REVISTA MATEMATICA de la Universidad Complutense de Madrid Volumen 8, número 1: 1995

On Singular Cut-and-Pastes in the 3-Space with Applications to Link Theory

Fujitsugu HOSOKAWA and Shin'ichi SUZUKI

ABSTRACT. In the study of surfaces in 3-manifolds, the so-called "cut-and-paste" of surfaces is frequently used. In this paper, we generalize this method, in a sense, to singular-surfaces, and as an application, we prove that two collections of singular-disks in the 3-space R^3 which span the same trivial link are link-homotopic in the upper-half 4-space $R^3[0,\infty)$ keeping the link fixed.

Throughout the paper, we work in the piecewise linear category, consisting of simplicial complexes and piecewise linear maps.

1. SINGULAR LOOPS IN A 2-CELL

We denote by ∂X and ∂X , respectively, the boundary and the interior of a manifold X. For a subcomplex P in a complex M, by N(P; M) we denote a regular neighborhood of P in ∂M , that is, we construct the second derived of M and take the closed star of P, see [H], [RS].

1991 Mathematics Subject Classification: 57M25, 55P99 Servicio publicaciones Univ. Complutense. Madrid, 1995. We shall say that a submanifold X of a manifold Y is proper iff $X \cap \partial Y = \partial X$.

By \mathbb{R}^n , \mathbb{D}^n and \mathbb{S}^{n-1} we shall denote the Euclidean *n*-space, the standard *n*-cell and the standard (n-1)-sphere $\partial \mathbb{D}^n$, respectively.

- 1.1. Definition. (1) Let $f: D^1 \to M$ and $g: S^1 \to M$ be non-degenerate continuous maps into a manifold M. Then, the images $f(D^1) = A$ and $g(S^1) = J$ will be called a singular-arc (or simply an arc) and a singular-loop (or simply a loop), respectively. In particular, A and J will be called a simple arc and a simple loop, respectively, if f and g are embeddings. The boundary of an arc $f(D^1) = A$ is the image $f(\partial D^1)$ of the boundary ∂D^1 , and we denote it by ∂^*A .
- (2) An arc A in a manifold M is said to be proper iff $A \cap \partial F = \partial^* A$. A loop J in a manifold M is said to be proper iff $J \subset {}^o F$.
- (3) Let $\mathcal{B} = B_1 \cup \cdots \cup B_n$ be a finite union of proper arcs and proper loops in a 2-manifold F^2 . A point p in \mathcal{B} is said to be a singular-point of multiplicity k, iff the number of the preimages of p is k with $k \geq 2$.

We shall say that B is normal, iff

- (i) ${\cal B}$ has only a finite number of singular-points of multiplicity 2, and
 - (ii) at every singular point of B, B crosses transversally.
- 1.2. Lemma. Let $\mathcal{J}_1 = J_{11} \cup \cdots \cup J_{1m(1)}$ and $\mathcal{J}_2 = J_{21} \cup \cdots \cup J_{2m(2)}$ be finite unions of proper loops in a simply connected 2-manifold F^2 such that $\mathcal{J}_1 \cap \mathcal{J}_2 = \emptyset$. Then, there exists $j \in \{1, \dots, m(1)\}$ or $k \in \{1, \dots, m(2)\}$ so that J_{1j} is contractible in $F^2 \mathcal{J}_2$ or J_{2k} is contractible in $F^2 \mathcal{J}_1$.

Proof. We may assume that $\mathcal{J}_1 \cup \mathcal{J}_2$ is polygonal and normal.

Let $\mathcal{R} = \{R_1, \dots, R_r\}$ be the set of regions of $F^2 - {}^{o}N(\mathcal{J}_1; F^2)$. It will be noticed that $R_1 \cup \dots \cup R_r \supset \mathcal{J}_2$.

If there exist a loop, say J_{2k} , of \mathcal{J}_2 , and a simply connected region, say R_h , of \mathcal{R} with $J_{2k} \subset R_h$, then J_{2k} is contractible in $R_h \subset F^2 - \mathcal{J}_1$, and so the proof is complete.

So, we may assume that there exist some non-simply connected regions, say Q_1, \dots, Q_q , of \mathcal{R} , so that $Q_1 \cup \dots \cup Q_q \supset \mathcal{J}_2$. Let $C_1 \cup \dots \cup C_s = \partial Q_1 \cup \dots \cup \partial Q_q$ be the disjoint union of simple loops on F^2 , and let Δ_h be the 2-cell on F^2 with $\partial \Delta_h = C_h(h = 1, \dots, s)$. We choose an innermost 2-cell, say Δ_1 , in $\{\Delta_1, \dots, \Delta_n\}$, i.e. there is no other Δ_h in Δ_1 . Since Δ_1 is not belong to \mathcal{R} and $C_1 = \partial \Delta_1$ is the one of the boundary curves $\partial Q_1 \cup \dots \cup \partial Q_q$, it holds that $\Delta_1 \cap \mathcal{J}_1 \neq \emptyset$, and since Δ_1 does not contain any Q_1, \dots, Q_q and $\mathcal{J}_2 \subset Q_1 \cup \dots \cup Q_q$, it holds that $\Delta_1 \cap \mathcal{J}_2 = \emptyset$. Now, any J_{1j} of \mathcal{J}_1 with $J_{1j} \cap \Delta_1 \neq \emptyset$ is contractible in $\Delta_1 \subset F^2 - \mathcal{J}_2$, and so the proof is complete.

In the same way as that Lemma 1.2. we have the following:

1.3. Theorem. Let $\mathcal{J}_i = J_1 \cup \cdots \cup J_{im(i)}$ be a finite union of proper loops in a simply connected 2-manifold F^2 for $i = 1, \dots, \mu$, such that $\mathcal{J}_i \cap \mathcal{J}_h = \emptyset$ for $i \neq h$. Then, there exist $j \in \{1, \dots, \mu\}$ and $k \in \{1, \dots, m(j)\}$ so that J_{jk} is contractible in $F^2 - \bigcup_{i \neq j} \mathcal{J}_i$.

Proof. We prove this by induction on the number μ of the classes \mathcal{J}_i . The case of $\mu=1$ is trivial, and the case $\mu=2$ is Lemma 1.2. So, we assume that $\mu\geq 3$ and Theorem is true for $\mu-1$. We may assume that every \mathcal{J}_i is polygonal and normal.

Let $\mathcal{R} = \{R_1, \dots, R_r\}$ be the set of regions of $F^2 - {}^oN(\mathcal{J}_1; F^2)$. It will be noted that $R_1 \cup \dots \cup R_r \supset \mathcal{J}_2 \cup \dots \cup \mathcal{J}_{\mu}$.

If there exist a loop, say J_{jk} , of \mathcal{J}_j and a simply connected region, say R_h , of \mathcal{R} with $J_{jk} \subset R_h$, then $\mathcal{J}'_i = \mathcal{J}_i \cap R_h$ $(i = 2, \dots, \mu)$ is a finite union of loops in the simply connected region R_h satisfying the conditions of Theorem. By induction hypothesis, we have a loop, say J_{jk} , of $\mathcal{J}'_j \subset \mathcal{J}_j$ so that J_{jk} is contractible in $R_h - \bigcup_{i \neq 1,j} \mathcal{J}'_i \subset F^2 - \bigcup_{i \neq j} \mathcal{J}_i$, and so the proof is complete.

So, we may assume that there exist some non-simply connected regions, say Q_1, \dots, Q_q of \mathcal{R} , so that $Q_1 \cup \dots \cup Q_q \supset \mathcal{J}_2 \cup \dots \cup \mathcal{J}_{\mu}$. Now, the proof of this case, which is omitted here, is the same as that of Lemma 1.2.

In general, we have the following:

1.4. **Theorem.** Let $A_i = A_{i1} \cup \cdots \cup A_{in(i)}$ be a finite union of proper arcs in a simply connected 2-manifold F^2 for $i = 1, \dots, \mu$, and let $\mathcal{J}_i = J_{i1} \cup \cdots \cup J_{im(i)}$ be a finite union of proper loops in F^2 , such that $(A_i \cup \mathcal{J}_i) \cap (A_h \cup \mathcal{J}_h) = \emptyset$ for $i \neq h$. Then, there exist $j \in \{1, \dots, \mu\}$ and $k \in \{1, \dots, m(j)\}$ so that J_{jk} is contractible in $F^2 - \bigcup_{i \neq j} (A_i \cup \mathcal{J}_i)$.

Proof. We may assume that every $A_i \cup \mathcal{J}_i$ is polygonal and normal.

Since every region of $F^2 - {}^oN(A_i; F^2)$ is simply connected, the proof of Theorem is similar to that of Theorem 1.3, and so it is omitted here.

2. SINGULAR SPHERES IN A 3-CELL

In this section, we will discuss singular 2-spheres in a 3-cell and prove similar theorems to those in the previous section.

First let us explain several well-known facts to be used in the sequel.

If a compact 3-manifold M is embeddable in the 3-sphere S^3 , then there is a 1-complex G in S^3 such that the exterior $S^3 - {}^{o}N(G; S^3)$ is homeomorphic to M by Fox [F].

A 1-complex G in S^3 is said to be split, iff there exists a 2-sphere $S \subset S^3 - G$, such that both components of $S^3 - S$ contain points of G. If a 1-complex $G \subset S^3$ is not split, then the exterior $S^3 - {}^o\!N(G;S^3)$ is aspherical, i.e. the second homotopy group $\pi_2(S^3 - {}^o\!N(G;S^3)) = \{0\}$, by Papakyriakopoulos [P]. In particular, if $G \subset S^3$ is a connected 1-complex, then $S^3 - {}^o\!N(G;S^3)$ is aspherical.

We will call a compact 3-manifold M an aspherical region, iff M is embeddable in S^3 and aspherical.

It holds the following:

- **2.1.** Proposition. (i) If a compact 3-manifold M is embeddable in S^3 and ∂M is connected, then M is an aspherical region.
- (2) Let M be an aspherical region with connected boundary ∂M and let $F \subset {}^{\circ}M$ be a closed connected 2-manifold. Then, there exists an aspherical region R in M with $\partial R = F$.

The following corresponds to Definition 1.1.

2.2. Definition. (1) Let $f: F^2 \to M$ be a non-degenerate continuous map of a compact 2-manifold F^2 into a manifold M. Then, the image $f(F^2) = F$ will be called a singular-surface. In particular, singular-surfaces $f(D^2) = D$ and $g(S^2) = S$ will be called a singular-disk and singular-sphere, respectively.

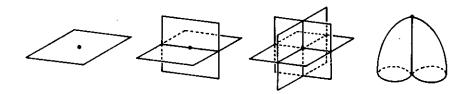
The boundary of a singular-surface $f(F^2) = F$ is the image $f(\partial F^2)$, and we denote it by $\partial^* F$.

- (2) A singular-surface F in a manifold M is said to be proper iff $F \cap \partial M = \partial^* F$.
- (3) Let F be a proper singular-surface in a 3-manifold M. A point p in F is a singular-point of multiplicity k, iff the number of the preimages of p is k with $k \geq 2$.

We shall say that F is normal, iff

- (i) F has only singular-points of multiplicity 2 and 3,
- (ii) the set of singular-points of multiplicity 2 is a finite number of polygonal curves, that is, singular-arcs and singular-loops, which will be called double-lines,
- (iii) the set of singular-points of multiplicity 3 consists of a finite number of points which are intersection points of the double-lines, which will be called triple-points, and
 - (iv) at every singular-point of multiplicity 2, F crosses transversally.

In fact, every singular-point p of F has one of the neighborhood described in Figure 1, and it is well known that every singular-surface may be ε -approximated by such a normal one.



regular point double point triple point branch point
Figure 1

2.3. Lemma. Let $S_1 = S_{11} \cup \cdots \cup S_{1m(1)}$ and $S_2 = S_{21} \cup \cdots \cup S_{2m(2)}$ be finite unions of proper singular-spheres in an aspherical region M with connected boundary ∂M such that $S_1 \cap S_2 = \emptyset$. Then, there exists $j \in \{1, \dots, m(1)\}$ or $k \in \{1, \dots, m(2)\}$ so that S_{1j} is contractible in $M - S_2$ or S_{2k} is contractible in $M - S_1$.

Proof. We may assume that $S_1 \cup S_2$ is normal. The proof of this Lemma is similar to that of Lemma 1.2.

Let $\mathcal{R} = \{R_1, \dots, R_r\}$ be the set of regions of $M - {}^o\!N(\mathcal{S}_1; M)$. It will be noted that $R_1 \cup \dots \cup R_r \supset \mathcal{S}_2$.

If there exist a singular-sphere, say S_{2k} , of S_2 and an aspherical region, say R_h , of R with $S_{2k} \subset R_h$, then S_{2k} is contractible in $R_h \subset M - S_1$, and we are finished.

So, we may assume that there exist some spherical regions, say Q_1, \dots, Q_q , in \mathcal{R} , so that $Q_1 \cup \dots \cup Q_q \supset \mathcal{S}_2$. Let $F_1 \cup \dots \cup F_s = \partial Q_1 \cup \dots \cup \partial Q_q$ be the disjoint union of closed connected 2-manifolds, and let M_h be the aspherical region in M with $\partial M_h = F_h$ for $h = 1, \dots, s$, see Proposition 2.1 (2). We choose an innermost region, say M_1 , in these aspherical regions, that is, there are no other M_h in M_1 . Then, by the same way as the proof of Lemma 1.2, it is easily checked that $M_1 \cap \mathcal{S}_1 \neq \emptyset$ and $M_1 \cap \mathcal{S}_2 = \emptyset$. Now, any S_{1j} of S_1 with $S_{1j} \cap M_1 \neq \emptyset$ is contractible in $M_1 \subset M - S_2$, and completing the proof.

The following theorems correspond to Theorems 1.3 and 1.4, respectively.

- **2.4. Theorem.** Let $S_i = S_{i1} \cup \cdots \cup S_{im(i)}$ be a finite union of proper singular-spheres in an aspherical region M with connected boundary ∂M for $i = 1, \dots, \mu$, such that $S_i \cap S_h = \emptyset$ for $i \neq h$. Then, there exist $j \in \{1, \dots, \mu\}$ and $k \in \{1, \dots, m(j)\}$ so that S_{jk} is contractible in $M \bigcup_{i \neq j} S_i$.
- **Proof.** The proof is similar to that of Lemma 2.3, and is word for word that of Theorem 1.3.
- **2.5.** Theorem. Let M be an aspherical region with connected boundary ∂M . Let $\mathcal{D}_i = D_{i1} \cup \cdots \cup D_{in(i)}$ and $\mathcal{S}_i = S_{i1} \cup \cdots \cup S_{im(i)}$ be finite unions of proper singular-disks and proper singular-spheres in M, respectively, for $i = 1, \dots, \mu$, such that $(\mathcal{D}_i \cup \mathcal{S}_i) \cap (\mathcal{D}_h \cup \mathcal{S}_h) = \emptyset$ for $i \neq h$. Then, there exist $j \in \{1, \dots, \mu\}$ and $k \in \{1, \dots, m(j)\}$, so that S_{jk} is contractible in $M \bigcup_{i \neq j} (\mathcal{D}_i \cup \mathcal{S}_i)$.
- **Proof.** We may assume that every $\mathcal{D}_i \cup \mathcal{S}_i$ is normal. Since every region R of $M {}^o\!N(\mathcal{D}_i; M)$ is an aspherical region, the proof of this Theorem is similar to that of Theorem 2.4, and is word for word that of Theorem 1.4.

3. SINGULAR CUT-AND-PASTES

- **3.1. Definition.** Let M^3 be a 3-manifold, and let E^2 be a compact 2-manifold in ${}^{\circ}M^3$. Let $f: F^2 \to M^3$ be a non-degenerate continuous map of a compact 2-manifold F^2 into M^3 such that
 - (i) $f(F^2) = F$ is a normal singular-surface,
 - (ii) F intersects with E^2 transversally, and
 - (iii) no triple-point and no branch point of F lie on E^2 .

Then, the intersection $F \cap E^2$ consists of a finite number of arcs and loops. Let J be a loop in $F \cap E^2$, and let J^* be the preimage of J in F^2 : J^* is a simple loop. We suppose that J^* is 2-sided on F^2 , and let F'^2 be the 2-manifold obtained from F^2 by attaching a 2-handle along J^* . In fact, we define F'^2 as follows: We take a homeomorphism

 $h^2: \partial D^2 \times D^1 \to N(J^*; F^2) \text{ with } h^2(\partial D^2 \times 0) = J^*, \text{ and let } F'^2 = (F^2 - {}^o\!N(J^*; F^2)) \cup h^2(D^2 \times \partial D^1).$

Now, we suppose that J is contractible on E^2 . Then, we have a non-degenerate continuous map, say g, of D^2 into $E^2 \subset M^3$ such that $g(\partial D^2) = J$. Using the product structure $N(E^2; M^3) \cong E^2 \times D^1$, we define a non-degenerate continuous map $f': F'^2 \to M^3$ as follows:

$$f'|F'^2 - h^2(D^2 \times \partial D^1) = f|F^2 - h^2(\partial D^2 \times D^1),$$

$$f'(h^2(D^2 \times \partial D^1)) = g(D^2) \times \partial D^1 \subset E^2 \times D^1.$$

We say that $F' = f'(F'^2)$ is obtained from $F = f(F^2)$ by a cutand-paste along $J \subset E^2$, and we denote simply by $F \to F'$.

It will be noticed that $F' \cap E^2 = F \cap E^2 - J$ and that $F'^2 = D^2 \coprod S^2$ (a disjoint union) provided that $F^2 = D^2$ and $F'^2 = S^2 \coprod S^2$ provided that $F^2 = S^2$.

3.2. Theorem. Let $\mathcal{O}_i = O_{i1} \cup \cdots \cup O_{in(i)}$ be a trivial link in the 3-sphere S^3 (or the 3-space R^3) for $i=1,\cdots,\mu$, such that $\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_{\mu}$ is also a trivial link. Let $\mathcal{D}_i = D_{i1} \cup \cdots \cup D_{in(i)}$ be a finite union of normal singular-disks in S^3 for $i=1,\cdots,\mu$, such that $\partial^*D_{ij} = O_{ij}$ for $i=1,\cdots,\mu$ and $j=1,\cdots,n(i)$, and $\mathcal{D}_i \cap \mathcal{D}_h = \emptyset$ for $i \neq h$.

Let $\mathcal{D}_i^* = D_{i1}^* \cup \cdots \cup D_{in(i)}^*$ be mutually disjoint 2-cells in S^3 (or R^3) for $i = 1, \dots, \mu$, such that $\partial D_{ij}^* = O_{ij}$ for $i = 1, \dots, \mu$ and $j = 1, \dots, n(i)$, and $\mathcal{D}_i^* \cap \mathcal{D}_h^* = \emptyset$ for $i \neq h$.

We suppose that $\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{\mu}$ intersects with $\mathcal{D}_1^* \cup \cdots \cup \mathcal{D}_{\mu}^*$ transversally, and any triple-point and any branch-point of $\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{\mu}$ do not lie on $\mathcal{D}_1^* \cup \cdots \cup \mathcal{D}_{\mu}^*$.

Then, there exists a finite sequence of cut-and-pastes

$$\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{\mu} = \mathcal{D}_1^{(0)} \cup \cdots \cup \mathcal{D}_{\mu}^{(0)} \to \mathcal{D}_1^{(1)} \cup \cdots \cup \mathcal{D}_{\mu}^{(1)} \to \cdots$$

$$\to \mathcal{D}_1^{(u)} \cup \cdots \cup \mathcal{D}_{\mu}^{(u)} \to \cdots \to \mathcal{D}_1^{(w)} \cup \cdots \cup \mathcal{D}_{\mu}^{(w)}$$

$$along \ (\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{\mu}) \cap (\mathcal{D}_1^* \cup \cdots \cup \mathcal{D}_{\mu}^*) \subset \mathcal{D}_1^* \cup \cdots \cup \mathcal{D}_{\mu}^* \ such \ that$$

- (1) $\mathcal{D}_{i}^{(u)} = D_{i1}^{(u)} \cup \cdots \cup D_{in(i)}^{(u)} \cup S_{i1}^{(u)} \cup \cdots \cup S_{im(i)}^{(u)}$, where $D_{ij}^{(u)}$ is a singular-disk with $\partial^* D_{ij}^{(u)} = O_{ij}$ and $S_{is}^{(u)}$ is a singular-sphere, for $i = 1, \dots, \mu; \ j = 1, \dots, n(i); \ u = 1, \dots, w; \ s = 1, \dots, m(i)$,
 - (2) $\mathcal{D}_i^{(u)} \cap \mathcal{D}_h^{(u)} = \emptyset$ for $i \neq h, u = 1, \dots, w$, and
- (3) $\mathcal{D}_{i}^{(w)} \cap \mathcal{D}_{h}^{*} = \emptyset$ for $i \neq h$, and $\mathcal{D}_{i}^{(w)} \cap \mathcal{D}_{i}^{*} = (D_{i1}^{(w)} \cup \cdots \cup D_{in(i)}^{(w)}) \cap \mathcal{D}_{i}^{*}$ consists of a finite number of proper arcs in \mathcal{D}_{i}^{*} .
- **Proof.** From our hypothesis, $D_{ij} \cap D_{hk}^*$ consists of proper loops in D_{hk}^* provided that $i \neq h$, and $D_{ij} \cap D_{ik}^*$ consists of proper loops and proper arcs in D_{ik}^* for every i, j, k. Therefore, by the induction on the number $n = n(1) + \cdots + n(\mu)$ of 2-cells in $\mathcal{D}_1^* \cup \cdots \cup \mathcal{D}_{\mu}^*$, it suffices to show that there exists a finite sequence of cut-and-pastes of $\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{\mu}$ along proper loops $(\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{\mu}) \cap D_{11}^* \subset D_{11}^*$ so that $\mathcal{D}_1^{(u)} \cup \cdots \cup \mathcal{D}_{\mu}^{(u)}$ satisfies the conditions (1), (2) and
- (3) $\mathcal{D}_{i}^{(w)} \cap D_{11}^{*} = \emptyset$ and $\mathcal{D}_{i}^{(w)} \cap D_{1j}^{*} = \mathcal{D}_{i} \cap D_{1j}^{*}$ for $i = 2, \dots, t$ and $j = 2, \dots, n(1)$, and $\mathcal{D}_{1}^{(w)} \cap D_{11}^{*}$ consists of a finite number of proper arcs in D_{11}^{*} and $\mathcal{D}_{1}^{(w)} \cap D_{1j}^{*} = \mathcal{D}_{1} \cap D_{1j}^{*}$ for $j = 2, \dots, n(1)$.

We consider $\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{\mu}$ and D_{11}^* . Let $\mathcal{A}_1 = A_{11} \cup \cdots \cup A_{1a(1)}$ be the collection of proper arcs in $\mathcal{D}_1 \cap D_{11}^*$ on D_{11}^* , and let $\mathcal{A}_i = \emptyset$ be the collection of proper arcs in $\mathcal{D}_i \cap D_{11}^*$ for $i = 2, \cdots, \mu$. Let $\mathcal{J}_i = J_{i1} \cup \cdots \cup J_{ib(i)}$ be a collection of proper loops in $\mathcal{D}_i \cap D_{11}^*$ on D_{11}^* for $i = 1, \cdots, \mu$. Then, $\mathcal{A}_i \cup \mathcal{J}_i$ satisfies the assumptions in Theorem 1.4, and so there exists a loop J_{jk} of some \mathcal{J}_j such that J_{jk} is contractible in $D_{11}^* - \bigcup_{i \neq j} (\mathcal{A}_i \cup \mathcal{J}_i)$. We have a non-degenerate continuous map $g: D^2 \to i \neq j$

 D_{11}^* such that $g(D^2) \cap (\mathcal{A}_i \cup \mathcal{J}_i) = \emptyset$ for $i \neq j$. Using this g, we perform the first cut-and-paste for $\mathcal{D}_j \subset \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_\mu = \mathcal{D}_1^{(0)} \cup \cdots \cup \mathcal{D}_\mu^{(0)}$ and obtain $\mathcal{D}_1^{(1)} \cup \cdots \cup \mathcal{D}_\mu^{(1)}$. Let w be the number of loops in $(\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_\mu) \cap \mathcal{D}_{11}^*$. By the repetition of the procedure w times, we can get rid of all loops in $(\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_\mu) \cap \mathcal{D}_{11}^*$, and it is easily checked that $\mathcal{D}_1^{(u)} \cup \cdots \cup \mathcal{D}_\mu^{(u)}$ satisfies the required conditions for $u = 1, \cdots, w$, and we complete the proof of Theorem.

3.3. Remarks. (1) From the proof of Theorem 3.2, we know that w is the number of loops in $(\mathcal{D}_1 \cup \ldots \cup \mathcal{D}_{\mu}) \cap (\mathcal{D}_1^* \cup \ldots \cup \mathcal{D}_{\mu}^*)$

and $w = m(1) + \cdots + m(\mu)$, which is the number of singular-spheres in $\mathcal{D}_1^{(w)} \cup \cdots \cup \mathcal{D}_{\mu}^{(w)}$.

(2) Let D and D^* be a normal singular-disk and a 2-cell, respectively, in S^3 (or R^3) such that $\partial^*D = \partial D^* = O$ (a trivial knot). Let A be a proper arc of $D \cap D^*$ in D^* and let α be a simple arc in O with $\partial \alpha = \partial^*A$. Since $A \cup \alpha$ is contractible in D^* , we can formulate a cut-and-paste of D along $A \cup \alpha \subset D^*$ as the same way as Definition 3.1 except for obvious modifications, so that $D \to D' = D'_1 \cup S'_1$, where S'_1 is a singular-sphere and D'_1 is a singular-disk with $\partial^*D'_1 = O$.

Now, in the notation and assumptions of Theorem 3.2, we suppose that $D_{ij} \cap D_{ik}^*$ does not contain proper arcs on D_{ik}^* for $i = 1, \dots, \mu$ and $j \neq k$. Then, we can remove proper arcs of $\mathcal{D}_i^{(w)} \cap \mathcal{D}_i^*$ by a finite sequence of the modified cut-and-pastes.

4. APPLICATIONS TO LINK THEORY

A continuous image of the 3-cell D^3 will be called a *singular-ball*. The *boundary* of a singular-ball B is the image of ∂D^3 , and we denote it by $\partial^* B$.

We use here the same notation as that of Section 0 in [KSS].

The following is a generalization of Horibe-Yanagawa's Lemma [KSS, Lemma 1.6] in a sense.

4.1. Theorem. In the notation and assumptions of Theorem 3.2, let $\Sigma_i = \Sigma_{i1} \cup \cdots \cup \Sigma_{in(i)}$ be a finite union of singular-spheres in $\mathbb{R}^3[0,1]$ defined by

$$\Sigma_{ij} = D_{ij}[0] \cup O_{ij} \times [0,1] \cup D_{ij}^*[1]$$

for $i=1,\dots,\mu$ and $j=1,\dots,n(i)$. Then, we can find a finite union of singular-balls $\mathcal{B}_i=B_{i1}\cup\dots\cup B_{in(i)}$ in $R^3[0,\infty)$ for $i=1,\dots,\mu$, such that $\partial^*B_{ij}=\Sigma_{ij}$ for every i and j, and $\mathcal{B}_i\cap\mathcal{B}_h=\emptyset$ for $i\neq h$.

Proof. The proof is similar to that of [KSS, Lemma 1.6]. We shall construct the required singular-balls $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}$ by specifying the cross-sections $B_{ij} \cap R^3[t]$ for all i and j.

Under the notation of Theorem 3.2, we also use Theorem 3.2. Let $g_u: D^2 \to \mathcal{D}_1^* \cup \cdots \cup \mathcal{D}_{\mu}^* \ (u=1,\cdots,w)$ be a non-degenerate continuous map such that we perform the u-th cut-and-paste

$$\mathcal{D}_1^{(u-1)} \cup \dots \cup \mathcal{D}_{\mu}^{(u-1)} \to \mathcal{D}_1^{(u)} \cup \dots \cup \mathcal{D}_{\mu}^{(u)}$$

in Theorem 3.2 along the loop $g_u(\partial D^2)$ under g_u . We extend g_u to a continuous map

$$g_u^\#:\ h^2(D^2\times D^1)\to N(\mathcal{D}_1^*\cup\cdots\cup\mathcal{D}_\mu^*;R^3)\cong (\mathcal{D}_1^*\cup\cdots\cup\mathcal{D}_\mu^*)\times D^1$$

of the 3-cell $h^2(D^2 \times D^1)$ naturally, and we denote the singular-ball $g_u^\#(h^2(D^2 \times D^1))$ by H_u . We divide the interval [0,1] into the subintervals $[0,t_1],[t_1,t_2],\cdots,[t_{w-1},t_w],[t_w,1]$, where $t_u=u/(w+1),\ u=1,\cdots,w$. Let

$$(\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}) \cap R^3[t] = (\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{\mu})[t] \text{ for } 0 \le t < t_1$$

$$(\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}) \cap R^3[t_1] = (\mathcal{D}_1 \cup \cdots \cup \mathcal{D}_{\mu} \cup H_1)[t_1],$$

$$(\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}) \cap R^3[t] = (\mathcal{D}_1^{(1)} \cup \cdots \cup \mathcal{D}_{\mu}^{(1)})[t] \text{ for } t_1 < t < t_2,$$

$$(\mathcal{B}_1 \cup \dots \cup \mathcal{B}_{\mu}) \cap R^3[t] = (\mathcal{D}_1^{(u-1)} \cup \dots \cup \mathcal{D}_{\mu}^{(u-1)})[t] \text{ for } t_{u-1} < t < t_u,$$

$$(\mathcal{B}_1 \cup \dots \cup \mathcal{B}_{\mu}) \cap R^3[t_u] = (\mathcal{D}_1^{(u-1)} \cup \dots \cup \mathcal{D}_{\mu}^{(u-1)} \cup \mathcal{H}_u)[t_u],$$

$$(\mathcal{B}_1 \cup \dots \cup \mathcal{B}_{\mu}) \cap R^3[t] = (\mathcal{D}_1^{(u)} \cup \dots \cup \mathcal{D}_{\mu}^{(u)})[t] \text{ for } t_u < t < t_{u+1},$$

$$(\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}) \cap R^3[t_w] = (\mathcal{D}_1^{(w-1)} \cup \cdots \cup \mathcal{D}_{\mu}^{(w-1)} \cup H_w)[t_w],$$

$$(\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}) \cap R^3[t] = (\mathcal{D}_1^{(w)} \cup \cdots \cup \mathcal{D}_{\mu}^{(w)})[t] \text{ for } t_w < t \le 1.$$

Thus, we constructed $(\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}) \cap R^3[0,1]$ which consists of $n = n(1) + \cdots + n(\mu)$ singular-balls with $w = m(1) + \cdots + m(\mu)$ singular-balls removed.

Let $S_{ij}^{(w)} = D_{ij}^{(w)} \cup D_{ij}^*$ be the singular-sphere for $i = 1, \dots, \mu$ and $j = m(i)+1,\dots,m(i)+n(i)$, and let $\mathcal{S}_i = \mathcal{D}_i^{(w)} \cup \mathcal{D}_i^* = S_{i1}^{(w)} \cup \dots \cup S_{im(i)+n(i)}^{(w)}$, which consists of m(i)+n(i) singular-spheres in R^3 . From Theorem 3.2(2) and (3), it is easy to see that $\mathcal{S}_i \cap \mathcal{S}_h = \emptyset$ for $i \neq h$, which is the assumption of Theorem 2.4.

We divide the interval [1,2] into the n+w+1 subintervals $[1,s_1]$, $[s_1,s_2],\cdots,[s_{n+w-1},s_{n+w}],[s_{n+w},2]$, where $s_v=1+v/(n+w+1),\ v=1,\cdots,n+w$. From now on, we construct $(\mathcal{B}_1\cup\cdots\cup\mathcal{B}_\mu)\cap R^3[1,2]$ so that $(\mathcal{B}_1\cup\cdots\cup\mathcal{B}_\mu)\cap R^3[0,2]$ forms the required singular-balls. By Theorem 2.4, there exist $j\in\{1,\cdots,\mu\}$ and $k\in\{1,\cdots,m(j)+n(j)\}$ so that $S_{jk}^{(w)}$ is contractible in $R^3-\bigcup\limits_{i\neq j}\mathcal{S}_i$. Let $g_1:D^3\to R^3-\bigcup\limits_{i\neq j}\mathcal{S}_i$ be a continuous map such that $g_1(\partial D^3)=S_{jk}^{(w)}$, and we denote $g_1(D^3)$ by E_1 . We set $S_j^{(1)}=\mathcal{S}_j-S_{jk}^{(w)}$, and $S_i^{(1)}=\mathcal{S}_i$ for $i\neq j$. Then, we define $(\mathcal{B}_1\cup\cdots\cup\mathcal{B}_\mu)\cap R^3[1,s_2)$ as follows:

$$(\mathcal{B}_1 \cup \dots \cup \mathcal{B}_{\mu}) \cap R^3[t] = (\mathcal{S}_1 \cup \dots \cup \mathcal{S}_{\mu})[t] \text{ for } 1 \leq t < s_1,$$

$$(\mathcal{B}_1 \cup \dots \cup \mathcal{B}_{\mu}) \cap R^3[s_1] = (\mathcal{S}_1 \cup \dots \cup \mathcal{S}_{\mu} \cup E_1)[s_1],$$

$$(\mathcal{B}_1 \cup \dots \cup \mathcal{B}_{\mu}) \cap R^3[t] = (\mathcal{S}_1^{(1)} \cup \dots \cup \mathcal{S}_{\mu}^{(1)})[t] \text{ for } s_1 < t < s_2.$$

By Theorem 2.4. there exist $j' \in \{1, \dots, \mu\}$ and $k' \in \{1, \dots, m(j') + n(j')\}$ so that $S_{j'k'}$ is contractible in $R^3 - \bigcup_{i \neq j} S_i^{(1)}$. Let $g_2 : D^3 \to R^3 - \bigcup_{i \neq j} S_i^{(1)}$ be a continuous map with $g_2(\partial D^3) = S_{j'k'}$, and we denote $g_2(D^3)$ by E_2 . We set $S_{j'}^{(2)} = S_{j'}^{(1)} - S_{j'k'}^{(1)}$ and $S_i^{(2)} = S_i^{(1)}$ for $i \neq j'$. We define $(\mathcal{B}_1 \cup \dots \cup \mathcal{B}_{\mu}) \cap R^3[s_2, s_3)$ as follows:

$$(\mathcal{B}_1 \cup \dots \cup \mathcal{B}_{\mu}) \cap R^3[s_2] = (\mathcal{S}_1^{(1)} \cup \dots \cup \mathcal{S}_{\mu}^{(1)} E_2)[s_2],$$

$$(\mathcal{B}_1 \cup \dots \cup \mathcal{B}_{\mu}) \cap R^3[t] = (\mathcal{S}_1^{(2)} \cup \dots \cup \mathcal{S}_{\mu}^{(2)})[t] \text{ for } s_2 < t < s_3.$$

For $R^3[s_3,s_4),\cdots,R^3[s_{n+w-1},s_{n+w}),R^3[s_{n+w},2)$, we repeat this

process. It should be noticed that $S_1^{(n+w-1)} \cup \cdots \cup S_{\mu}^{(n+w-1)}$ consists of a single singular-sphere and $S_1^{(n+w)} \cup \cdots \cup S_{\mu}^{(n+w)} = \emptyset$. Therefore, $(\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}) \cap R^3[s_{n+w}]$ consists of a singular-ball $E_{n+w}[s_{n+w}]$, and $(\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}) \cap R^3[t] = \emptyset$ for $s_{n+w} < t < 2$.

Thus, we obtain a union of singular-balls $\mathcal{B}_i = B_{i1} \cup \cdots \cup B_{in(i)}$ in $R^3[0,\infty)$ for $i=1,\cdots,\mu$ such that $\partial^*B_{ij} = \Sigma_{ij}$. From our construction, it is easily checked that $\mathcal{B}_i \cap \mathcal{B}_h = \emptyset$ for $i \neq h$, and this completes the proof of Theorem 4.1.

The relation of link-homotopy was introduced in classical link theory by Milnor [M], and studied higher dimensional links by Massey-Rolfsen [MR] and Koschorke [K], etc. We record a corollary to Theorem 4.1 on link-homotopy.

- **4.2.** Definition. Let P_1, \dots, P_{μ} be polyhedra, and let $\mathcal{P} = P_1 \coprod \dots \coprod P_{\mu}$ be their disjoint union, and let X be a manifold. A continuous map $f: \mathcal{P} \to X$ is said to be a link-map, iff $f(P_i) \cap f(P_h) = \emptyset$ for $i \neq h$. Two link-maps f_0 and f_1 of \mathcal{P} into X will be called link-homotopic, iff there exists a homotopy $\{\eta_t\}_{t\in I}: \mathcal{P} \to X$ such that $\eta_0 = f_0$, $\eta_1 = f_1$, and $\eta_t(P_i) \cap \eta_t(P_h) = \emptyset$ for $i \neq h$ and each $t \in I = [0,1]$.
- **4.3. Theorem.** Let $\mathcal{O}_i = O_{i1} \cup \cdots \cup O_{in(i)}$ be a trivial link in the 3-space $R^3 = R^3[0] \subset R^3[0,\infty)$ (or $S^3 \subset \partial D^4$) for $i=1,\cdots,\mu$, such that $\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_{\mu}$ is also a trivial link. Let $P_i = D^2_{i1} \coprod \cdots \coprod D^2_{in(i)}$ be the disjoint union of n(i) 2-cells for $i=1,\cdots,\mu$, and we set $\mathcal{P}=P_1 \coprod \cdots \coprod P_{\mu}$. Let f and e be non-degenerate link-maps of \mathcal{P} into R^3 (or S^3) such that $f(\partial D^2_{ij}) = O_{ij} = e(\partial D^2_{ij})$ for $i=1,\cdots,\mu$ and $j=1,\cdots,n(i)$.

Then, f and e are link-homotopic in $R^3[0,\infty)$ (or D^4) keeping $\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_{\mu}$ fixed.

Proof. Let $f(D_{ij}^2) = D_{ij}$ and $\mathcal{D}_i = D_{i1} \cup \cdots \cup D_{in(i)}$ for $i = 1, \cdots, \mu$ and $j = 1, \cdots, n(i)$. Let $g: \mathcal{P} \to R^3$ be an embedding, and let $g(D_{ij}^2) = D_{ij}^*$ and $\mathcal{D}_i^* = D_{i1}^* \cup \cdots \cup D_{in(i)}^*$. In this notation, it suffices to show that f and g are link-homotopic in $R^3[0, \infty)$ keeping $\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_{\mu}$.

In the notation of Theorem 4.1, we have a finite union of singularballs $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}$, $\mathcal{B}_i = \mathcal{B}_{i1} \cup \cdots \cup \mathcal{B}_{in(i)}$ in $R^3[0, \infty)$ such that $\mathcal{B}_i \cap \mathcal{B}_h = \emptyset$ for $i \neq h$ and $\partial^* \mathcal{B}_{ij} = \Sigma_{ij}$. Let $b_{ij} : D^2 \times I \to R^3[0, \infty)$ be a continuous map of the 3-cell $D^2 \times I$ such that $b_{ij}(D^2 \times I) = B_{ij}$. We may assume that $b_{ij}|D^2 \times 0 = f|D_{ij}^2$ and $b_{ij}|D^2 \times 1 = g|D_{ij}^2$. Then, associating with these b_{ij} , we have a link-homotopy $\{\eta_t\}_{t \in I}: \mathcal{P} \to R^3[0,\infty)$ defined by

$$\eta_t(D_{ij}^2) = b_{ij}(D^2 \times t)$$

for every $t \in I$. From the condition of the singular-balls $\mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{\mu}$ in Theorem 4.1, it is easily checked that this homotopy $\{\eta_t\}_{t \in I}$ between f and g satisfies our required condition, and completing the proof of Theorem 4.3.

References

[F] Fox, R.H.: On the imbedding of polyhedra in 3-space. Ann. of Math. (2), 49 (1948), 462-470.

[H] Hudson, J.F.P.: *Piecewise Linear Topology*. W.A. Benjamin, New York, 1969.

[KSS] Kawauchi, A., Shibuya, T. and Suzuki, S.: Descriptions on surfaces in four-space I. Math. Sem. Notes Kobe Univ., 10 (1982), 75-125.

[K] Koschorke, U.: Higher-order homotopy invariants for higher-dimensional link maps. Lecture Notes in Math., 1172 (1985), Springer-Verlag, 116-129.

[MR] Massey, W.S. and Rolfsen, D.: Homotopy classification of higher dimensional links. Indiana Univ. Math. J., 34 (1985), 375-391.

[M] Milnor, J.: Link groups. Ann. of Math. (2), 59 (1954), 177-195.

[RS] Rourke, C.P. and Sanderson, B.J.: Introduction to Piecewise-Linear Topology. Ergebn. Math. u. ihrer Grenzgeb. Bd. 69, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

[P] Papakyriakopoulos, C.D.: On Dehn's lemma and the asphericity of knots. Ann. of Math. (2), 66 (1957), 1-26.

Department of Mathematics Kobe University Nada-ku, Kobe 657, Japan Department of Mathematics
Waseda University
Shinjuku-ku, Tokyo 169-50, Japan

Recibido: 25 de Febrero de 1994