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ABSTRACT. We give some approximation theorems in the Whitney topol-
ogy for a general class of analytic fibre bundles. This leads to a classification
theorem which generalizes the classical ones.

INTRODUCTION

Approximation theorems have been a fundamental tool to prove
relevant results in real geometry, as, for instance, Nash conjecture ({T5])

and classification theorems for real analytic bundles ({T1], {T2], [T3]).
They assume a particularly expressive form in the case of vector bundles.

In this paper we give approximation theorems for sections of a
more general class of vector bundles over a coherent real analytic space:
namely vector bundles that, in general, are not locally trivial.
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In fact the results are obtained for coherent sheaves and we come
back to bundles via duality theory (§6).

First we define the Whitney topology on the set of sections of a
coherent sheaf 7 (§1); then (§2 and §3) that is dense in the set of sections
of the sheaf F ® £x is the sheaf of germs of smooth functions.

As an application we get approximation for smooth solutions of
analytic linear systems: more precisely we prove that if an analytic
linear system ) anx(z)yx = ga(z), defined on an open set U C R",
admits a € solution ¢, then in any neighbourhood B, of ¢ in the
Whitney topology of C'°(U)? there exists an analytic solution of the
system.

Approximation theorems can be stated also for sheaf homomor-
phisms. We prove that the set of isomorphisms between two coherent
sheaves F and G is open in Hom (F,G), so, again by duality, we get a
Grauert-like theorem for generalized vector bundles.

Finally in §5 we consider the same problems in the algebraic context
and we obtain similar results with some obvious modifications.

1. THE WHITNEY TOPOLOGY FOR SECTIONS OF A
SHEAF

Let X be a paracompact, locally compact space and F = {Fy, ¥}
be a sheaf of real vector spaces; so, for any A C X, the set ['(4, F) has
a structure of real vector space and the restriction maps are linear.

Definition 1.1. A local system of seminorms L in F is given by
the following data:

(1) A locally finite open covering U = {Ur}ren of X by relatively
compact open sets.

(2) For any compact set K C Uy, for any open neighbourhood U of K
and any natural number p, a seminorm || ||’;(,A (depending on )
defined on I'(U, F) with the following properties:

a) If 1 € T(U1, F), 12 € (U2, F) and vy = rg"yg for an open
neighbourhood U of K, then for any p

U
”')’1“?(,)\ = H'YZII:IJ{,A = ”’"Ul'h”?(,,\
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b) If K C Uy N Uy, for each integer p there ezist two positive
numbers o and B such that for each v € I'(U, F)

eyl 5 < Ml x < BlliTks

¢) If K = |J K; is a decomposition of K as finite union of compact
=1
sets, then for each v € T(U,F) and each p

ik = sup [llk; s

i=1,...,

In particular if K C K' C Uy then [|y|% 5 < 1715
d) IfU D Ux then sup |}l \ < o0, for any v € T(U, F).

KCUy
K compact

Let now K be any compact set in X and suppose K N U = 0 if A
is different from Ap,..., A,

Definition 1.2. For any vy € I'(U,F) with K C U we define

¥l = sup  sup |95,
t=1,...,g HCUy nK
H compact

Property d) of Definition 1.1 ensures that |||/ < oo.

Definition 1.3. Let U C X be an open set. The weak topology
defined by the local system of seminorms L for T(U,F) is the topology
having the family

Uk pe = {y €T, F) | Ik <& K compact set, K C U}

as a fundamental system of neighbourhoods of 0.

Remark 1.4. The restriction maps 7y are continuous with respect
to the weak topology.

Now we are ready to define the Withney topology, as usual, as a limit
of the weak topology.
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Consider a local system £ of seminorms on the sheaf F. Let I/ ¢ X be
an open set.
Take:

(1) An exhaustive sequence of compact sets

K={K}en KiCKiyy |JKi=U,

(2) A sequence M = {m;};en of natural numbers,
(3) A sequence £ = {¢;};en of positive numbers.
Then:

Definition 1.5. A fundamental system of neighbourhoods of 0 €
(U, F) for the Whitney topology on I'(U,F) is given by the sels

UE e ={7ETWU,F) | Yn sup [|° . <&}

p<my, K,—-Kn.

Remarks 1.6.

1. The weak topology can be given by a countable family of seminorms,
namely || {|% for any exhaustive sequence of compact sets. Hence
the weak topology is induced by a metric. This is not true for the
Whitney topology because the family U}C“" M, is not countable and
does not have any countable cofinal subfamily.

2. If X is compact then the weak and the Whitney topologies coincide.

Definition 1.7. Two local systems of seminorms over X

£={U}h1 Ik} and £ = {UL L] Ik x )

are said to be equivalent if for each compact K C X and any p there
erist two positive numbers a, 3 such that

a(llvlik)e < (Uillk)er < BUMIIR ).
for each vy e I'(U, F), with K C U.
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Lemma 1.8. If £ and L' are equivalent, they induce the same weak
topology and the same Whitney topology on T'(U,F), for any open set
UcX. '

Proof. It is clear by the definitions. ®

In the following we shall omit the restriction maps when there is no
risk of confusion.

Examples.

(1) ¥ U C R" is an open set, we have the classical seminorms for
functions in C°(U) or in C¥(U)

which give to C*°(U) and C*(U) the usual compact open topology
(or weak topology) and Whitney (or strong) topology.

(2) Let (X,0x) be a reduced real coherent analytic space. We can
find a locally finite open covering {Ux} of X such that for each A
there exists an isomorphism j, : Uy — X, where X is a closed
real analytic subset of an open set Q5 in IR**. The isomorphism j,
induces a surjective map 7 : C¥(,) — T'(U,,Ox) which is the
composition of j;l with the quotient map. So for each K C U, and
each f € I'(Ux,Ox) we can define '

& f(21,...,%n)
gz, ..., 0%

“f(ml}“-smu)i I}J{ = sup Sl;{plf(z)l’ sup
K
Jit..+in=ji<p

IFll% = inf |lgll?
K QE‘F;I(” (K}
By this local system of seminorms we can define the weak and the
strong topology on I'(U,Ox) for any open set U C X.

If X is not coherent we can extend any analytic function on a local
model to a ¢ function on 25 and then use €™ seminorms.

(3) Let (X,Ox) be a reduced complex analytic space and F be a co-
herent sheaf of @x-modules. Then we can find an open covering
{U,} of X by holomorphically convex open sets and for each A a
resolution of F on U,
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(5)
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OE’,\ — ng — }‘U,\ — (.

It induces a surjective map

8: T(U,0%) — [(U,F) — 0

for each open Stein set U/ C U/5. Hence for any compact set K C U
we can define

7l = inf {sup(|71f+---+l'rq|)}
F=( ) K

=(11,007g

With this local system of seminorms the weak topology gives to
T(U,F) a structure of Frechét space (see [G.R] Chap. VII).

Let now (X, Ox) be areduced coherent real analytic space and F be
a coherent sheaf of O y-modules. We can take the same definition as
before; namely, if {U/»} is an open covering of X such that on each
U, we have a resolution of F, we can define for K C U compact,
p€ N and v € I'(K,F)

vl = _ inf  (lnllk + - + Halik)
¥=(71."7q)
B(%)=~
In the same situation as (4) we can define
FR =F Rox €x

where £x is the sheaf of germs of C°-functions on X *. Since F
is coherent, the stalk F, is generated by a finite number of global

of T,

*AmapP: X = Ris C®iffor any T € X there exist a neighbourhood W
an embedding Wz- — IR" asz a locally closed analytic set and P1w, extends to a

smooth function on some neighbeurhood of Wi in R™. If S‘P is the set of such extensions

we can define, for a compact set K - Wx.

P _ 3 f A 1P
|l ;ggwllwllx
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sections (theorem A). Hence we can construct an open covering
U = {U,} and for each A we can find fl",...,fq"(,‘) in ['(X, F) such
that they generate F; as Ox ;-module for each z € Uj. Let v
be an element in I'(U, 7). Then we can write (not in a unique
way) v = Ef(:;) a; f} with a; € C*°(U,). In fact this can be done
locally by definition of 7°° and then can be globalized by using a
C*® partition of unity. For K C Uy and p € N we can define

7(})
P — H e
I =, i, (35 el

1=
(The inf is taken on all the system of coefficients ay, ..., de-
scribing vy with respect to the chosen generators fy,..., fo(»)). This
is a local system of seminorms: we shall always use this one to de-
fine the weak and the Whitney topology on I'(U, 7*°), if we do not
specify any more.

Remark 1.9. The morphisms between coherent sheaves of Q-
modules induce continuous maps between the spaces of sections, (see
[GR] for the complex case: the same proof works in the real one).

2. A WHITNEY APPROXIMATION THEOREM

This section is devoted to the proof of a Whitney - like approxi-
mation theorem for smooth functions defined on a real analytic space
X.

If X is coherent we shall get in the next section a simijar result for
sections of any coherent sheaf of O x-moduls.

Qur proof is similar to the classical one that can be fournd in [W],
[N], [T6], [T8). Under the hypothesis: X is an analytic submanifold of
R® and F a subsheaf of . Theorem 2.9 is proved in [BKS], where the
Whitney topology is called Very Strong Topology.

We shall use the following standard notations for z € R™ (or C"),
@ a C* function on R™ (or €*), a = (a1,...,as), 6 = (B1,...,0.) in
N":
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ol =1 + -+ ap al=o! - ap,!
a . .
B =Wﬁ“@ (if B <ajfor j=1,...,n)
) ]
ol = maxsleil il = ( Slesf)
j
ayttan
% = 3?1 R S D%p = _rzxil_..ar:'?

Let (X,0Ox) be a real analytic space, not necessarily coherent; we sup-

pose that (X,Ox) is the real part of a reduced complex analytic space
(X,05%).

This means that there exists a complex analytic space (X »Ox)
which is defined over R, and an antiinvolution ¢ : X — X such that
(X, Ox) is isomorphic to the real analytic space X' = {z € X : o(z) =
z} endowed with the structure sheaf Oy consisting of all o-invariant
germs.

In this situation X has in X an invariant neighbourhood U = o(U/)
which is a Stein space. So, in the following, we shall assume that (X, O %)
is a reduced Stein space defined over R. In the case when the real part is
coherent we can assume that (X,0y) is its complexification (see [T10]
and [T11]).

Consider three compact sets

[ ] o
HiCH,CHyCHsCHiCX

Definition 2.1. A complez neighbourhood U, of Hy is called a
vertical neighbourhood, relatively to H,, Hj, if for any O function
w: X — R such that supp ¢ C Ha, |y, =0, and any ¢ > 0 and
p € N, there exists an analytic function g on X such that:

(1) llg — ol <
(2) g is the restriction of a holomorphic function G : X > @ such that
|G(2)| < € for z € U,

Remark 2.2. In the above situation, if H; ¢ U/ C Uy, U} is also
a vertical neighbourbood.
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Lemma 2.3. Let (X,04), Hi, i=1,2,3. U1 as before. Let
(17,0,-,) - (X ,O0x), be a complez analytic map. Assume f and
(Y,05) are defined over R,(Y,Oy) is the the real part of (Y,0y) and
consider f = fly. Assume there is an open subset Y’ C Y such that f
defines an isomorphism between Y' and a closed analytic subset X' =
f(Y') of an open set W D Hjz of X. Define H] = f~'(H;n X') for
i=1,2,3. Then J~ 1(Ul) is a vertical nezghbourhood of H{ relative to
HmH(i

Proof. Let ¢: Y — R be a C™ function such that supp ¢ C Hj,
and ¢y = 0. Clearly the function 9 = ¢ o f~ “1: X' 5 R can be
extended to a C* function on X (denoted also by ) such that supp %
C Hs and 9¢|p, = 0. If G: X — R is an analytic approximation of ¢
and its holomorphic extension G is small on I, then Go f approximates
¢ and is “small” on f~1({;). m

Now we define vertical neighbourhoods for R", considered as the
real part of C".

Lemma 2.4. Let Q be an open set in R™. Let H;, i = 1,2,3, be

three compact subsets of Q such that H; CI‘;’,-H for 1 = 1,2. Define
6 = d(H1,Q2 — Hy). Then for any a € (0,1) the set:

={zeq": for any y € R" — Hy, |R(z - y)| > ab}

is a vertical neighbourhood of H, relative to Hy, H3, (where R( ) means
the real part of { )).

Proof. Let ¢ : 2 — IR be a C* function such that ¢z, = 0 and
supp ¢ C Hs. For any A € (0,+00), we define

Ii(¢)(z) = eA¥™ [R o(y)exp {=Allz - |[*}dy (1)
where ¢ - [p.exp (—||z?||)dz = 1, that is ¢ = x=in,
We have

D)) = A" [ e - vlexp{- Moy @)



26 F. Acquistapace, F. Broglia and A. Tognoli

and hence, for any @« € N®
D(I(9))() = eAd” /R (D*¢)( — y)exp{=Allyll*}dy =

= cAs™ LH(D“W)(y)exp{—AIIw — yll*dy}

From (2) and (3) we deduce:

DH(IN(@))z) - D (p) (=) =

(4)
At [ (D°%)(y) - (D"e)aNexp{-lz - yll'}dy
Rn
and
[D(Ix(p)Nz) = D(p)(@)| =
= leprdn o — (D*p)(z)) exp{-Al|lz — y||*}d
/” o P7ON) = (%)@ exp{=Alle - Yyt
+eadn [ ((D*0)(y) — (D*p)(z))exp{-Allz — y|[*}dy
llz—yl|26
Relation (5) proves that for any p € N we have
Jim [|1(¢) - ellf;, =0 )

In fact for any £ > 0 we may suppose 6 small enough to ensure that the
first integral in (5) is less than £. (We use the fact that ¢ has compa,ct
support and hence D%y is uniformely continuous).
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Given the positive number §, we may find A € R big enough to
ensure that the second integral in (5) has absolute value less than £
(because of the nature of the “bump function” exp{—A|lz — y||*}).

So I)(y) approximates ¢ in the compact-open topology.

Coming back to the definition of (), we remark that the vari-
able z occours only in exp{—A||z — g||*} which is holomorphic on C".
Moreover ¢ has compact support, hence we deduce that the function

nE@=ad [ p@ep{-Az-dlfly ()

supp ¥
is holomorphic for any z € C", and in particular is analytic on .

To complete the proof it is enough to verify the following: if @5, =
0, then for any € > 0, a € (0,1) there exists a Ag such that if A > Ag,
we have:

(D(p))(2)l <€ (8)

for any z € U,

Fix a€(0,1): there exists o >0 such that for z€ U, ,if
d((R(z), H1) < o, then ¢(R(2)) = 0.

This implies that for z € U, N R®, we can evaluate (Ix(p))(z) by
the formula

(In(@))(z) = eAd” / eexp{-Mlz - 4P}y (9)

supp w{||lz—yl|>o}

and, as remarked before, for any ¢, if A is big enough, then |(Iyp)(z)] < €.

Finally note that, since in (7) the variable z occours only in an
exponential function, only its real part is significant for the norm of
I5(¢)(2); we use here the fact that |e2+%®] = |e3|).

The last remark ensures that the inequality |15 (%)(2)} < € holds for
any z € U, and this completes the proof. =

Now we generalize Lemma 2.4 to real analytic subsets of IR".
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Let X C 2 C IR" be a real analytic set in the open set {2 of R".
We shall suppose X to be the real part of a complex space X C Q CC"
defined over R.

Under these hypothesis we have:

Lemma 2.5. Let H;, i = 1,2,3 be three compact subsets of X such
that H; CHiyy, H: = Hi, 6 = d(H,, X — Hy), a € (0,1) and

Us={z€X: |R(z-w)| > ad for any w € X — Hy)}

Then, for any a € (0,1), U, is a vertical nezghbourhood of Hy, relatively
to Hg, H3

Proof. For i = 1,2,3, let us define:
o
= {z€R" - (X—H;): thereexists y € H; such that
d(m, y) < d('y:BHi)}a
where d is the usual metric in R". It is easy to verify that:
(1) A;is open and A; N X :I},-.
In fact A; is union of the balls B(y, p,) with radius p, = d(y, 0 H;)

for y EI},-. The condition A; N X =I},- follows from the definition
of A,‘.

(2) A; is compact and A; N X = H;.

e
This equality is an easy consequence of the hypotesis H; = H;. The
compactness follows from the fact that A; is closed and bounded.

(3) Ai C Aigr, i=1,2.
This inclusion is a consequence of the hypothesis H; CHyq; it
0
implies that d(y,0H;) < d(y,0H+1) if y €H,.

Let now ¢ : X — IR be a C™ function such that supp ¢ C Hs, ¢lg, =0
and fix o €(0,1). We claim that there exists a € extension @ :
R" — IR of ¢ such that supp & C A3, and &[4, = 0.

The existence of such a ® can be proved using a partion of unity or
as a particular case of the Whitney extension theorem (see [W]).
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Take o' € (0,1) and let &' be the distance d(8A1, A;); from Lemma
2.4 we get that the set:

AY = {ze€C: |R(x—y) > &' for any y € R® — A3}

is a vertical neighbourhood of A; relatively to A,, As.

This implies that for any £ > 0, p € N and o' € (0,1) there exists
an analytic approximation G : R"™ — IR such that:

2) 1IG - @l <e

b) G is the restriction of a holomorphic function G : €* — € such that
|G(2)| < eif z € AL .
It is easy to verify that we can choose o' in such a way that

Uo C A¥ and hence G|; gives the approximation of ¢ : so Uy is a
vertical neighbourhood for Hy, relative to Hy, H3. N

Definition 2.8. If H;, i = 1,2,3, are compact sets satisfying the
conditions of lemma 2.5 the neighbourhoods U, of Hy defined above shall
be called the canonical vertical neighbourhoods of H,.

Vertical neighbourhoods can be defined also for real analytic spaces
which are not subsets of some R".

Let (X, Ox) be a real analytic space and assume it is the real part
of a Stein space (X,0%).

Let { K, }nen be a sequence of compact sets in X with the following
properties:
"o [}
(1) Kp, = K, and K 41D K, for any n.
(2) UK, =X.
n

For any p € N consider the compact sets K,, Kpi1, Kpp4; they shall
play the same role as H,, Hs, H3 before. We wish to prove the following

Lemma 2.7. For any p € IN there exists a vertical neighbourhood
Ky of Kp in X, with respect to Kpy1, Kptq in such a way that Kpp1 D
K, for any p € IN.
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Proof. From the general theory of analytic spaces we can easily
deduce that for each p € IN there exists a holomorphic map f, : X —» ">
such that

(1) f, is defined over R,

(2) fp defines an isomorphism between an open neighbourhood 0, of

K,14 in X and a complex analytic subset V, = f»(U,) of an open
set O, of C7»,

(3) for any p, ﬁp-]-l D ﬁp,
(4) d(fp(8Ky), fo(0Kp11)) = 6> 0.

In fact, from [N] we know that for any compact set H C X there exists a
holomorphic map ¢ : X — @™ for some n € N, which is an isomorphism
onto its image when restricted to a suitable open neighbourhood of H.

If H C X, it is easy to verify that g can be chosen defined over R,
Finally condﬂ:lon (4) is obtained by multiplying f» by a suitable positive
constant.

Define now g, = (fl, ,fq) : X —m+ttna Denote by 171 the
canonical vertical neighbourhoods in Vi = A1(Th) of Hy = = fi(K 1) with
respect to Hy = fl(Kg) and Hs = fi(Ks) and define K¢ = fl o
using Lemma 2.3. it is easy to see that, for any @ € (0,1), K is a
vertical neighbourhood of K, in X with respect to Ky, K.

Now we define the vertical neighbourhoods of K relative to K3, Ks.

Consider the map g, = (fl, fg) X — Qr1tn2; g, is an isomorphism
on a neighbourhood of K¢ in X, s D Uy and V3 = §a(U2) is a complex
analytic subset of an open set {13 of €***"2, Take the compact sets
H} = g3(K,), HE = go(K3), HS = g(Ks) and let U2 be the canonical
vertical neighbourhoods of H? with respect to H3, HB in Va = §2(02).

_ Define K¢ = §;1(U2): as we remarked before, for any a € (0,1),
K% is a vertical neighbourhood of K3, with respect to K3, Ks, in X.

In a similar way we define the I?f‘ , K2,... as vertical neighbour-
hoods of K3, K4,.... To complete the proof we have to verify that

K4y D K7 (*)
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It is enough to verity (*) for p = 1, the general case follows from the
same argument. Recall that:
U ={z € fi(T1): |R(z — w)| > ab
for any w € fl(&l n (X - Kg))}

U3 ={z € 52(0h) : |R(z - w)| > ab
for any w € _t}g(f]z N{X — Kg))}
and K = fr(Uf), K% = 57" (UF).
We can easily remark the following:

a) if z,y€X then d(fi(2),/i(y)) < d(G:(c)G2(y) and
[R(fi(z) - fi(¥))| £ IR(G2(z) — G2(¥))]-
b) if z € Iy then d(ﬁg(m),ﬁz(affg)) < d(ﬁg(m),ﬁz(aKa))

From the hypothesis § = d(f,(8K1), 2(8K2)) = d(f2(8Kz),(8K3)) and
these two remarks, (*) follows. ®

Note that Lemma 2.7 is trivial for X = R": in this case we have
the canonical vertical neighbourhoods.

Definition 2.8. A sequence {RP}pEN of neighbourhoods of com-

pact sets as in Lemma 2.7 shall be called a consistent sequence of vertical
neighbourhoods.

_ Theorem 2.9. Let (X,0x) be the real part of a complez space
(X,0%). Denote by £x the sheaf of germs of C™ functions on X.
Then, for any open set U C X, I'(U,Ox) is dense in ['(U,Ex) for the
Whitney topology and hence for the weak topology.

Proof. Consider a sequence {K,}nen of compact sets in X such

o o
that, Kn+13 Kn, UKn = X, K,=K,.
n

Let { I'i'n}n eN be a consistent sequence of vertical neigbourhoods

as defined in Lemma 2.7; we recall that for each p, I?p is a vertical
neighbourhood of K, with respect to Kpyq, Kppq.
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By a partition of unity we may construct a sequence of C* functions
wp: X = R, p2>0,such that

a) supp ¢p C Kpi2

b) ¢p(z) = 0 in a neighbourhood of K,_;

0

¢) ¥p(z) = 1 in a neighbourhood of L, = K,y 1— K.

Take a C* function v: X — IR, choose a sequence {¢,} of positive
numbers and a sequence {m,} of natural numbers: we have to find an
analytic function ¢ : X — IR such that for any p > 0 one has

llg = IZ; < ep (1)

We can assume myyq > m, for any p > 0. Define, for p > 0

Mypr = 1+ lloglI72,, (2)
and choose positive numbers 6, in such a way that
1
26541 < 6pand Y 6, Meyn < S (3)
92p

Now consider the compact sets

H1=Hz=@, H3=K2.

By definition of a vertical neighbourhood we can find a holomorphic
function go : X — €, defined over R, such that

o

llg0 — woYl1%° = ligo — YH&® < llgo — w07l < bo.

Using the fact that K p is a vertical neighbourhood of K, with respect to
Kot41, Kpp4, we may find inductively a sequence of holomorphic func-
tions {g,} on X, defined over R, such that:

llgr — ep(r— 90— 91 — - — go-1 K2, < 6p (4)

lgp(2)| < 85 if z € Kps (5)
(Condition (5) is empty for p < 3). From the conditions on ¢, we deduce
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v =Y allrr <& (6)
=0
llgsllx?_, < & (7)

If in (4) we replace p by p + 1, we obtain

» P
lgorllZ? < llepr1(r = D_ gL + llgpsr — eprr(y = D g IT”
i=0 =0

P
< ||’Pp+1”K,+s 1y = Zgi”?: + é\1ﬂ+1 < Mp+16p + ‘5p+1
i=1
(8)
But (7) applied to g,41 gives
lgot1llx” < p+1, (9)

since my, < Mmpyq. Finally, from (8) and (9), we deduce

”9?+1”K,+1 < Mpy16p + 28541 < 26, Mpy4

and hence

1l S U aile,, < SllallE,, <23 6iMins < 565

i2p i2p i2p i2p
(10)

Relations (6) and (10) prove that the series ) g; converges on X to a
C* function ¢ which approximates v as wanted.

Moreover condition (5) proves that the series 3 g; in fact converges
as a series of holomorphic functions on the union |J K, ¢ X.
P
Since the space of holomorphic functions on a complex space is com-
plete (see [GR]), the function g = 3 g; is the restriction of a holomorphic
function, and hence it is analytic. The theorem is proved. W
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Remark 2.10. Theorem 2.9 holds when (X, Ox) is the real part of
a complex space. No hypothesis on the coherence or on the dimensions
of the Zariski tangent spaces are necessary.

3. APPROXIMATION FOR SECTIONS OF A SHEAF

In the following (X,Ox) will be a real coherent reduced analytic
space; no hypothesis on the dimensions of the Zariski tangent spaces are
required.

Theorem 3.1. Let (X,Ox) be a coherent real analytic space, con-
sider a coherent sheaf F of Ox-modules and denote by F™ the sheaf
F ®oyx £x. For any open set U C X, I'(U,F) is dense in T'(U, F°°) for
the Whitney topology, hence also for the weak topology.

Proof. Let (X,OX) be a complexification of (X,0x). By a
theorem of H. Cartan, there exists a neighbourhood (hence a Stein
neighbourhood) of X in X and a coherent sheaf F on it, such that
Flx = FRoy O 3. (see [Ca] for the case X C R™; the proof is the same
in the general case). So in the following we shall suppose (X, O4) to be
a Stein space and F defined over X.

Q
Take a sequence {K,}nen of compact sets such that K, = K,,
Q

K, CKunp1, UKn = X and let {f( n} be a consistent sequence of vertical
neighbourhoods in X. More precisely we assume that for any p K, is a
vertical neighbourhood of K, with respect to Kpy1, Kpia.

We know from Cartan’s theorem A, that for any p € IN there exists a
finite set of global sections of F, say +7,... ,*yﬁp, such that they generate

the stalk F,, for any z in an open neighbourhood Dp of K, in X.
We can assume yP}x € ['(X,F)for 1 =1,...,n, and for any p.

Take now a C* global section ¢ € I'(X,F*). Using a suitable
partition of unity, we can find C'* functions {a}; jen on X such that

(1) for any j supp af CKjpa~Kj_qfori=1,...,n;

@ o(z) = 3 3 al(z)ri(z)

i=11=1
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(The family { supp a{ }is localiy ﬁnjte, 50 (2) makes sense). If we denote
$; = T, alv] we can write 0 = Y2, .
We have the following remarks.
(1) Take 71,...,74 € T(X,F) and a sequence of sections of F*
Yy = zq: a™y;. Then, by using norms on I'( X, F) as in exemple (4)

i=1
of section 1, it is not difficult to prove that lim ||af — a;l|g = 0
=00

q
implies lim ||v, — >_ aiyl|® = 0.
i+ 00 i=1

(2) Remark (1) implies that it is possible to approximate on compact
sets sections of F°° by sections of F. Moreover if vertical neigh-
bourhoods are defined and the original section has the required
properties, the section of F extends to a section of F which has
small norm on the corresponding vertical neighbourhoods.

(3) The space ['({7,F) is a complete space (Example (3) of Section 1).

Now we can repeat the proof of Theorem 2.9 almost word by word. It is
enough to replace @,(y — go — -+ — gp—1) by the section 1,, and to use
seminorms for sections instead of seminorms for functions. This proves
the theorem. ]

Consider now a closed coherent subspace ¥ C X. The structural
sheaf Oy is defined by the exact sequence of coherent sheaves:
0—-F - 0x =0y —0
If F is a coherent sheaf of @ x-modules we can define the restriction of
F to Y in the following way:
Definition 3.2. Fly = Oy Qo F

From the above exact sequence we deduce the exacteness of the
sequence

Jy oy F= F 2 Fly =0

where r is the restriction map; its kernel is the image in F of the sheaf
Jy ®oy F (the sheaf of germs of sections vanishing at Y). In this
situation we can give a sort of relative version of Theorem 3.1.



36 F. Acquistapace, F. Broglia and A. Tognoli

Let g be an element in ['(Y,F|y). Denote by I'(X,F), the set of
sections which extend g to X. This set is not empty because of Cartan’s
Theorem B. Denote in the same way by I'(X, F*°)}, the extensions of ¢
to X in 7. Then we have:

Theorem 3.3. Let Y be a closed coherent analtic subset of the
coherent analytic space X and g € I'(Y, Fly); then. I['(X,F)q ts dense in
I'(X,F®), for the Whitney topology.

Proof. Let ¢ be an element in I'( X, 7*°),. Given a neighbourhood
B, in the Whitney topology we have to find & € B, NT'(X, F),.

Let G be an element in I'(X,F);. Then (¢ — G)ly = 0 and so
replacing ¢ by ¢—G we can suppose g to be the zero-section of I'(Y, F|y).

By considering the exact sequence:

Ty ®ox F° 5 F° 5 0y ®o, F© — 0
we see that ¢ is in the image of Jy ®o, F* = (Jy Qox F) Qox £x.
Let 4 € I'(X,Jy ® F*) be a preimage of 9. By Theorem 3.1
can be approximated in the Whitney topology by a section f of

I(X,Jv ®ox F). Then B(f) approximates ¢ because § is continuous
and (f)ly =0.

Suppose now to have a sheaf homomorphism between two coherent
analytic sheaves of Ox-modules «: F — G.

Then one has an exact sequence

0-skera—sF3¢

Since £x is flat over Ox we get an exact sequence

0 — (ker a)® — F*& =N G

Remark 3.4. Any exact sequence of Ox-modules is also locally
an exact sequence of O,-modules, because X is locally isomorphic to
an analytic subset of some IR®. For X C IR",£x is a faithfully flat O,,-
module (see [M] Cor.1.12 pg 88); so, by definition of £x, a is surjective
if and only if a® is surjective and o(F) = a®(F)NG.
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Remark 3.5. If the sheaf F is Oy, then the sheaf Ty =
Jy ®ox £€x =~ Jy - £x is the sheaf of germs of C* functions vanishing
at Y, because Y is coherent. ([M] pg.95)

Theorem 3.8. Let X be a coherent analytic space, let F,G be
coherent sheaves of Ox-modules and a : F — G be a sheaf homomor-
phism; suppose g € I'(X,G) be such that ¢ = a™(n) with n € [(X, F*®).
Then in each neighbourhood of n for the Whitney topology there ezists
fET(X,F) such thata(f) =g

Moreover if Y C X is a closed coherent subspace and 5|y is in
I'(Y, F|y), we can find f such that f|y = g|y

Proof. By Remark 3.4 ¢ = ¢*(7) is the image of some element
h € T'(X,F). Then 5 — h € ker a® and, if 5|y is analytic, the same is
true for n — hly.

So we can apply Theorem 3.3 to the sheaf ker a and find Ay €
I'(X,ker ) very close to 7 — h and such that, ki|y = n — h|y. Hence
f = h+hy is very close to 7, o f) = g and, if 7|y is analytic, fly = 5]y
|

As an application of these results we obtain some approximation
theorems for solutions of analytic linear systems.

Let U/ be an open set in R® and X C U be a coherent analytic set.
Consider an analytic linear system on U:

q

Zahk(z)yk =gn h=1,...,p (*)
k=1

where api,gn € C¥(U) = F(U,0). Then we have the following:

Theorem 3.7. If (*) has a C™ solution, i.e. there exists ¢ =
(‘Pl:- - ,@q) € COO(U)q such that

g
Eahk(z)gok =gp(z) h=1,...,p
k=1
then for each neighbourhood B, of ¢ in the product Whitney topology of
C*®(U), there exist a solution f = (f1,...,f;) € C*(U)? of (*) that
belongs to B,,.
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Moreover we have:

(1) if X C U is a coherent analytic set and ¢y, € T(X,0x) for any
k, then we can take

Frix = Prix fork=1,....q

(2) if for some l < q, ¢1,...,1 € C¥(U) then we can take fi =
®1,--- fi = @i}

Proof. Consider the sheaf homomorphism & : 0% — OP defined
by the matrix {apk).

If each gn is the zero function the first statement is Theorem 3.1
applied to ker a.

We have (g1,...,9p) = a¢®(@1,...,%¥,); by Remark 3.4, ther (g1,
ooy gp) € D(U,Im a). So the first statement and (1) are consequence of
Theorem 3.6.

To prove (2) consider

i

9;, = Zahksok-

k=1

This is an element in T'(U, ), so we have a system of the same type as
(*) given by

g
> ek =gagh h=1,...,p (+4)
k=I1+1
and for any solution (¥r41,...,%,) of (**), (¥1,---, @6 Y1e1,..-,%,) is
a solution of (). So we reduce to the first statement. H

Remark 3.8. In Theorem 3.7 we can suppose (same proof) that
U is any open set of a coherent real analytic space.
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4. APPROXIMATION FOR SHEAF HOMOMORPHISMS

Let X be a coherent analytic space. If 7 and G are coherent sheaves
of Ox-modules, we know that the sheaf Hom(F,G) is also a coher-
ent sheaf (see [S]). Next proposition gives the relations between
Hom (F,G) ®oxEx = Hom (F,G)*®° and Hom (F*>,G™)

Proposition 4.1. Homg, (F*,G%°) >~ Homo, (F,G)*®

Proof. It is enough to prove the statement locally, since we have a
natural map:

Homoy (F,G)™ — Homey (F,6%)
Step 1. The thesis is true for F = O% and G = 0%.

In fact a sheaf homomorphism between 0% and 0% is given by a
P X ¢ matrix whose entries are analytic functions on X.

A similar result is true for Homg, (£%,€% ). In other words we have:
Homo, (0%,0%) = O "Home, (€5 ,£5) =~ £
O;'Xq ®0x (‘:X — S;XQ

Step 2. The thesis is true for F = O% and general G.

Take a local resolution of G:

0y -0y —-6G-0

and apply the functor Hom(O%,—-). Each homomorphism &% — G
can be lifted (see Proposition 6 of Chap. VIII in [G.R.]) to a morphism
O% — 0%, hence we get an exact sequence

Hom(O%,0%) » Hom(0%,0%) — Hom(0%,G) — 0

Tensoring with £x; we get:

(Hom(0%,0%))™ = (Hom(0%, 0%))* — (Hom(0%,G))* — 0
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Doing the same but in opposite order (using again that homomorphisms
can be lifted), from

Ex -2 &y -G -0
we get
Hom(E%,E%) — Hom(ER, EL) — Hom(€%,6%°) — 0
The natural map Hom(0%,0%) ® £x — Hom(E%,E%) gives the fol-

lowing commutative diagram:

Hom(O%,0%)® Ex — Hom(0%,0%)®Ex — Hom(0%,6)®Ex — 0
i l i i
Hom(E%,E%) — Hom(E%,E%) -  Hom(€%,6°) — 0

The first two vertical rows are isomorphisms by step 1, so the third one
is an isomorphism too.

Step 8. The general case.

Take a local resolution for F

Oox - 0x—+F -0
Apply Hom(—-,G):

Hom(0%,G) — Hom(0%,G) — Hom(F,G) — 0

Tensoring with £x yields

Hom(O%,6)*° — Hom(0%,6)® — Hom(F,G)® ~ 0

Doing the same in opposite order yields

Hom(ER , F=) — Hom(E%,F*) — Hom(F>,G°) « 0
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But the natural maps:

Hom(OF, )™ — Hom(ER, F*) and

Hom(0%,F)® — Hom(£%,F*)

are isomorphisms, hence Hom(F,G)* — Hom(F*,G*) is an isomor-
phism too. ®

Now we want to study the set of isomorphisms in Hom(F,G). If
« is such an isomorphism, then we have an isomorphism Hom(F,G) —
Hom(F,F), obtained by composition with a~!, which is also an iso-
morphism. So we can assume F = G.

For each £ € X we can consider a minimal resolution of F in a
small neighbourhood U of z

LS OE S Fly—0
This means:

(1) ¥z is an Ox ;-module generated by p sections (a1,...,2,) and it
cannot be generated by p — 1 sections

(2) the kernel of ¢ : OF — F is a subsheaf of (O” generated by n
p-tuples of analytic functions.

If a: F — F is a given isomorphism, then (a(a;) = by,...,a{ap) = bp)
is another system of generators of F,. Then we have:

Lemma 4.2. o can be lifted to a morphism & : OP — OP (not in
a unique way) and any lifting is an isomorphism on a neighbourhood of
z.

The proof is a consequence of the following more general fact.

Lemma 4.3. Let (A,m) be a local ring and let M be an A-module
of finite type. Let p be the minimal number of elements in M generating
M over A. Then any A-homomorphism f: M — M can be lifted to
a homomorphism f: AP = AP. Moreover if [ is an isomorphism any
lifting f is an isomorphism.
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Proof. M is isomorphic to A?/N, where N is a submodule and
N C mAP, since p is minimal. If (v1,...,v,) is a system of generators
for M over A, f can be expressed (not in a unique way) as a matrix F
with entries in A; F': AP — AP lifts f. If both F and G lift f then
the columns of the difference F' — G are elements of N. In particular
if F = (fi;) and G = (gi;), then fi; — gi; € m for any 4,5. So, if f is
invertible and A = f~!, Flifts f and H lifts h, we have foh = id, hence
F - H = (§;; + m;;) with m;; € m. This implies that both det F and
det H are units in A: in particular ¥ is an isomorphism. R

Lemma 4.4. Suppose o : F — F is a sheaf isomorphism. For
each point z in X there exist a compact neighbourhood H, of z and a
positive constant £, such that, if §: F — F verifies |8 — o|l%_, then
B is an isomorphism on a neighbourhood of Hy.

Proof. Let & be a lifting of a on a neighbourhood U; of z. By
Lemma 4.2 we can suppose & to be an isomorphism on U,. Define
do = [det(a;;(=))]

We can find a compact neighbourhood H of z such that foreach y € H,,
one has

dy
|det(ai;(y))| = 5

Then for each matrix of analytic functions (b;;(y)) sufficiently near to
{aij(y)) we have

[det(b:5(y) ~ det(aii(w))] < 2

for each y € H,. This means that there exists &, such that, if
I8 —all%, < &z, then 8 has alifting (b;;(y)) such that [det(b;;(y))| > 5
for each y € H.; so (bi;(y)), and hence 3, is an isomorphism over a
neighbourhood of H,. ®

Corollary 4.5. For any compact K C X there exists a neighbour-
hood

V(K,e) = {8 € T(X,Hom(F, F))| I8 — (% <€}
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such that any # € V(K ¢) is an isomorphism on a neighbourhood of K.

Proof. Cover K by a finite number of H, and take ¢ = min{e;}
|

Finally we have:

Theorem 4.8. Let X be a coherent real analytic space and F,G be
two coherent sheaves of Ox-modules. Then the set

Is0o(F,G) = {p € I'(X,Hom(F,G))|F is an isomorphism}

is an open set for the Whitney topology.

Proof. As before we can suppose F = G. Let o be an isomorphism.
We have to show that Zso(F) contains a neighbourhood of a.

Let {K;}ien be an exhaustive sequence of compact sets. Define ¢;
as follows:

- €0 is such that if || — a||%, < €o then § is an isomorphism on a
neighbourhood of Kj.

- £y is such that if || —e||° . < & then 8 is an isomorphism on
1—Ko

a neighbourhood of K, — I;' 0

and so on.

Then {Kj,c;}ien defines a neighbourhood of & in the Whitney
topology, namely the set of 8's such that for any ¢

el . <e

i— MR-

For any 8 in such a neighbourhood, # is an isomorphism on a neigh-
[}

bourhood of Ky and on a neighbourhood of K;— K;_; for each 7. If all
the £; are small enough f is injective, hence 3 € Zso(F).

Theorem 4.7. The set of isomorphisms in (X, Hom(F*>,G*))
is an open set for the Whitney topology:
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Proof. The proofs of Lemma’s 4.2 and 4.4, Corollary 4.5 and The-
orem 4.6 can be repeated, almost without changes, with F°° instead of
F. =

Corollary 4.8. Let ¢ : F°° — G° be an isomorphim, then there
exists an isomorphism f: F — G such that f°° is an isomorphism and
arbitrarily close to ¢

Proof. It is an application of Theorem 3.1 together with Proposi-
tion 4.1 and Theorems 4.6 and 4.7 below. ®

5. THE ALGEBRAIC CASE

Let X C R be a real algebraic set. Denote by Rx the sheaf of
germs of regular functions on X and by Ox the structural sheaf of X
as real analytic set.

Definition 5.1. Let X be a complezification of X as an affine
variety: we say that X is almost reqular if for each z € X the germ X,
coincides with the analytic complezification of the germ X,.

Definition 5.2. A sheaf F of Rx-modules is called A-coherent if
it admits a resolution:

RJ}AR?XA.F—%-O

Consider the natural injection X — Spec I'(X,Rx): one can show
({T9]) that a sheaf F is A-coherent if and only if it eztends, of course in
a unique way, to a coherent sheaf F over Spec T(X,Rx); this extension
F shall have an important role in what follows.

Definition 5.3. An A-coherent sheaf F is called B-coherent if any
v € I'(X, F) extends to T( Spec T(X,Rx), F)

For an A-coherent sheaf of Rx-modules F denote by F° the sheaf
F BORx Ox.

Remark 5.4. If X is almost regular in particular it is coherent as
analytic space ([T7]); in this case Oy is a faithfully flat R x-module (see
[S] Cor.1 pg 11).
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If U C X is an open set, we can endow ['(U, F) with a local system
of seminorms by considering the usual weak topology on R(U) as in
Examples 2) and 3) in §1. Then we have:

Theorem 5.5. Let X be a real affine algebraic set and Y C X be
an almost reqular algebraic subsei. Let F be a A-coherent sheaf, then
I(U,F) is dense in I'(U, F) is dense in T(U,F°) in the weak topology.

Moreover if f € T(X,F°) and f|y = g € I(Y, Fly), then the set

I(X,F)y of regular sections extending g is dense in the corresponding
set ['(X, F°),.

Proof. It is the same as the proofs of Theorems 3.1 and 3.3 using
Stone-Weierstrass instead of Whitney approximation theorem. Remark
5.4 and the fact that F is A-coherent give us the necessary ingredients
to repeat the proofs. ®

Now consider a sheaf homomorphism a : F — G between two
A-coherent sheaves of R x-modules. We can define o® : F° — G° by
tensorizing with the sheaf Ox. By Remark 5.4 we have

a®(F°)NG = o(F)

and hence the following result:

Theorem 5.8. Let U be a Zariski open set in R®. Consider the
linear system

q
D am(@yk=gn h=1,...,p (*)
k=1

where api(z) and gy(z) are regular functionson U forh=1,...,p and
k=1,...,9. Then any differentiable solution (f1,..., f;) of (x} can be
approzimaled in the weak topology by a regular solution (g1,...,9,).

Moreover:

(1) If for an almost regular algebraic set X C U we have fi|x €
I(X,Rx) for k = 1,...,q, we can take g1,...,g, in such a way
that ge|x = frix Jork=1,...,q

(2) If the firstl < q components fi,..., fi are reqular, then we can take

915291 = fr.
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Proof. By Theorem 3.7 we may suppose (f1,..., f;) is an analytic
solution of (). As we remarked before, the matrix (ap ) defines an exact
sequence of coherent sheaves

[

0 - kera — R} - Rj
il
Im o

l
0

where ker a and Im a are A-coherent because they admit a complexifi-
cation. Consider the corresponding exact sequence obtained by applying
®r, . We can apply Theorem 5.5 to ker a and ker a®. So any analytic
solution of the homogeneous system has a regular approximation.

For the general case we can use the fact that a®(F°)N G = o F),
and we have surjectivity for sections because R}, is B-coherent and so
also Im a is B-coherent, being a subsheaf of RY,.

Soif (f1,...,f,) is an analytic solution of (+) we have (g1,...,9p) =
a®(fi,...,f;) and hence (g1,...,9p) = a(h1,...,hg) with h1,... by €
I'(U,RY), because Ox is faithfully flat on Rx, (see Remark 5.4).

So (fi — h1,---, fq — h1) €ker a® and we conclude as before.

If fi,..., fi are regular, then (fi+1,..., fy) is a solution of the sys-
tem

q i

Y ey =gr— D ancfe h=1,....p (¥%)

k=141 k=1

and then has a regular approximation: this proves that (2) may be
satisfied.

For the assertion (1) we can use a mote direct argument instead of
repeating the proof of Theorem 3.7.

Suppose fi|, to be regular for each k and let £} be a regular func-
tion on U which extends fyj,. Then fi — Fi is an analytic function
vanishing on X. Since X is almost regular, if p1,...,p, are generators
for the ideal 7(X) C Ry, we can write:
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fr=Fe=) Bupi k=1,...,q

j=1

Then by applying o to the vector (fy — Fi,..., f, — F)) we find that
the set {f;x} is an analytic solution of the system:

i=1l...,
k=1,....9
q v 7
DD anpifir=9n— Y amcFr h=1,...,p (+ %)
k=1 j=1 k=1

Hence the (3jx can be approximated in the weak topology by regular
functions b;, such that the set {b;z} is a regular solution of (* * ¥).
Consider for £ = 1,...,q the regular function Gy = Z;zl bikp;; it
vanishes on X , approximates fi — F; and by construction

q

q
D amGr=gn— Y amFe h=1,...,p
k=1 k=1
so (G1 + F1,...,G4 + F;) is the required approximation of ( fi,..., f;)
]

6. ALGEBRAIC AND ANALYTIC VECTOR BUNDLES

Before giving some consequences of the theorems in §3 and §4 let
us recall shortly some definitions and results about generalized vector
bundles and about duality between them and the coherent sheaves. We
refer to [F1], [F2] and [P] for the complex case and to [Ct] and [T9] for
the real analytic and algebraic case respectively. A complete survey on
this subject shall appear in [T12].

Let K be the field € or R, and (X, Ox) be an analytic set in K™.
If K = R assume X to be coherent.

can think of it as a map:
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X xKP - X x K9

(z, 1) —(z,a(z)t)
Definition 8.1. A linear analytic bundle is the set

F = ker a = {(z,t} € X x KP|t € ker a(x)}.

Let 77 be the projection F — X. A morphism of linear analytic bundles
Fc X xKP,GC X xKF is an analytic map ¢ : F — G such that:

(1) The diagram

r—2 ¢
TF l 1« TG
id
X - X

commutes
(2) For any z € X, Plrzi(z) * rpl(z) — 75'(z) is linear.
Denote by £(X) the category of generalized analytic bundles over
X. More generally we could define an abstract notion of analytic linear

bundle as a triple (F, 7, X) locally isomorphic to a linear bundle as in
Definition 6.1.

Remark 6.2. If a{z) has constant rank we have the usual notion
of locally trivial vector bundle.
A matrix (b;;(z)) with entries in I'(X, Ox) defines also a morphism

B: 0% — O%. Its cokernel F is a coherent sheaf over X.
X X

Proposition 6.3. There is ¢ “duality” associating to euch linear
analytic bundle F = ker a the coherent sheaf F = coker’a. If D(F) is
the sheaf associated to the presheaf

X Do U - Hom(F|y,U x K)
then D(F) = coker'a
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Similar results, with a few changes, are true in the real algebraic
case: in this case one can show that the duality is well defined between
the category of B-coherent sheaves and a subcategory of £(X). Details
can be found in [Ct] and [T9).

Now we can apply the results of §3 and §4.

In the following by analytic (C*) sections of F we shall mean sec-
tions of D(F) (D(F)*).

Let Y be a coherent analytic subset of X: we can consider smooth
sections of D(F') wanishing on Y'; again by Malgrange theorem these are
precisely the sections in the image of 7*° @ D(F'). Then we have:

Theorem 6.4. Let X be a coherent real analytic space, Y be a
coherent subspace and F be a linear analytic bundle; let o be a smooth
section of F which is analyticon Y.

Then in each neighbourhood of o for the Whitney topology, one can
find an analytic section s such that sy = oy

Theorem 6.5. Let X be a compact real affine variety, ¥ be an
almost regular subvariety and F be a linear algebraic bundle; let o be a
smooth section of F which is regular on Y.

Then in each neighbourhood of ¢ in the weak topology, one can find
a regular section s such that s|y = opy.

Remark 6.6. Theorems 6.4 and 6.5 are generalizations of the
results about approximation of sections in a locally trivial analytic or

algebraic vector bundle. (see [BTI], [BT2], [BT3])

Finally, by duality, Corollary 4.8 gives a classification theorem for
linear analytic bundles, which extends the classical results for the com-
plex case (see [G1], [G?] [G3]) and for the real case ( see [Tl], [T2],
[T3]).

Theorem 6.7. Let F,G be linear analytic bundles over the coherent
set X C R". Let ¢o: F — G be a smooth isomorphism, i.e. there is a
commulative diagram
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F G
*F l l TG

id
X ——X
where @ is the restriction of a C*° map from R" X R? to R" x RP which
is invertible and linear on the fibres. Then there exists f : F — G which
s an analytic bundle tsomorphism and is arbitrarily close to .
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