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Remarks on the Symmetries of Planar Fronts

F. AICARDI

ABSTRACT. A front is the projection on the plane of a legendrian immer-
sion of a circle in the space of the contact elements of that plane. I analyse the
syminetries of a generic front with respect to the group generated by the invo-
lutions reversing the orientation of the plane, the orientation of the preimage
circle and the coorientation of the contact plane.

1. GENERIC FRONTS

A planar front is the projection to R? (with coordinates z,y) of a
legendrian curve. A legendrian curve is the image of a C'-immersion
of 5! in the space M3 (with coordinates z,y, #(mod2r) for cooriented
fronts, (modw) for noncooriented fronts) of the contact elements of the
plane, with its natural contact structure

. (cosd)dz + (sing)dy = 0 (1)

We call such an immersion of S! into M3 an L-immersion
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The front is cooriented, if the contact element is cooriented, i.e. if
a choice of one of two halfplanes into which it divides the tangent plane
is made. We shall consider now the cooriented fronts, and A2 will be
the space of the cooriented contact elements.

The front is oriented if the preimage circle §! is oriented.

A generie front may have as singularities only the ordinary double
points and the semicubical cusp points.

Examples. See fig.1.

Legendrian curves

q (OO
N

Fig. 1
Oriented legendrian curves and their oriented and cooriented fronts

To any oriented legendrian curve in the space of cooriented contact
elements of the plane one associates two integer numbers: the indez and
the Maslov index (see [1]). Both these indices can be calculated in
terms of the front of the legendrian curve.

Theorem 1. [1] The index ¢ of an oriented legendrian curve in the
space M> is equal to the total angle (divided by 27 ) of the rotation of the
coorienting normal vector of its front when the point of the front makes
a full turn along it

~
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The Maslov index p of a generic oriented legendrian curve is equal
to the difference between the number ut of positive cusps and the number
u~ of negative cusps of its front: p=put —pu~

A cusp of an oriented and cooriented front is called positive if the
coorienting normal vector at the cusp point belongs to the halfplane
bounded by the tangent line at the cusp and containing the cusp branch
with the orientation going away from the cusp point.

Remarks (important) 1) The sign of the angle of rotation of the
normal vector does not depend on the front coorientation, but depends
on the orientation of the plane. Hence the sign of the index does not
depend on the front coorientation and changes when the orientations of
the plane or of the front is changed.

2)The sign of a cusp changes when one changes either the orien-
tation or the coorientation of the front, but does not depend on the
orientation of the plane. Hence the Maslov indez changes its sign when
the orientation or the coorientation of the front is changed and it is
independent of the orientation of the plane.

Examples. See fig. 2

Fig. 2
Two fronts with their indices ¢ and u.
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2. FRONT CLASSES AND SYMMETRY CLASSES

A front class is a class of L-immersions having generic fronts up to
orientations preserving diffeomorphisms preserving the orientations of
the plane and of the preimage circle.

Consider a group G acting on the space of L-immersions.
Definition 1. A front class [y] is called G-invariant if [Gy] = [v]

Example. Let G5 be the group of the euclideans motions in the
plane. Any front class is Gs-invariant.

Let T (T from Turn) (T = S' x S ) the group of the rotations of
the plane and of the rotations of the preimage circle.

Remark. Every front class is invariant with respect to the group
T.

Theorem 2. If the front class [v] is invariant with respect to the
symmetry group H, then there ezist a front v, € [v] so that Hv, € T~.,
i.e. for any element h of H there ezist an element T in T so that

b =7 7 (2)

This theorem is stated in [2] with no proof for some special finite
symmetry groups H.

We first consider the classification of oriented and cooriented fronts
in the oriented plane up to the diffeomorphisms of the plane and of the
preimage circle preserving the orientations. The front being cooriented,
these diffeomorphisms preserve also the coorientation.

Let Q; , be the space of immersions of the oriented circle into the
space of the cooriented contact elements of the oriented plane with fixed
index i and Maslov index g, and A, |, the corresponding space if only
the absolute values of the indices are fixed. In this second space, consider
the action of the following involutions:

Involution X: it reverses the orientation of the plane.

Involution o: it reverses the orientation of the preimage circle.
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Involution ©: it reverses the coorientation of the front.

We represent an element of N|,-|‘| x| as the graph of the application
of the circle into M3, i.e. as a curve 7 living in the space §' x M® with
coordinates

t(mod2w), z(t), wy(t), &(t)(mod2r).

The action of an element 7(44y of T on an L-immersion, i.e. the
rotation of the preimage circle of an angle a and the rotation of an angle
@ in the plane (z,y) is thus represented by the following transformation
of ¥ into 4':

t'=t+a
z' = (cosb)z — (sin@)y
y' = (cosb)y + (sind)z
¢ =640

3)

Moreover the involutions ¥, o and © acting on the front classes can
be represented with the following matrices acting on the immersions
respectively:

involution X:

1 0 0 0
0 -1 0 0O
=19 0 1 0 (4)
0o 0 0 -1
involution o:
-1 0 0 O
. 0 1 0 0
=10 01 0 (5)
0 001
involution ©:
1 0 0 0
0 -1 0 0
°“lo 0 -1 0 (6)
0 0 0 1
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These involutions generate a commutative group RO (Reversing
Orientations) of order 8, whose elements coincide with their inverse ones.
They are denoted by

I, a, b ¢ ab, ac, be, abc

Let H be the symmetry group RO or a subgroup of RQ. We want
find the classes invariant under the action of the symmetry group H.
Hence, using theorem 2, we search for a solution (7g,7;) of the system
of equations
hi yu =1 1 (7)
where h; are the generators of the group H and 7; are particular elements
of the group T. If such a solution exists, then the front class containing
~g will be the requested H-invariant class.

1i=2 pu=12 i=—-2 pu=2 i=-2 u=-21i=2 u=-2

1] fa7] ) =

laber] [per] fact] laby)

Fig. 3

The eight asymmetric classes
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Definition 2. We call asymmetric class a front class which is not
invariant by any subgroup of RO different from the identity.

The action of RO on an asymmetric class of V), transforms it
into 8 different asymmetric classes, with different values of the signs of
the nonzero indices.

Example. See fig. 3.

Definition 3. We call simply symmetric class a front class which
is invariant only with respect to a subgroup of order two of RO.

Every element p of RO different from the identity [ generates a
subgroup of RO of order 2. We denote by Ry, this subgroup, by [v,]
the class invariant only with respect to R(,), by ¥, the curve, solution
of equation (7), and by 4, its corresponding front. The action of RO on
a simply symmetric class transform it into 4 different simply symmetric
classes in Nj;| ju|-

Definition 4. We call supersymmetric class a front class which is
invariant with respect to a subgroup of order four of RO.

Two elements p; and py of RO different from the identity I gen-
erate a subgroup of RO of order 4 (I, p1, p2, pi1p2). We denote
by R(,,)(p,) this subgroup, by [7,,,,,] its invariant class, by 4,,,,, the
curve, solution of equation (7) and by 7v,, ,, its corresponding front. The
action of RO on this class transforms it into 2 different supersymmetric
classes in Ay |,

Theorem 3. 1) There are no invariant classes under the action
of the entire group RO. ii) The front classes invariant with respect to
the subgroups R(a)’ R(c); R(ab); R(ac); R(bc): R(abc): R(a)(bc); R(c)(ab);
R(as)(be) are not void. They are listed in the following table, where the
solutions of eq. (7) for every subgroup are shown in the identities in the
second column.
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Subgroup Identities Number Space Examples

of inv. cl. of inv. cl. in figg.

Ry = (1,a) Y = Trp Ya 4 Nojul 45
Ry = (I,c) Fe = Tega,o Te (¥) 4 Nio 67
Rapy = (I, ab) ab¥ap = T0,0 Yab 4 Nipo 89
Rae) = (I, c) aCYae = Tap Yac 4 Noo 10,1
Ry = (I,bc)  bcFoe = To0 Toe 4 Noju) 12,13
Rape) = (I,abc)  abcTape = 70,0 Fabe 4 MijJul 14,15

Ra),(be) = @Yape = Tr0 Ya,be 2 Nojul 18,17

(I) a, bC, abc) bc“?a,bc = To,0 '?a.,bc

R(c}r(ﬂb) = €Ye,ab = Trpa,a Yo,ab ™ 2 Mq.o 18, 19
(I$ c, ab, ab.c) ab Ye,ab = 70,0 Ye,ab

R(aby(se) = abYabbe = T 0 Yab,be 2 Moo 2021
(I, ab, be, ac)  be Hoppe = T0,0 Tab,be

(") @ = (2n+ 1) (symmetry of order p even), or o = 2"?” (sym-
metry of order p odd).

Proof. Consider the subgroup R = (/,b). The solution of the
equation (7) for the symmetric front 7, does not exist. According to
theorem 2, there are not R;)-invariant front classes. It follows that
also the group RO cannot have invariant classes, because they would be
symmetric with respect to this subgroup R).

The other subgroups of RO of order two have invariant classes.
Indeed, according to theorem 2, the equation (7) has solutions in the
forms shown in the table. Such solutions are unique, in the sense that

L]
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in every simply symmetric class [y,] there exist an element -y, which
satisfies the corresponding identity shown in the second column. The
simply symmetric fronts explicitly satisfy respectively:

the front v, satisfies:

—z(t) =z(t+ )
y(t) = y(t + ) (8)
~$(t) = ¢(t + )

Fig.4
A simply symmetric front v, with i = 0 and gz = 2

the front 7, satisfies:

—z(t) = (cosa)z(t + * + a) — (sina)y{t + 7 + o)
=y(t) = (cosa)y(t + 7 + a) + (sina)z(i + 7 + ) (9)
81) = ¢t + 7 + ) + o

where & = (2n+ 1)% (symmetry of order p even), or @ = 2—2"1 (symmetry
of order p odd). An example of no rotation symmetry, i.e. the case p = 1
(e = 27rn) is shown in fig. 6. An example of rotation symmetry (p = 2)
is shown in fig.22
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1=0 u=2 ] i=0 }L=—2

{7a] = {e7a] (bre] = _{ab‘rc]

(bera] = [2beya] [eYa] = [acta)
Fig.5

The four R ,)-invariant classes in Noui

YOIYT .
BN

4=

Fig.6
A simply symmetric front 4, with i = 2 and u = 0
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i=2 pu=0 i=-2 p=0

[ve] = [evd] [bre] = [beve]

[abrye] = [abevc] [e7d] = lacved]
Fig.7

The four R -invariant classes in N0

the front v,; satisfies:

—a:(—t) = z(t)
y(—1) = y(t) (10)
—¢(-t) = ¢(t)
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Fig.8
A simply symmetric front v, with ¢ =1 and g =0

i=1 p=0 i=-1 u=0

[Yas] = [abryas] (avas] = [b7at]

[C'Yab] = [abc'rab] [aﬂab] = [bqabl
Fig.9

The four R(gp)-invariant classes in N);jo
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the front v,. satisfies:

z(t)=z(t+7)
—y(t) = y(t + 7) (11)
—6(t) = ¢(t + 7)

liy

L4

Fig.10
A simply symmetric front v, with i =0and p = 0

(Yac] = lacvad] [8%ac] = [e7ac)

[bqﬂﬂl = [abc"m:] [“b‘hc] = [Mﬂc]

Fig.11
The four R(,.)-invariant classes in A
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the front v, satisfies:

~a(~t) = (t)
—y(—~t) = y(t)
#(~1) = ¢(2)
@
y X
N i
-
Fig.12

A simply symmetric front 4, with i =0 and g = 2

t=0 u=2 i=0 p=-2

[7bc] = [bc'rbc] [b’nc} = [C’ch]

(e8] = [abeyse] [ad7ec] = facrnc]
Fig.13

The four R(yj-invariant classes in A 1,

(12)
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the front 4, satisfies:

z(—t) = z(2)
—y(=1) = y(?) (13)
~¢(-t) = ¢(2)

o
A

Fig.14
A simply symmetric front 4. with i = 1 and g = 2

4

=1 !u=2 i=-1 #=—2

=1 p=-=2

[Yabe] = [abeyanc) [C‘Yabc] = [ab'y,,bc] {avabe] = [bcYand] [BYabel = [acvase]

Fig.15
The four Rgpc)-invariant classes in M) |y
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Consider now the subgroups of order four.

Subgroups Ra),), Biey(e)r  Ris)(ac) cannot have invariant clas-
ses, because their invariant classes would also be invariant with respect
to R3), which does not have invariant classes.

The subgroup R, ¢y = (I, a, ¢, ac) has noinvariant classes.
The equation (7) has no solution, indeed the supersymmetric front would
satisfy both (8) and (11), which are incompatible.

The other subgroups of RO of order 4 have invariant classes. The
solutions of eq. (7) are shown in the table, i.e. the supersymmetric
fronts satisfy respectively:

the front -, 1. satisfies:

—z(t) = z(t + )
y(t) = y(t + 7) (14)
—4(1) = Bt + 7)

and
—z(~t) = z(1)
—y(—~t) = y(t) (15)
#(—t) = (1)
R
\_t ”
Fig.16

A supersymmetric front v, b with ¢ = 0 and p = 2.
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i=0 p=2 i=0 p=-2

<X | O

[70.6:] = [a‘)‘u.be] = [bc‘fd.bc] = [“bc’ra.bc] [b‘ra.bc] = [ab'.ra,bc] = [c'ru.bc] = [ac'yﬂ.bcl

Fig.17
The 2 R(g) (5c)-invariant classes in A |4

the front 7. .4 satisfies:

—z(t) = (cosa)z(t + 7 + o) — (sina)y(t + 7 + a)
-gy(t) = (cosa)y(t + m + a) + (sina)z(t + 7 + a) (16)
b(t) = ¢t +T+a)+a

where a = (2n+ 1)% (symmetry of order p even), or a = 3% (symmetry
of order p odd).
and
—z(-t) = z(t)
y(=t) = y(t) (17)
—-¢(—1) = #(t)
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In fig. 18 examples of the case of no rotation symmetry (p = 1) and of
rotation symmetry (p = 2) are given. An example of the case p = 3 is
shown in fig. 22.

p=1

Fig.18
Supersymmetric fronts v, .5 with g =0,i=0and p=0,1=1

i=1 p=0 i=-1 p=0

[7c.ab] = [C'Yc,ab} = [ab’fc.ab] = [ﬂb‘-"rc.an [G‘Tc,ub] = [aﬂc,ab] = [b‘rc,ob] = [bc'Tc.sb]

Fig.19
The 2 R(c),(ab)-invariant classes in Nli|.o
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the front v,p,bc satisfies:

—z(—t) =z(t+ )
y(—t) =y(t+ ) (18)
—$(—t) = ¢t + )

and
—z{—t) = z(t)
~y(~t) = y(t) (19)
¢(—t) = (1)
4
~ ¥
Fig.20

A supersymmetric front g5 wWith ¢ = 0 and =0

i=0 u=90

[Yab.bel =[abvas ] = [BCTat pc)=[086Vas bel | [0Vas,6e]=[PVabibe] = [CYab be] = [8BCTab bc]

Fig.21
The 2 R(43),(bc)-invariant classes in Qg0
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3. ROTATION SYMMETRIES

Definition. A planar front v is called p-symmetric if

'7 = Ta,ﬁ:?
where § = z—p"i,a =13

Proposition. FEvery p-symmetric front (p > 1)} belongs to one of
the 4 following symmetry classes:

[Yas)y  [Yavels  [ve],  [7e,a8)

Proof. The index ¢ of a p-symmetric front is ¢+ = p X i, where 27¢,
is the total rotation angle of the normal vector along a p-th part of the
front (for example in the interval [¢,t + 8] of the preimage circle). By
hypothesis ¢(¢) = ¢(t+8) £ 8 (modulo 27) so that 27i, = ¢(t+ ) - &(t)
cannot be zero.

Thus the symmetries allowed are those with index different from
zero. For every type of such symmetries we give examples in fig. 22.

4, OTHER TYPES OF CLASSIFICATION
The above classification contains less refined classifications.

For example, we can consider the classification problem when the
front class is taken up to diffeomorphisms not necessarily preserving the
orientation of the circle. The answer is thus given by the above table,
where the element b is everywere substituted by the identity. The quo-
tient group (I, a, c, ac) has in this case one invariant class, corresponding
of course to the supersymmetric class [Yc,as] = [Yab be)

Remark. In all such less refined classifications, all subgroups have
invariant classes.
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['an] [’anc]
[’Yc] [’Yc_,ab]
p=2 p=13
Fig.22

p-symmetric fronts with their RO-symmetries

Example. The involution ¢ considered in {1,2] acting on the C1—
immersions of the circle into the plane (the coorientation defined by the
normal vector being not considered) has invariant classes.

The classification "up to the change of an orientation” can be also
seen as a classification forgetting such orientation. Hence the quotient
group (I,a,b,ab) acts also on planar nonorientable fronts with semi-
integer index (i.e. with an odd number of cusps), which can be defined
as projections onto the plane of legendrian immersions of 5! into the
space of non oriented contact elements of the plane M3 = PT*R? (where
M? — M? is the double covering.)
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5. DIVERTISSEMENT

Associate to every smooth segment of a oriented and cooriented
front in the oriented plane a sign s in the following way: if the pair
(orienting tangent vector, coorienting normal vector) defines the positive
orientation of the plane (z,y), then s = 1, otherwise s = ~1.

The sign changes at every cusp of the front.

Define now the length ! of a front as the algebraic sum of the lengths
of the pieces with their signs. We have associated to the front a real
number { (its length).

Remark. The sign of [, if there are cusps, is not an invariant of
the front class (see fig.23)

i>0

Fig. 23
2 fronts of the same front class and opposite values of the sign of {

However { is invariant in every T-class. The analysis of symmetries,
by theorem 2, is made inside T-classes, so that we use the number ! as
an invariant.

The sign { of a front changes for all the involutions ¥, ¢ and @. This
means that the fronts which are invariant with respect to the subgroups
Ry, By, Ric) and Rygey have all length zero, and those which are
invariant for the other ones can have positive or negative lengths.

We visualize the symmetries of the group RO acting on the fronts
using a cube (see fig. 24): the 8 vertices of the cube represent an asym-
metric front with index 7, Maslov index p and length ! under the action
of the 8 elements of RO.



Remarks on the Symmetries of Planar Fronts 377

Fig. 24
The cube of the symmetries RO

The cube belongs to 3-dimensional space with coordinates (I, p, )
56 that different values correspond to every vertex.

The planes { = 0, g = 0 and ¢ = 0 represent the fronts invariant
under the action of the subgroups of order two Rabe)s R(ab) and Ry
respectively (the action is the reflection on these planes).

The rotations by an angle m around the 3 principal axes represent
the other 3 subgroups of order two: R,y (¢ =0,1=0), R,y (u=0,{=
0}, and R(s) (i =0,u =0).

The principal axes represent the fronts invariant under the action
of the subgroups of order four. Every axis is in fact invariant under the
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rotation around itself and under the reflection with respect to the planes
containing it.

Remark. In this scheme the subgroups R,y and B, ), which have
no invariant classes, leave invariant only the origin.
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