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The Initial Value Problem for the Equations
of Magnetohydrodynamic Type in
Non-Cylindrical Domains

M.A. ROJAS-MEDAR and R. BELTRAN-BARRIOS

ABSTRACT. By using the spectral Galerkin method, we prove the exist-
ence of weak solutions for a system of equations of magnetohydrodynamic
type in non-cylindrical domains.

1. INTRODUCTION

In several situations the motion of incompressible electrical con-
ducting fluids can be modelled by the so called equations of magnetohy-
drodynamics, which correspond to the Navier-Stokes’ equations coupled
with the Maxwell’s equations. In the case where there is free motion of
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heavy ions, not directly due to the electric field (see Schliiter [14] and
Pikelner [12]), these equations can be reduced to the following form:

(Gu L Au+uVu - 2hVh = f - S-V(p* + § h?),
ok — LAR+u.Vh—h.Vu= —grad w,

¢ (1.1)
div u =0,

{ div h =0,

together with suitable boundary and initial conditions.

Here, u and h are respectively the unknown velocity and magnetic
fields; p* is the unknown hydrostatic pressure; w is an unknown func-
tion related to the motion of heavy ions (in such way that the density
of electric current, jo, generated by this motion satisfies the relation
rot jo = —oVw); pp is the density of mass of the fluid {assumed to
be a positive constant); g > 0 is the constant magnetic permeability of
the medium; ¢ > 0 is the constant electric conductivity; > 0 is the
constant viscosity of the fluid; f is an given external force field.

In this paper we will consider the problem of existence of weak
solutions for the problem (1.1) in a time-dependent domain of R™ x -
(0, T),n>2,0< T < 4.

To (1.1) we append the following initial and boundary conditions
ufaq =0 and hIBQ =0 forallt, (1.1)

u(0) =up and A(0)=hy in Q(0), (1.2)

where uy and hp are given functions. In (1.1), the diferential operator
V and A are the usual gradient and Laplace operator, respectively.

The main goal in this paper is to show existence of weak solutions
for the initjal value problem (1.1)-(1.3). Our strategy for setting this
question consists of transforming problem (1.1)-(1.3) into another initial
boundary-value problem in a cylindrical domain whose sections are not
time-dependent. This is done by means of a suitable change of variable.
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Next, this new initial value problem is treated using Galerkin approxi-
mation. We conclude returning to ¢ using the inverse of the above
change of variable. This technicality was introduced by Dal Passo and
Ughi [4] to study a certain class of parabolic equations in non-cylindrical
domains.

We feel that it is appropriate to cite some earlier works on the initial
value problem (1.1)-(1.3) and to locate our contribution therein. The
cylindrical case of (1.1)-(1.3) has been studied by some authors. Among
them, let us mention the paper of Lassner {7], Boldrini and Rojas-Medar
(2], Rojas-Medar and Boldrini [13].

Lassner (7] by making the use of semigroup techniques as the ones in
Fujita and Kato [5] to show the local existence and uniqueness of strong
solution. The more constructive spectral Galerkin method was used by
Boldrini and Rojas-Medar [2], [13] to obtain local, global existence and
uniqueness of strong solutions. The above authors working in R™ with
n=2o0r3.

A mathematical study of the problem (1.1)-(1.3) in a non-cylindrical
domain was not done, however, it has to be pointed out that similar time-
dependent problem but for the Navier-Stokes and Boussinesq problems
have been studied by many different authors. This is the case, for in-
stance of the works Lions {9], [8], Fujita and Sauer {6}, Oeda [10], Otani
and Yamada [11], Conca and Rojas-Medar [3]. In particular, we would
like to emphasize that the arguments of the mentioned authors demand
that Q(t) be nondecreasing with respect to ¢ (see Lions [9}, problem 11.9,
p. 426); except the work of Conca and Rojas-Medar [3].

In this work, we will adapt the technique by [3] to the system (1.1)-
(1.3).

The paper is organized as follows. In Section 2 we introduce various
functional spaces and state the theorems. Section 3 and 4 deal with their
proofs.

2. FUNCTION SPACES AND PRELIMINAIRES

The functions in the paper are either IR or R"-valued and we will
not distinguish these two situations in our notations. To which case we
refer will be clear from the context.
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Let Q be a bounded domain in R™ (n > 2) with smooth boundary

AQ. We write simply ||u|| for L2(2)-norm. The inner product in L3(£)
is denoted by (u,v). The solenoidal function space is defined as usual

Cow() = {p € C5°(Q) | div p = 0},
H(R) = the completion of C§%, () under the L*(Q) — norm,

V,() = the completion of C§%, () under the H*() — norm

where H°({}) denote the usual Sobolev’space with s € R.
The norm and inner product in H(£) and V() are:

= Y igid 3 =\ 172
(f,9) ;/ny z, IIfll=(ff)

and

(u,0)s = Z(ue,v-‘)m o Jhlls = (w,u)/

where (u;, v;)g» is the standard inner product of H*(Q); (V,(Q2))’ denotes
the topological dual of V,(Q2).

In particular, we denote

Vi) =V(Q) and |lully = |[Veul].

We will use other standard notations and terminology; for them
we refer to Adams[1] and Temam {15).

. Let r be a real-valued function which is of C1-class on the interval
[0,T] such that,

r(to) = min{r(t) [0 < £ < T} > 0 (2.1)

(this condition is essential).
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The time-dependent space domain @(t) is a bounded set in IR"
defined by
Q)= {z € R* / |s| < r(t), 0S t < T}

where | - | denotes the usual norm in IR®. Its boundary is

9Q(t)={zeR" ||z} =r(t), 0t < T}

It is worth noting that such domains @(t) 0 <t < T, generate a
non-cylindrical time-dependent domain of R® x R:

lJ Q@ x{t}.

0<t<T

In such conditions, we can now define a notion of weak solution for
(11)-(13):

Definition 2.1. We shall say that a couple of functions (u,h)
defined in Q is a weak solution of (1.1)-(1.8) iff

(i) w b € L}(0,T;V(Q(®))) N L=(0,T; H(Q(2)))

(i) = [, lowpi—v Z: Vu;Voito Z uj 9 2 h; 28 hidzdt =
iy=1 ij=1
a [, fedzdt,

(iti) — [, [h.@e—7 z VhV@:+ E u; -";-- hi— E h; u,]dmdt =0

ij=1 iz=1

for all o, € C}(Q) with div ¢ = div @ = 0, the suffiz t denotes the
operator 2 (derivatives with respect to t will sometimes also be denoted
by a' or simply by d/dt).

() uw(0) = up, h(0) =
— Ppm -1 =1
where put o = EZ v = ] and v = .
Remark 2.2. In this definition the initial conditions (iv) have the
usual meaning; see for example, Lions [8].

The main result of our article is
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Theorem 2.3. If f € L?(Q), uo, ho € H(Q(0)), then there exists
a weak solution of problem (1.1)-(1.8) for any time interval [0, 7).

Theorem 2.4. Ifn = 2, the solution (u, h) obtained in the Theorem
2.3 is unique. Moreover u and h are almost everywhere equal to functions
continuous from [0,T} into H and

u(t) s u in H, ast—0 (2.2)

h(t) = ho in H, ast—0. {(2.3)

3. PROOF OF THEOREM 2.3.

Let us introduce the transformation 7: Q — U, given by

r(z,1) = (%,t)

where U = D x (0,7) and D = {z € R™ | |z| < 1}. Since r(¢) is a C'-
function which verifies (2.1), we see easily that = is a diffeomorphism
and that its inverse 771 : U — Q satisfies

Ty, 1) = (r(D)y, ). (3.1)

We also define
v(y,t) = u(yr(t),1),

b(y’t) = h’(yr(t):t):
q(y,t) = p(yr(?),1),
£(y,1) = w(yr(t),t), (3.2)
J(y,t) = f(yr(t),t),
vo(y) = uo(yr(0)),
bo(y) = ho(yr(0)).
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By using (3.2), the system on Q (1.1)-(1.3) is transformed into the
system:

1 o~ &b
5 (t)Z ayt ?)‘Z"£=
(3.3)
aJ + ——V-q(t) + o (t) ; By,
T AUNTUR IR <
gy A"J“'r(t)z ay, ,.(t)Z ay, )
(1) <~ b 1 '
) 2255, % Ve
U(Osy) = UO(y) (3'5)
5(0,9) = bo() (3.6)

on the cylindrical domain U = D x (0,T).
On the other hand, let us set

o(v,w) = Z/ Ly widy

CJ—

i a'UJ‘ 3’&),‘
a\v,w) = - T
(v,w) ; p O Oy

B(u,v,w) = Z / Uj o 3 L widy

1,7=1

for vector-valued functions u,v and w for which the integrals are well-
defined.
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The notation of weak solution for (3.3)-(3.6) is completely similar
to the ones for (1.1)-(1.3).

To prove the existence of solutions of the transformed system (3.3)-
(3.6) we will use the spectral Galerkin method. That is; we fix s = §
and we consider the Hilbert special basis {w'(2)}{2; of V;(D), whose
elements we will choose as the solution of the following spectral problem

(w',)s = M(w',v) Vo e V(D).

Let V¥ be the subspace of V,(D) spanned by {w?,...,w*}. For

every k > 1, we define approximations v¥, 5% of v and b, respectively, by

means of the following finite expansions:
.k ] )
v* = Zc,-k(t)w'(m) evet  te(0,T)
i=1
and

- Zdik(t)wi(m) vtk  1e (D)

where the coefficients {c;x) and (dix) will be calculated in such a way
that v* and b* solve the following approximations of system (3.3)-(3.6):

a(vF —— a(v* v* vF B) k bk,
_ r'(t)
= o], 9)+ a —= ) c('v P)
(3.7)
k P 1 k
)+ o (t)]z alt*, 6) + g BSH58) = o5 BOR 5, 0)
(3.8)
_

k
R
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for all ¢,% € V"‘,
o¥(0) = vf; 8%(0) = bk (3.9)

where v§ — vy and b — bp in H(D) as k — co.

Equations (3.7), (3.8) and (3.9) is a system of ordinary differential
equations for the coefficient functions c¢;x(f) and d;x(t), which defines
v* and b* in a interval [0,%x[. We will show some a priori estimates
independent of k£ and ¢, in order to take ¢, = T'. Also, we will prove that
(v¥,b*) converges in appropriate sense to a solution (v, ) of (3.3)-(3.6).
We prove the following lemma.

Lemma 3.1. The transformed system (8.8)-(5.6) admils at least
one weak solution (v,b) in L*(0,T; V(D)) n L>=(0,T; H(D)).

Proof. Setting ¢ = v* and ¢ = b* in (3.7) and (3. 8), respectively,
we have

a d 2 _
I @ ||v k||2+[ OF Vo2 =
ol J,vk) + —= (t) B(b*, 6% v*) + —éf c(v*, v*)
” k”2 _T Ilvbkllz B(bk k bk)-l- r(t) (bk bk)
2 dt r@r ( ) )

since B(v,w,w) =0 for w € V.

Adding the above inequalities and observing that
—(175 [B(b*,b%, v¥) + B(b*, v*,6%)] = 0, we obtain

(allo®I? + 116%]1%) + wIIVo*II* + 711 VB*|7)

b=
e

[r (t)]2

k l'() k _k
= o(J, %) + 1 lae(v®, 0% 4 e(8", %)

F*,
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Now, we use Holder and Young inequalities to estimate the right-
hand side of the above inequality, we obtain

1 o
|F¥| <% 1711 + ) [v511? + Celr' (@) | lylf  l10*]1?

PRI k(2 € k|2
+ Cslr' (O llyllz-[18°]]° + Zoid [[Vo*]|

ol

whence, taking ¢ = v/2 and 6 = /2, we arrive at the inequality

(ailvkllz +{16¥]1%) + WUV + ]| V5 ||%)

[r (t)]2
1 o
<5 111> + (Clr’(t)lza2llyllim + 5) ¥ + Clr' () ||yl 2= 16512

< CHIIE + Clello™|1? + 11*11%),

where C is a positive constant that depends only max {|¥'(t)| |0 <t <
T}, o |lyllfe-

By integrating the above ineqﬁa.]jty between 0 and ¢t with0 <t < T,
we conclude:

allF )| + B + / ﬁ IVH (I + V()12
<cC / Il7(s)|[2ds + C / (allo()I[? + [I85(s)] 2 )ds+

allv*(0)If* + 1" (O)IP*.
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Due to the choice of v§ and bf, there exists C independent of k such
that |{vf|] < C||vell, |165]| < Cllbol|, moreover f; ||J(s)||2ds is finite for
0 <t < T, we conclude, by using Gronwall’s inequality, that

. i 1
af[o* ()]} + [ ()l +j0 O WIIVoF ()2 +7IIVEE(s)I1?)ds < Ch.

Thus, for all & we have that v* and b* exists globally in ¢ and
(v*) and (b*) remains bounded in L*(0,7T; H(D)) N L*(0,T;V(D)) as
k — oco. The next step of the proof consists of proving that (vf) and (b¥)
are bounded in L%(0,T; (V,(D))"). To this end, let us fix some notations

(A(t)v,u) = a(v, )

rOF (lﬂ)]"2

(e, w) = T8 efo,u)

(E(t)v,u) = B(v,v,u)

()

We will prove that (A(t)v*), (C(t)o*), (E(t)v*) and (E(2)b*) are
bounded in L2(0,T; (Vs(D))).

Indeed, for all u € V,, we have

’Uk u = '——1'—' a 'Uk U
(A 1) = s la(o, )

L 'Uk u
< e 198l el

whence, we have

sup {A(t)o* 'u,)| C

AW Wv. oy = o ;so = [r(t)]2 Vo],
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consequently

T .T
jo 1A oyt < [ ﬁ |[Vo* (8)] Pt

Since F(%')T’ € C([0,T]) and (v*) is bounded in L%(0,T;V(D)), we
deduce that

T
/o ﬁ IVo* @) dt < L

and (A(t)v*) is therefore bounded in L?(0,T;(V;(D))"). Analogously,
we show that (C(t)v*) is bounded in L2(0,T;V,(D))). To prove the
boundedness of (E(t)v*) in the space L2(0,T; (Vs(D))) we will use the
following interpolation result whose proof can be found in Lions [8]:

Lemma 3.2. If (v*) is bounded in
L*(0,T; V(D)) N L=(0,T; H(D)),

then (v*) is also bounded in L0, T; LP(D)), where % =3-=.

Using this Lemma, we conclude that

flL"

(B )l < S l1oFllz l81zal1 2%

4,J=1

Z””k||LP||”J||LP|| By

1=l

(t)

llo*112e1ulls

1"(t)

since 1 + + 1 =1 and the Sobolev embedding H*~'(D) C L™(D).
This 1mply

T T
/0 E@)* 1By, oyt < jo ﬁ [0 @[3 de.
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Since m%ﬂ’ € C([0,T]), we can conclude that (E(t)v*) is bounded
in L2(0,T;(V,(D))"). Similary, we prove that (E(¢)b*) is bounded in
L0, T; (Vo(D))).

Now, we consider Pr : H — V* defined by
k - -
Pru = Z(u,w’)w'
i=1

since V(D) € H and V¥ C V,(D), we can consider P, : V,(D) —
Vs(D). It is easy to see that Py € L(Vs(D),V,(D)), (L(X,Y) denote
the space of the bounded operator of X into Y') hence

Py (Vo(D)) — (Va(D))

defined by (Pp(v),w) = (v, Pr(w)) lies in L((Va(D)),(V:(D})) and
[1P1] < [[Pef| < 1.

We also observe that the autofunctions w? are invariants by Pj, i.e.,
Pi(w') = W',
From it and (3.7) we conclude that
a(vk,w') = {(~VA(t) - aB(t) - aC(®)o* + aJ + E()6"), )
= (Pr((—vA(t) — aE(t) — aC(t))v* + ad + E()b*),w'),
whence, for all w € Vi, we have
a(vh,w) = (Pr((—vA(t) — aE(t) — aC(t))v* + a + E(1)bF),w).
Hence, by taking w = Pyu, for u € V;(D), we obtain

ook, u) = (PL(~vA(t) - aE(1) - aC(t))o* + aJ + E(R)t*), ),
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and, consequently
avf = P{((~vA(t) — aE(t) - aC())* + aJ + E(t)*)

belong to L%(0,T; (Vs(D))") thanks to the previous estimates and
IIPEIl < 1.

Working as before, we have
bf = PR((—7A(t) - C()b" + H(v",6%) ~ H(b*,v*)),

where H(u,w)} = —Rlﬁ E(u,w) and (E(u,w),h) = B(u,w,h). Conse-
quently, it is sufficient to show that H(v*,5*) and H(b*,v*) belong to
L*(0,T;(V,(D))) to conclude that ¥ is bounded in L%(0,T;(V,(D))).
We observe that

T T
1 -
H(v*,6%)||? ,dt=/ —— || E(x*, 6%)||? vdt.
/0 |1 ( )||(V,(D)) - || £( )“(V,(D))

On the other hand,

- oh
(E(v*,8%),h) < IIv,'-‘IIL,,IIbeIuHay_||Ln
i 4

< Cl[o¥|| e 165 e 1],
and therefore

IE(*,6%)Itv,myy < Cllo* I 8" 12,
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this imply

T
1 .
jo 57 1B ), oyy <

o /OT ﬁu@*nip)m( | Tﬁ ||b'=||},.,)w. <c

Similarly, we prove that H(b*,v*) is bounded in L%(0,T;(Vs(D)Y).

Therefore, arguing as in the book of Lions [8, p. 76] and
making use of the Aubin-Lions Lemma with By = V(D)}, po = 2, By =
(Va(D)), ;1 =2 and B = H(D) (see Theorem 1.5.1 and Lemma 1.5.2
of the above book, p. 58), we can conclude that there exist v,b €
L*(0,T; V(D)) such that, up to a subsequence which we shall denote
again by the suffix &, there hold

?;‘k—-*?)

by } in L2(0,T; V(D)) and L*®(0,T; H(D)) weakly and

’Uk—>’|'J

N } in L2(0,T; H(D)) strongly, as k —.00
b — b :

v:‘—vvt
bF — b,

} in L*(0,T;(Vs(D))" weakly, as k — co.

Now, the next step is to take the limit. But, once the above con-
vergence results have been established, this is standard procedure and
it follows the same patter as in Lions [8, p. 76-77]. Consequently, we
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shall omit it and we will directly deduce that

T T y T a
_./0 a(”:é)"’/; W a(v’¢)+./0 m B(”?”)QB)_’

T 1 T T T!(t)
| 5 8ene= [ atar+ [« Z5 aw0)

and

-} etsr+ [ i o0+ [ g B

T 1 _ T I(t)
]0 ;mB(b,vsw)_L (t) ( ¢)

(3.10)

(3.11)

for all ¢, € CYU) such that div ¢ = div ¥y = 0. So, the Lemma is

proved.

To conclude the proof of Theorem, let us consider a test function

@ € CL(U) such that div ¢ = 0, and define

¢(y,1) = [r()]"p(yr(2), ).

Integrating by parts,

[ awir- [T )= - [ atrorene)
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and also
v T O B dp.
_/0 [’!‘(t)]2 (1('0,95) = ;/0 .[D ’J"(t) ayl a’yz

/T r(t) B(v,v,¢) = Z / / afr()]v; —1- vj

i,i=1

/T L Bs,b,9) = i fT/[r(t)]“b. 00i ;.
0 ( ) ; o JD Yoy
By using the above identities in (3.11), we obtain,

T . =T [rQ v
-[ [ alr(f oty ¢ or (.0 + 3 K w(t) O Oy

'Y

—Z/ ]a[r(t)]"v,vJ o +2/ /[ (£)]"b: b: a

=/(;T/Da[r(t)]"Jtp.

Analagously, we obtain for b,

T =T D" b 8p
- )" twr@j—tj%u_ 9 9%
/0 [D[T( ety —~ Jo Jp' () Oy Ou

i=1

-/ ' JIORTE -y ' [ b $2 <

where ¢ € C}(U) with div ¢ = 0.

(3.12)

(3.13)
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Let us now consider the transformation r=! : U — @ which is

defined by (3.1). We observe that its Jacobian is [r(2)]". Consequently,
by change of variables in the integrals, (3.13) and (3.14) become °

_jaucp +E/uVu,Vg&, Z/u, 31:

1,7=1
c'?cp,
+ / A ]af-sa
IJZ]. i afBJ Q

and

/h<P+Z/‘7VhV‘P1 qujg""'h+2/ ’ax

i=1 t,j=1

which proves that (u,h) is a weak solution of the problem; since the
mappings
L*(0,T; V(D)) — L*(0, T; V(Q(1)))

o(y,t) — u(z,t) = 'v( oL )

b(y,t) — h(z,t) = h(;?;—),t),

L*(0,T; H(D)) — L*(0,T; H(Q(t))

and

v(y,t) — u(z,t) = v( Ok )

b(y,t) — h(z,t) = b( oL )
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are smooth bijections of class C1, it follows that

u,h € L*(0,T5V(Q(1))) N L=(0,T; H(Q())).

Finally, a standard arguments shows that 4(0) = uo and h(0) = hg
(see remark 2.2). This finished the proof of the Theorem.

4. PROOF OF THEOREM 2.4.

We first prove the regularity result. We observe that the proof of
the above theorem shown that u' € L2(0,T;V'); consequently, applying
Lemma 1.2 in Temam [15], p. 260, we obtain that u is almost everywhere
equal to a function continuous from [0,7] into H.

Thus,
u € C([0,T); H)

and (2.2) follows easily. Analogously it is proved the continuity of A and
(2.3).

We also recall that Lemma 1.2 in Temam [15], p. 260-261, asserts
that the equations below holds:

d 2 _ gfyt
= [l@II* = 2(w' @), u(®),

d :
7 IR = 2(A' (), h(2))-

These results will be used in the following proof of uniqueness which we
will start now.

Consider that (w1, hy) and (uz, h2) are two solutions of the problem
(1.1)-(1.3) with the same f and uo,ho and define the differences w =
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uy — g and v = hy — hy. They satisfy

a(wy, @) + va{w, ¢) = —aB(w,u1,¢) — aB(uy,w, ¢)

+ B(v,h1,8) + B(hs,v,9)
(ve, ¥) + va(v,¥) = — B(u1,v,9) — B(w, h2,9)
+ B(v,u1,%) + B(ha,w, ¢)
for any ¢, % € V; also w(0) = v(0) =0.

By the proof of Theorem 2.3, w; and v; belong to L%(0,T;V");
consequently by setting ¢ = w and 3% = v in the above inequalities, we
obtain

N R
R'p_

” lw]|? + va(w,w) = ~aB(w,u1,w) + B(v, h1,w) + B(ha,v,w)

1d |
3% 0] + ya(v,v) = — B(w, hz,v) + B(v,u1,v) + B(hz,w,v)
thanks to the above remark.

Adding the above identities, we get

[
&'IQ..

> (allwll® + 110l1?) + vllwllx + il

(3.14

~aB(w,u1,w) + B(v, h1,w) — B(w, ha,v) + B(v,u1,v)
since B(hy,v,w) + B(hy,w,v) = 0.
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Now, we observe that

aB(w,uy,w) < aCljw|)ddlu s
< a*C|w|] [lwlly Y|l

< 7 (Wl + Cula)allwil[fu i}

=21 AN

where we used the Lemma 3.3 in Temam [15], p. 291, together with
Hélder and Young inequalities.

Analogously, we can prove

B(v,u1,v) < 7 [[ollf + Coliolilual
B(v,h1,0) < 2 Hloll} +  llollf + Cun@)iloll + allwll®)likal}
B(w,ha,v) < 2 [l + [0l + Cuna@)(lol? + alkol?)lIAs] 1.
By using the above inequalities in (4.1), we get

L (allol? + 11l + wiloll? +1lfol

< Clallwll® + ol*) ([l + lAad[E + 11R2l12),

where C is a positive constant that only depend on v, 7, a.

By integrating in time, the use of Gronwall’s inequality, we obtain

al @I + @I < (allw(O)|I* + |l0(0)|i*)e*?
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where (t) = C [i(| s +[Aa B + l1hall2)ds < oo, for every ¢ € [0,T).
This last inequality, implies w(t) = v(z) = 0. Hence u; = uy and by = hy
and the uniqueness is proved. This completes the proof of the Theorem.
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