classes ¢;;, &; by oriented, piecewise smooth cycles
Cij,é’ij mutually intersecting in the proper dimension, and being the
intersections Ci;NC;; transverse, thus in a finite number of points which
are smooth points of C;; and of C;; (with their oriented tangent spaces
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giving the tangent space to 5 as direct sum, with orientation direct or
reversed depending on whether the intersection at that point is +1 or
-1 (See [GH] pp. 49-53, for msta.nce)) We can furthermore assume that
the intersection of C;; and C,, , is geometric i.e. at exactly |e;; - &;j|
points, thus with positive sign or negative at all of them, so in particular
Ciin Cij = @ if j # j' (This is also standard: roughly, you can assume
each Cyj, C',-_.,u, is furthermore connected, by eventually deforming it
inside its homology class, then move two intersection points of different
sign along an arch connecting them, until both cancel). In fact we will
need for technical reasons, several representants C?J, C',’;, .of &; (d
representants will be, in any case, enough). We can assume each of them
satisfies the above generahty conditions, and that all intersections in the
finite set of all C';; and C j+ happen in the proper dimension. Let E,"J be

the set of points C;; N C,’;, and E = LIE" We can assume each point of
E is neither a base point nor a smgular point of a vertical divisor, a.nd
the vertical divisor passing by the point intersects both Cj; and C g

transversally at that point. We can also assume not two points of E
lie in the same vertical, and that each C;j,é’fj (i # 0,4) intersects the

general element of the pencil transversally almost everywhere.

Let A be the set of sequences

a = (a;;) = (& = 2413830, - 18015 Cabyr - - 18215 B1py -+ - 18115 B0)
. Tis
where each g;; is a monotone sequence a?j > ... 2 afj 2 ... 2 a‘-;-’,

strict monotone if 7 is odd, and such that

Zafj =d

Let the subset A, consist of those ¢ € A with

Z(”"u) +2(d - Z Tii)

]

or equivalently

4d—n = 2(4 - 3)7'13 + 2(d ZTU)

5,7
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Attach to each @ € A, the subset 2% C Hilb®S parametrizing sub-
schemes

Z=U{Zij|i20,...,4;j21,...,b,‘}

of length d obtained as disjoint union of schemes Z;; of length a;; =

Ekafj supported in C;;, whose irreducible components are r;; punctual
schemes of lengths a2, ... ,a:-'_;" if i > 0, and Zp = UZ§ with Z§ of lenght

a supported in the point C¥.

Attach also the subset Z2 C Hilb%$§ parametrizing subschemes Z=
UZ,-’} C 5 of length d obtained as disjoint union of schemes Z{‘J- of length
afj lying in different vertical divisors I"/;f; and, if ¢ > 0, intersecting C‘i‘;
in one point 2,’“]

The closures Z- and Ea in Hilb*$ have a natural structure of
oriented cycle. We borrow from the analogous in [F} a very simple
way to present this structure. Consider the algebraic variety W =
I155x]] Hilb®" (8)x Hilb¥(S) with obvious projections p and g to nsk
ijk izk
and Hilb?S, where all Sf‘j = §. It is smooth and compact. Consider in
W the subvariety Inc (incidence) consisting of triples (zf‘j,Zf’j,Z) such
that zf‘j € ij and Z = L.IZl-'g-. Define also Punct or Vert, subvarieties of
W, by imposing sz';- to be punctual (i.e. supported in a point) or vertical
(supported in a vertical). Clearly p~'(NCE) (taking C% = Cy; for all
k) and p‘l(ﬂéfj) are also oriented cycles, since p is just the projection
of a cartesian product with a proper algebraic manifold, and so are the
intersections Punct N IncNp~}(NCE) and VertnInen p“l(ﬂé}"j) since
they are, by our generality asumptions, transversal almost everywhere
(ef. GH, p. 52). These two cycles of W apply with degree 1 onto their

—_ —=a
images, which are Z= and £ so these are oriented cycles. In fact we see
from this construction that if we replace C;, C!‘j by homologous cycles

(CijY, (Ck) we obtain (Z%)' and (%:g)' homologous to Z= and =

Theorem. The homology classes of the closures [Z~ and [Egj are
bases of H,(Hilb?S)g and Hys_,(Hilb%S)g

We will prove this theorem by showing:
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T1) The intersection matriz of both sets [Z7] - [Eaj is triangular
T2) The diagonal entries of this matriz are nonzero.

T3) The cardinality of both sets is the known Betti number.

1. PROOF OF T1

Observe that the same closure Z° is obtained if we redefine Z2
adding the following technical condition: if Z € Z2, then each point
z§; € Cjj lies in fact in 6‘,-3: Ci; \U{Cu (¥, 5') < (3, 7) lexicographica-
lly} (Observe that § =U CO'.-J-).

Assume that X € Z2°n Eﬁ and lexicographically,

(P43 73bsy -2 T315T 2655+ -y T213 T1bys-- -5 113 T0) <

< (Ta;Tabgsee 17315 Fabgy - o o2 T215 Fibyy - - » 7115 T0)

0
and decompose X as UX;;, with supports z = Uz;; so that z;; CCyj.
We clearly get proved T1 (and get in good position to prove T2 and T3)
if we show

0
T12) Decomposing X as UX;; with supports x = Uzx;; so that z;; CCyj,
it is Ti; = {Zlkjlk = 0, .. .,T,'j} with the point I!cj = X n C,’;

T13) Each X ,’; is the a¥;-th neighborhood of mfj in the vertical divisor
passing by it.

Let Z(t), t € (—¢,¢), be a differentiable curve in Z~ so that Z(t) =
UZ;;(t) € 22 for t # 0, and Z(0) = X. Analogously, the support
point z;;{t), for t # 0, define as limit a set 2;;(0) € X, with #z;;(0) <
#2i;(t) = rij + 1. Since X is also the limit Z(0) of a curve Z(t) =
LJZ—!‘j(t), t #0,as t — 0, we can define analogously Z,"J(O) CZ=Xx
of length &¥,(t) and the points Z£(t)define a limit point Z5(0) € X.

First we prove, by descending induction on ¢, assert A; : For j =
1,...,bi it is
A,‘l) Tij = F,'j
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A,‘2) Tij = {.’l‘.‘i-cj} with .’.Ei-‘j = Xy N EikJ

A,‘3) Ti; = z,-J-(O)

(this range for index j will always be understood, as well as the range
k € {o0,.. .,‘F,'j}.

Start with ¢ = 4. For all ¢ # 0, the set of points Cy = {CF}is
contained in #(t) = UZ5(t), thus Cy € #(0) C . On the other hand,
by dimensionality and our generality assumptions, Cy is disjoint with
Ui<3C;, thus with Ujcaz; (Here C; = U;Cj;. In general, whenever we

omit an index in a letter denoting a subset of § we will understand the
union running that mdex) Therefore (Cy < z4, thus 7 + 1 = #C4 <

#x,. Furthermore, z4 QC4 is disjoint with the closed set U;<3C}, which
contains U;<3zi(t) for all ¢ # 0. Therefore it is disjoint with the set
Uicazi(0), thus 24 < 2(0) and 1+ 74 < #Cy < #z4 < #24(0) <
ze(t) =14 rq.

As a consequence 74 = r4 and z4 = z4(0) = Cy = Ey.

Now let 0 < 7 < 4 and assme Ay for all ¢/ > i. We prove a.ssert A;.
Let j € {1,...,b;} and k € {0,...,7;}. Observe first that z N C # 0,

since 2(£) N C—',kJ for all t # 0. We know z4 N Cf; = @, if ¢ > 1 since
by induction hypothesis z; is contained in the finite set Ey, which
by generality assumption is disjoint to Cf“j as it has dimension

4—1 < 4. We also know that, for ¢’ < i, all z;vﬂéfj < C,-:ﬂéfj. Therefore
zNC; # 0. Now:r,J'ﬂC < Cij f‘lC"‘ =Qforall j' # jas¢j-¢j =0,
thus z;; N C,-j # @. This holds for each k=0,... ,&fj. Furthermore, for
two distinct k, &' € {0,...,d;} it is z; N (CE nCE) € ¢y n(CE n
C’,"‘;) = { by their dimensionality and our generality assumptions. Thus
#2i; > 1+ 7;; and in case of equality, each z;; N é,’; consists of exactly

one point, say z¥., which must be in Ef, = C;; n C¥.
17 2 17

‘IJ’

0
On the other hand, z;; = zn C;;C z N C;; = z(0) N C;;, thus, for
t#£0,

147 S #zi; < #(0)NCi; <#2(DNCij =147y
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Since #;; > r;;, these are all equalities, and ;; consists of 14-r;; = 147
points mfj € Ef‘j, being z;; = 2;;(0) thus proving A; for i > 0.

This argument does not hold for the last step of the induction,
case ¢ = 0, since then the key assertion (bold letters above) does not
hold anymore. In this case r;; = #;; for all i > 0 is already assumed.

Summing up the two equalities

n= Z(i'r;j) +2(d — Z: r,-j) and 4d - n = 2(4 - ‘i)f‘i_,' +2(d - Z 1—';_,')
we obtain

0= Z(z - 2)1','_1' - Z(l - Q)ﬂj
so we conclude that also rp = 75, which is part of Ap.

Furthermore, whenever ¢ > 0, the set z N C—""_.r consists of only one
point of Ef; so it is the limit £5,(0) of the point Z5(2), ¢ # 0 as ¢ goes to
zero.

The vertical V(z N C’,—’}) does not meet Cp, so we can assume (after
eventually stretching the interval (—¢,€), that in fact all V(25(2)), for
t € (—¢,€) are disjoint with an open neighborhood Uf; of Cy. Take U =
NUE. For t # 0, i > 0, the schemes Z,’;(t) lie in the vertical V(2f(2)),
so they are disjoint with U/, thus their limit Z,",(O) is also disjoint with
U and consequentely with Cy. As a consequence, the scheme Xo, whose
support 2o is Co, must be contained in the limit Zo{0) of the Zy(t). Since
the points CJ,...,Cy° of Cy are assumed in different verticals, writting
vert{(T') the minimum number of verticals (counted with multiplicity)
containing a finite scheme T, we have

14 710 = #Co < vert(Zp(0)) < vert(Z(t)) = 1 + 7y

and being rgp = 7p, these are all equalities. This proves Ay and the
induction is ended.

It will be convenient for the sequel to assume that the set Cy =
{C8,...,CEY = zq = 20(t) = Z(t) has been reindexed so that C*
z&E(t) is precisely the point Z§(t).
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We prove now the remaining T11 and T13. For ¢ = 0, it is easy:
Xo = UXE has support zo = {zf|k = 0,...,70}, being zf = C§ = E§.
Call Z§(t) the subscheme of Zy(t) supported in z}. Since zo(t) = zo,
it is Zp(t) = UZ§(t), and Xp = Zo{0) = UZE(0) so X§ = Z§(0), thus
length X} = length Z§(0) = length Z§(¢) = af.

On the other hand, the scheme Z}(t) of length &% is supported in
the vertical V(zé‘(t)) = V(z§) = V(EE) so also the hmlt ZE(0) < X, of
same length @, which in fact must be supported in z§ = zo NV {(z§), so
Zk(0) C XF. Since Xg = LJXO is equa.l to Z(0) = UZF(0) this 1mphes
that X“ = Zk (0), S0 ao = & and X§ is both supported in z} and
conta.ined in V(z§), so it is the af-th neighborhood of z¥ in V' (z5). This
proves T11 and T13 for ¢ = 0.

Assume now ¢ > 0. We know that Z(¢) = UZF, (), t # 0 converges
to X, and the distinct points zf’(t) converge to dlstmct points zu(t)
converge to distinct points z; = ;; N E;; of z = {z%} none of them
in the same vertical. On the other hand, each zf; is the limit of the
exactely one point of z;;(t), say 25(t), since we saw that z;(0) = =z,;
and that both z;;(¢) and z;; have the same ca.rdina]ity ri; + 1. Thus
the punctual subscheme of X supported in z¥ ij» say X,J, must be the

limit of the punctual subscheme Z%. (t) of Z;;(t) supported in z5(t),
thus length( X J) = length(Zf(t)) = af; for decompositions X = uxg
and Z(t) = LIZJ(t)

On the other hand, the schemes Z¥; %(t) in the decomposition Z =

uZ k(t) are contained in the distinct vertlca.ls V(Z(1)), so their limit
ZF(0) (of same length & ) is contained in V{(Z5(0)) = V(zf;). But
recall no two points of £ he in the same vertical, so all vertlca,ls V(zk)
are distinct, thus X‘J is the subscheme of X supported in V(xu), and
all 25(0) are mutually disjoint. As a consequence, the scheme Z! £(0)
of length &¥ ";» 18 contained in the punctual scheme Xf; But the unions
Z(0) = LUZ;;(0) and X = UXE are equal, thus XF = Z!;-(O), so their
lengths af; and &f; are equal, proving T11. Statement T13 is clear from
this proof, since X35 k is a scheme of length a . concentrated in the point
z¥;, coinciding with the scheme Z J((]) Whlch is contained i m the vertical

V(zf;). This is the @f-th infinitesimal neighborhood of zf; in V(zF),
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and we are done. Now, statement T1 is an obvious consequence of T11.
Asserts T12 and T13 will help us to prove T2.

2. PROOF OF T2

We know from the proof of T1 that a point of—z’?E nZe=22n 322
corresponds to a scheme X = UXE, being X[, the af;-th infinitesimal
neighborhood of a point zf; € EX in V(:c”) In order to avoid cumber-
some notations, we assume only one af, ; # 0, say a, and take coordinates
u = +v=Tu", v = v' + /=Tv" for § in an analityc neighborhood of

=CyNn Cu as origin, say £ € C N C (It will be essentially enough
to prove our claim in this case, as we will comment at the end) Fix
for simplicity the value ¢, for instance ¢ = 2, and, from now on, drop
indexes i, j, k, in our previous imitations. The oriented cycles C' and ¢
are parametrized near z by differentiable functions

o2
C:u=p(Ad,N) v= ¢(/\1,/\2) with (A1,)\2) R

(some open set of R?)

02
C:u= @(/\3,)\4) v = QE(/\3,A4) with (/\3,)\4) R
Recalling that both C,C meet transversaly at z with sign o = oy;

o ag" oy ay”
RSN A1 EES 2]
2&’ atpll a !! a !ll
_13A; Bx; B ax
det(’\l: /\2s ’\35 ’\4) - 3!“; ) _'2' Qir 33!';}
8ds  Trs  BAs  Bxs
asgl 8 1 M alé!”
Fr: Brs  BAs B
is nonzero of sign o, when evaluated at Ay = 0,..., A = 0.

Consider the open neighborhood H C Hilb*5 of X parametrizing
schemes Z C U of length a of ideal

(u—)u'a—lva—l ..o 1Y - o, (U_ VO) B '(U_ lVﬂ-—l) (_:(E[u,v]
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for some complex numbers vy = ¥ ++/~1vg, ..., Va_1,H0,- -, fa—1 thus
all null in case Z = X (Caution: this is not a chart of U since the same
Z is defined after permuting vg,...,¥a—1)

Observe Z E.%-z ZN I(} if and only if

Vp = ... = Vg1

o2
{#o = (A1, ), o = ¥(A1,Az) with (A, A2) ER

and Z € Z2 if and only if, for some £ € {0,...,a — 1} it is

o2
{[.LQ = (,5(/\3,)\4), vy = QE(A3,/\4) with (Ag,);) eR
Ho = ... = }q-1

ol o
We now define for € € R near zero, a scheme Z,CH continuous defor-
0% o -

mation of Z,=2. An element Z e%: is an scheme of ideal in C[u, v]

(e = po) — pa-1(v — )"~ — ... — p1(v — w0},
(v—wo)(v—vp —€)(v—vp—2€¢)...(v— vy — (& — 1)¢))
with complex numbers jq,...,tq—1, V0 satisfying, for some £ € {0,...,
a—1}
Ho = (P()\l’ ’\2) - ”u—l(ff)aul T Juflee
ol
vy = 1,b(/\1,)\2) — e with (/\1,)\2) cR

ol

o2
Since there are a® possible choices for £,£ € {0,...,a—1} both Z_, 2 C
U intersect in a® schemes X;E = X°¢ or sets of distinct points

X = {0}y (v + ), (113 +26), ., (v + (2~ 1)e)}
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being

{“z(e(Ai: 5): V='§£’(Ai,)§—€€)
H = (P(A.'Eir i)v v = ¢(A§7A§ - ££)

for some A§, A, A, A§ € R*.

sl o
We consider the open subset H CH defined by imposing vp €
Bo,...,Va—1 € Ba—) where the By,...,B,—1 are open disks of € with
centers v,v+e¢,...,v+(a—1)e and radmm smaller than €/2, so to assure

they are mutually disjoint. Thus, schemes Z in II are just sets of dis-
tinct points Fy,..., P,—1, unambiguously ordered by the belonging of its

second coordinate to one of the disks, and thus the vy,...,v,_1;p0,...,
al

le—1 are an analytical chart of H . We switch for comodity to the ana-
lytical chart po,pt1,...,a—1;%0,01 = Vi —Vg,..., Pa_1 = Vg1 — Vg and
assume { = 0 after eventual reordering.

ol

In this chart of H the naturaly ordered cycle Z¢ is locally parame-

trized by A1, Az, pd, 0y, g, ph_q (recall pf +/—1pf = py, etc.. )
in the way

po = ©(A1y A2) = pra-1(€e)* ™1 = ... — p1(fe), p1 = pay- ey a1 = ot

Vp = '(,b(Al,Az) - EE, in = €,...,lja_.1 = (a— 1)6

and Z2 is parametrized by A3, Ay, 7], 0),..., 041,71 _, a8

Bo = P(Az, )1 =0,... -y =0

vo = P(A3,A4), 1 = P1,.. ., Fact = Paq
ol
Both intersect at the point X¢ of H and the determinant at this point
of the matrix of partial derivatives of the above expressions respect
the parameters is easily seen to coincide with det(A§, A5, A5, A§) which,

for small values of ¢, is nonzero and has the same sign ¢ as its limit
!
o

of -
det(0,0,0,0) as ¢ — 0. Therefore 220N H and 22N H have intersection
number oa? at their only point of intersection. Since this happens at
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% . .
the |c- | points of intersection of Z— with Z , their intersection number
is ga?|c - ¢| = a®(c - &).

It is now clear that, in the general case, taking coordinates uf;, vf; i

5 in
disjoint neighborhoods Ui"; of each xfj and repeating the same argument
for the open subset of the Hilbert scheme parametrizing subschemes
contained in U = UUE, we will end up with a determinant which is the
product indexed by 1,7,k (as made of diagonal blocks) of determinants

as the one we have ended up above, thus proving

[_Z_E] ’ [E&J = H(“fj)z(cij - E) = H(afj)z(cij . E,-j)l"'r‘f £0

ijk ijk

3. PROOF OF T3

Gottsche has found in {G] that, the dimension of the sum of the
Betti numbers of Hilb®$ is the coefficient of ¢4 in the series development

(I (=)

o) (1 ()"

Il

(o) (A (=)

Now, making Z = 1 in the lemma, [G] it asserts that

( ﬁ (1 —ltm)) = i::o (Zp(e,e— f))a:e

m=1 f20

where p(e, e— f) is the number of partitions of ¢ as a sum of e— f positive
integers (not necessarely distinct). Therefore, P(e) = 3, p(e,e — f)
is the number of partitions of e as a sum of positive integers. On the
other hand, it is clear that

(j:[lu + tm)) = f: Ple]t®

e=0
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where Ple| is the number partitions of e as a sum of distinet positive

integers. Therefore, the dimension of H(Hilb%(§))q is the coefficient of
td in

(i P(e)tc) (i P[e]tc) § ( i P(e)t°)b2 ( 2: P(e)te) "

e=( e=0 e=0
oo 4 b
( > P(e)t°) = [T 1] P..;t=
e=0 1=0j7=1

where P, is P(ei;) or Ple;;] according i is even or odd. This coefficient
is

D AP, ey =d}
i i

i.e. the total number of elements of each or our two candidates to be a
base. Then by T1 and T2, we get T3 proved.

Remark. In fact we have found not only two, but four basis, the
other two being very similar to the former. Indeed, we might have
defined [?q‘] by taking elements Z € Z2 to be disjoint unions LIZ{‘J- with
each Z,fg- punctual and supported in a representant C{‘J— of the class ¢;;, all
of them different and mutually transverse. Analogously, we might have
defined [Eaj by taking Z = UZE € Z¢ so that Z; is vertical intersecting
in just one point a representant C; ; of &;; (the same representant for all
k=0,...,7i;}). The argument with these two new candidates - obviously
of the same cardinality as the two old ones - would have been analogous.
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