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On Singular Cut-and-Pastes in the 3-Space
with Applications to Link Theory

Fujitsugu HOSOKAWA and Shin’ichi SUZUKI

ABSTRACT. In the study of surfaces in 3-manifolds, the so-called “cut-
and-paste” of surfaces is frequently used. In this paper, we generalize this
method, in a sense, to singular-surfaces, and as an application, we prove that
two collections of singular-disks in the 3-space R? which span the same trivial
link are link-homotopic in the upper-half 4-space R® [0,00) keeping the link
fixed.

Throughout the paper, we work in the piecewise linear category, consist-
ing of simplicial complexes and piecewise linear maps.

1. SINGULAR LOOPS IN A 2-CELL

We denote by 8X and °X, respectively, the boundary and the inte-
rior of a manifold X. For a subcomplex P in a complex M, by N(P; M)
we denote a regular neighborhood of P in <M, that is, we construct the
second derived of M and take the closed star of P, see [H], [RS].
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We shall say that a submanifold X of a manifold ¥ is proper iff
XNnay =dX.

By R", D™ and 5™ ! we shall denote the Euclidean n-space, the -
standard n-cell and the standard (n — 1)-sphere D", respectively.

1.1. Definition. (1) Let f: D' > M andg: §' — M be
‘non-degenerate continuous maps into a manifold M. Then, the images
f(DY) = A and g(5') = J will be called a singular-arc (or simply an
arc) and a singular-loop (or simply a loop), respectively. In particular,
A and J will be called a simple arc and a simple loop, respectively, if f
and g are embeddings. The boundary of an arc f(D) = A is the image
f(8DY) of the boundary 8D, and we denote it by 8*A.

(2) An arc A'in a manifold M is said to be proper iff ANOF = 8" A.
A loop J in a manifold M is said to be proper iff J C °F.

{3) Let B = ByU---UBy, be a finite union of proper arcs and proper

loops in a 2-manifold F?. A point p in B is said to be a singular-point
of multiplicity k, iff the number of the preimages of p is k with k > 2.

We shall say thet B is normal, iff

(i) B has only a finite number of singular-points of multiplicity 2,
and

(it} at every singular point of B, B crosses transversally.

1.2. Lemma. Let J] = JuU-_' 'U-Ilm(l) and .,72 = J21U' . 'Ung(gg
be finite unions of proper loops in a simply connected 2-manifold F
such that Jy N J; = B. Then, there exists j € {1,---,m(1)} or k €
{1,---,m(2)} so that J,; is contractible in F*— 7, or Jyy is contractible
in F2 - ._71.

Proof. We may assume that J; U J; is polygenal and normal.

Let R = {R,---, R,} be the set of regions of F? — °N(J;; F?), It
will be noticed that By U---UR, D .

If there exist a loop, say Jak, of J2, and a simply connected region,
say Ry, of R with Jy, C Ry, then Juoi is contractible in Ry, C F? — 74,
and so the proof is complete.
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So, we may assume that there exist some non-simply connected
regions, say @1, -+, @y, of R,sothat ¢h U---U@, D Jp. Let C1U---U
Cs = 8@1 U ---U 8Q, be the disjoint union of simple loops on F?, and
let Ay be the 2-cell on F? with A, = Cp(h = 1,---,5). We choose
an innermost 2-cell, say Ay, in {44, --,Ay}, i.e. there is no other A,
in A;. Since A, is not belong to R and C; = 04, is the one of the
boundary curves 3Q; U ---U 8Q,, it holds that A, N J; # @, and since
Ay does not contain any @1, ---,@Q; and Jo C @y U ---U @y, it holds
that Ay NJ; = 0. Now, any Jy; of 1 with Jy; N A; # @ is contractible
in A; C F? — 7,, and so the proof is complete. = '

In the same way as that Lemma 1.2. we have the following:

1.3. Theorem. Let J; = Jy U - U Jim(i) be a finite union of
proper loops in a simply connected 2-manifold F* fori=1,---,pu, such
that ;N Jn = @ for i # h. Then, there exist j € {1,---,u} and
" ke {l,---,m(j)} so that J;; is contractible in F? - |J J;.

i#]

Proof. We prove this by induction on the number g of the classes
Ji. The case of = 1 is trivial, and the case 4 = 2 is Lemma 1.2. So,
we assume that ¢ > 3 and Theorem is true for p — 1. We may assume
that every J; is polygonal and normal. -

Let R = {R;,---, R} be the set of regions of F2 — °N(Jy; F?). It
will be noted that By U---UR, D JhU---UJ,.

If there exist a loop, say Jji, of J; and a simply connected region,
say Ry, of R with Jjx C Rp, then J) = JiNRy (i = 2,---,p) is a
finite union of loops in the simply connected region R, satisfying the
conditions of Theorem. By induction hypothesis, we have a loop, say
Jik, of JJ-' C J; so that J;i is contractible in B) — :H '.7,-' C F?- y Tis

i#£1, f

and so the proof is complete. ! ’

So, we may assume that there exist some non-simply connected
regions, say @Q1,---,Q@q of R,sothat Q; U---UQ; D o U---U J,.
Now, the proof of this case, which is omitted here, is the same as that
of Lemmal12. =

In general, we have the following:
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1.4. Theorem. Let A; = Ay U---U Aingi) be a finite union of
proper arcs in a simply connected 2-manifold F* for it = 1,-+-,u, and
let Ji = Jia U+ U Jim@) be a finite union of proper loops in F?, such
that (A;UT)N(ARUTR) = @ fori # h. Then, there exist j € {1,---,u}

and k € {1,--+,m(J)} so that Jjx is contractible in F? — |J (A: U T;).
i£]

Proof. We may assume that every .A;U.J; is polygonal and normal.

Since every region of F2 ~°N(A;; F?) is simply connected, the proof
of Theorem is similar to that of Theorem 1.3, and so it is omitted here.
|

2. SINGULAR SPHERES IN A 3-CELL

In this section, we will discuss singular 2-spheres in a 3-cell and
prove similar theorems to those in the previous section.

First let us explain several well-known facts to be used in the sequel.

If a compact 3-manifold M is embeddable in the 3-sphere 53, then
there is a 1-complex G in §% such that the exterior $% — °N(G; $?) is
homeomorphic to M by Fox [F].

A l-complex G in S? is said to be split, iff there exists a 2-sphere
S C 53 — G, such that both components of §% — § contain points of G.
If a 1-complex G C §2 is not split, then the exterior 5% — °N(G; 5%) is
aspherical, i.e. the second homotopy group m2(S* — "N(G §%)) = {0},
by Papakyriakopoulos [P]. In particular, if G C §° is a connected 1-
complex, then §° — °N(G; $%) is aspherical.

We will call a compact 3-manifold M an aspherical region, iff M is
embeddable in $3 and aspherical.

It holds the following;:
2.1. Proposition. (i) If a compact 3-manifold M is embeddable
in 5% and OM is connected, then M is an aspherical region.

(2) Let M be an aspherical region with connected boundary M
and let F' C °M be a closed connected 2-manifold. Then, there exists an
aspherical region R in M withOR=F. n

The following corresponds to Definition 1.1.



On Singular Cut-and-Pastes in the 3-Space... 159

2.2. Definition. (1) Let f : F? — M be a non-degenerate
continuous map of a compact 2-manifold F? into a manifold M. Then,
the image f(F?) = F will be called a singular-surface. In particular,
singular-surfaces f(D?) = D and g($?) = § will be called a singular-
disk and singular-sphere, respectively.

The boundary of a singular-surface f(F?) = F is the image f(8F?),
and we denote it by 0" F.

(2) A singular-surface F in @ manifold M is said to be proper iff
FnoM =o*F.

(3) Let F be a proper singular-surface in a 3-manifold M. A point p
in F is a singular-point of multiplicity k, iff the number of the preimages
of pisk withk > 2.

We shall say that F is normal, iff

(i) F has only singular-points of multiplicity 2 and 3,

(ii) the set of singular-points of multiplicity 2 is a finite number of
polygonal curves, that is, singular-arcs and singular-loops, which will be
called double-lines,

(iii) the set of singular-points of multiplicity 3 consists of a finite
number of points which are intersection points of the double-lines, which
will be called iriple-points, and

(iv) at every singular-point of multiplicity 2, F crosses transversally.

In fact, every singular-point p of F has one of the neighborhood
described in Figure 1, and it is well known that every singular-surface
may be g-approximated by such a normal one. '
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2.3. Lemma. Let Sl = 311U' M 'Uslm(l) and52 = Sz]_U‘ . 'Ung(g)
be finite unions of proper singular-spheres in an aspherical region M
with connected boundary OM such that $; NS; = @. Then, there erists
j € {1,---,m(1)} or k € {1,---,m(2)} so that Sy; is coniractible in
M — 8, or Sa; is contractible in M — 8.

Proof. We may assume that S; U S is normal. The proof of this
Lemma is similar to that of Lemma 1.2.

Let R = {Ry,---,R.} be the set of regions of M — °N(Sy;; M). It
will be noted that B, U---U R, D 8.

If there exist a singular-sphere, say S3x, of §; and an aspherical
region, say Rj, of R with S»; C Ra, then S2, is contractible in Ry C
M — 8,, and we are finished.

So, we may assume that there exist some spherical regions, say
1, - ,Qq,in R, s0 that Q1 U---UQy D S2. Let A U---UF, =
dQ1U- - -U8Q,; be the disjoint union of closed connected 2-manifolds, and
let M), be the aspherical region in M with M, = Fy for h=1,---,s,
see Proposition 2.1 (2). We choose an innermost region, say M, in
these aspherical regions, that is, there are no other M in M;. Then,
by the same way as the proof of Lemma 1.2, it is easily checked that
M;NSy # 0 and My NS; =0. Now, any Sy; of 8 with §;; N My # 0
is contractible in My C M — S;, and completing the proof. =
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The following theorems correspond to Theorems 1.3 and 1.4, re-
spectively.

2.4. Theorem. LetS; = S;;U- - -USim(i) be a finite union of proper
singular-spheres in an aspherical region M with connected boundary OM
fori=1,---,u, such that S; NSy, = O for i # h. Then, there ezist j €
{1,.-,u} andk € {1,---,m(j)} so that S;x is contractible in M — |} S,.

i#]

| Proof. The proof is similar to that of Lemma 2.3, and is word for
word that of Theorem 1.3. =

2.6. Theorem. Let M be an aspherical region with connected
boundary OM. Let D; = Dy U---U Diy() and §; = Sy U -+ U Simqsy
be finite unions of proper singular-disks and proper singular-spheres in
M, respectively, fori=1,---,pu, such that (D; US;)N(DyLUSL) = 0 for
i # h. Then, there ezist j € {1,---,u} and k € {1,---,m(j)}, so that
Sk is contractible in M — |J (D; U &). :

i3

Proof. We may assume that every D; U §; is normal. Since every
region R of M — °N(D;; M) is an aspherical region, the proof of this
Theorem is similar to that of Theorem 2.4, and is word for word that of
Theorem 1.4. ®B

3. SINGULAR CUT-AND-PASTES

3.1. Definition. Let M3 be a 3-manifold, and let E? be a compact
2-manifold in °M3. Let f: F? — M3 be a non-degenerate continuous
map of a compact 2-manifold F? into M® such that

(i) f(F?) = F is a normal singular-surface,
(ii) F intersects with E* transversally, and
(it1) no triple-point and no brench point of F lie on E?.

Then, the intersection F'1 E? consists of a finite number of arcs
and loops. Let J be a loop in F N E?, and let J* be the preimage of
J in F? : J* is a simple loop. We suppose that J* is 2-sided on F?,
and let F'? be the 2-manifold obtained from F? by attaching a 2-handle
along J*. In fact, we define F'? as follows: We take a homeomorphism
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h? ;. 0D? x D! — N(J*; F?) with h*(8D? x 0) = J*, and let F'? =
(F? = °N(J*; F2))U h?(D? x aD?).

Now, we suppose that J is contractible on E*. Then, we have a
non-degenerate continuous map, say g, of D* into E* C M3 such that
g(8D?) = J. Using the product structure N(E*; M3) = E? x D!, we
define a non-degenerate continuous map f': F? — M3 as follows:

f'IF™? — kY(D? x @D') = f|F? - h*(8D* x D'),
f/(R}(D* x 8D")) = g(D*) x D' C E* x D.

We say that F' = f'(F') is obtained from F = f(F?) by a cut-
and-paste along J C E?, and we denote simply by F — F'.
It will be noticed that F'NE? = PNE?—J and that F'? = D11 §?

(a disjoint union) provided that F2 = D? and F'? = §% 11 §? provided
that F2 = §2.

3.2. Theorem. Let O; = Oi1 U--- U Ojuiy be a trivial link in the
3-sphere S3 (or the 3-space R®) fori=1,---,pu, such that O;U---U 0,
is also a trivial link. Let D = Dy U ---U Dy be a finite union of
normal singular-disks in § for i = 1,---,p, such that 8" D;; = O;; for
i=1,---,uandj=1,---,n(i), and D; N Dy, =0 for i # h.

Let D = Dju---U D;"n(i) be mutually disjoint 2-cells in §° (or
R®) for i = 1,---,u, such that OD¥; = O;; fori = 1,---,p and j =
1,---,n(3), and DF ND; =0 fori # k.

We suppose that Dy U ---U D, intersects with Dy U ---UD] trans-

versally, and any triple-point and any branch-point of DU ---UD, do
not lieon DY U ---U D},

Then, there exists a finite sequence of cut-and-pastes
0 1
DyU---UD, =Dy .up® - pMy...uDd ...

—>D£H)U---U'D£‘u)—>---—>'D§w)U---U'DE:”)
along (D1 U---UD)N(DFU---UD;)C D} U---UD, such that
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(1) D{Y = D U uD uSHI U U S, where DI is

a singular-disk with a*DS}‘) = Oy and 555 is a singular-sphere, for
i=1,--,p; 3= 1:'“3"(1:); v=1,--r,w; 8= 11"'im(i)t

) DMND =0 fori b, u=1,---,w, and

(3) D{")ND;, = 0 fori # h, and D{)ND; = (D{U---UDYY, D}
consists of a finite number of proper arcs in D!,

Proof. From our hypothesis, D;; N D}, consists of proper loops in
Dy, provided that ¢ # A, and D;; N DY, consists of proper loops and
proper arcs in D}, for every i,j,k. Therefore, by the induction on the
number n = n(1) + -+ + n{p) of 2-cells in DT U --- U D}, it suffices to
show that there exists a finite sequence of cut-and-pastes of D; U---UD,
along proper loops (D1 U---UD,)N D}y C Df; so that 'Dg") U---uU 'DLH)
satisfies the conditions (1), (2) and

(3) D{" N D}, =B and DI N D;; = Din Dy for i = 2,---,t and
j=2,--+,n(l), and 'Dgw) N Dy, consists of a finite number of proper
arcs in D}, and D) N D}; = Dy D}, for j = 2,---,n(1).

We consider Dy U---UD, and Dj,. Let Ay = Ay U---U Ay
be the collection of proper arcs in Dy N Dfj on Djy, and let A; = @
be the collection of proper arcs in D; N DY, for i = 2,---,u. Let J; =
Ji1 U -+ U Jyi) be a collection of proper loops in D; N Dy; on Dy, for
i=1,---,u. Then, A; U J; satisfies the assumptions in Theorem 1.4,
and so there exists a loop J; of some 7; such that J;, is contractible in
D3 — U (A;UJ;). We have a non-degenerate continuous map g : D? —

i#]

D3 such that g(D?)N(A;UJ;) = @ for i £ j. Using this g, we perform
the first cut-and-paste for D; C DyU---UD, = D§°’u. . -UDEP) and obtain
’Dgl) U-.. U'Df}). Let w be the number of loops in (D U---UD,}N Df;.
By the repetition of the procedure w times, we can get rid of all loops
in (D1 U---UD,)N D}y, and it is easily checked that D™ y...u DI
satisfies the required conditions for v = 1,--.,w, and we complete the
proof of Theorem. H

3.3. Remarks. (1) From the proof of Theorem 3.2, we know
that w is the number of loops in (D; U...UD,)N(DfU...UD})
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and w = m(1) + --- + m(p), which is the number of singular-spheres in
Dy .. DY,

(2) Let D and D* be a normal singular-disk and a 2-cell, respect-
ively, in §2 (or R®) such that "D = 8D* = O (a trivial knot). Let
A be a proper arc of D N D* in D* and let a be a simple arc in O
with 8a = 0*A. Since A U ¢ is contractible in D*, we can formulate a
cut-and-paste of D along AU a C D* as the same way as Definition 3.1
except for obvious modifications, so that D — D' = D] U 81, where 5}
is a singular-sphere and Dj is a singular-disk with 8*D] = O.

Now, in the notation and assumptions of Theorem 3.2, we suppose
that D;; N D}, does not contain proper arcs on D}, for i = 1,---,pu
and j # k. Then, we can remove proper arcs of DE"’) N D by a finite
sequence of the modified cut-and-pastes.

4. APPLICATIONS TO LINK THEORY

A continuous image of the 3-cell D3 will be called a singular-ball.
The boundary of a singular-ball B is the image of D3, and we denote
it by 8*B.

We use here the same notation as that of Section 0 in [KSS].

The following is a generalizal,tion of Horibe-Yanagawa’s Lemma
[KSS, Lemma 1.6] in a sense.

4.1. Theorem. In the notation and assumptions of Theorem 3.2,
let i = i U-- U Byng;y be a finite union of singular-spheres in R*[0,1]
defined by
Zi; = D;;[0]u 0i; x [0,1] U Di;[1)

fori=1, ,p and j = 1,---,n(i). Then, we can find a finite union of
singular-balls B; = Biy U --- U Byy(y) in R*[0,00) fori =1,---,u, such
that 3*Bj = E;; for every i and j, and B;N By, =@ for i # h.

Proof. The proof is similar to that of [KSS, Lemma 1.6). We
shall construct the required singular-balls B, U -UB,, by specifying the
cross-sections B;; N R3[t] for all ¢ and j.
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Under the notation of Theorem 3.2, we also use Theorem 3.2. Let
gu: D? = D{U---UD} (v =1,---,w) be a non-degenerate continuous
map such that we perform the u-th cut-and-paste

P Vu...uplD L pMy...up®

in Theorem 3.2 along the loop ¢.(8D?) under g,. We extend g, to a
continuous map

g¥ . B¥(D*xD')> N(Dju---UDL;R*) = (DjuU---UD}) x D!

of the 3-cell A%(D? x D) naturally, and we denote the singular-ball
g#(R*(D*x D')) by H,. We divide the interval [0,1] into the subintervals
[0,1],[t1,22),- - -, [tw—1,tw), [tw, 1], Where t, = uf(w+ 1), u=1,---,w.
Let
(ByU---UB)INR[)=(D1U---UD)[t]for 0Kt < 1y
(ByU---UB)N R[] =(D1U---UD, U Hy)[ta),
(ByU---UB)N Rt = (DM u---uDD)[t] for ¢y < t < 1y,

(ByU---UB)N Rt) = (DD U - U DED)[t] for £,y < ¢ < ta,
(B1U---UB,)N Rt,) = (PF N u---upE Dy B[],
(ByU---UB,)N Re) = (D{ U --- U D[] for 2y < t < tusa,

(ByU---UBL) N Bty] = (DU u DD U Hy)ltu),
(BiU---UB)N Rt = (D U uDEN[e] for 2, < t < 1.

Thus, we constructed (B; U ---U B,) N R3[0,1] which consists of
n = n(1)+---+n(u) singular-balls with w = m(1)+ . - + m(gp) singular-
balls removed.
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Let SE}”) = DS;-”)UD}} be the singular-spherefori = 1,---,pand j =
m(i)+1;...,m(i)+n(3), and let S; = DIIUD; = §§TU-- 0o,
which consists of m(i) + n(i) singular-spheres in R*. From Theorem
3.2(2) and (3), it is easy to see that $; N Sy = @ for i # A, which is the
assumption of Theorem 2.4,

We divide the interval [1,2] into the n + w + 1 subintervals [1, 5],
[314, 2}, - - :‘[sn-i-w-—hsn'-l-w], [Sn+wv2]: where s, = 1+v/(n+w+1), v=
1,-++,n+w. From now on, we construct {B; U---UB,)N R3[1,2] so that
(BiU---UB,)N R3[0,2] forms the required singular-balls. By Theorem
2.4; there exist j € {1,---,u} and k € {1,---,m(j) + n(j)} so that
;5‘51"} is contractible in R® — L;;J Si. Let gy : D® - R - L;_&J S; be a
IR i#j i#]

continuous map such that ¢,(8D%) = S;}:’), and we denote g1(D?) by

Ey. We set Sf,-l) =8; - g-;':), and S,m = §; for i # j. Then, we define
(BiU---UBL)N R*[1,3;) as follows:

(Biu---UB)N Rt = (S U-- US)[f] for 1 <t < sy,
(BiU-:-UB)NRs1] = (S1U---US, U Ey)[s],
(BrU---UB,) N R3] = (S U~ u SO for 51 < t < 5.

By Theorem 2.4. thereexist 7' € {1,---,p}and k' € {1,---,m(j')+
n(j')} so that ;s is contractible in B3 — (J Si(l}. Let g : D% >
: i#]
- S,m be a continuous map with g:(8D3) = S; &, and we denote
i#j )
92(D3) by Ep. We set S = 80— S0, and 8 = 8 for i £ 5. We
define (By U -+ U B,)N R¥[sz, s3) as follows:

(BiU---UBL)N Rsa] = (S1V U+ USSP Ep)ss],
(BiU---UB)N R[] = (S U-- - USD)[e] for 53 < t < s3.

! 10 1 .
.+ For 33[33,34)3 s ?R3[3n+w—113n+w)9R3[3n+w,2), we repeat this
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process. It should be noticed that S{'H'w_l) U---u SL"+w_l) consists

of a single singular-sphere and S{™*™ U U SI*™) = §. Therefore,
(By U -+ UB,)N R3[8p4) consists of a singular-ball Enywlsntw), and
(ByU---UBL)NR3[t] = @ for su4 <t < 2.

Thus, we obtain a union of singular-balls B; = By U---U By,(; in
R3[0,00) for ¢ = 1,- -+, i such that 8*B;; = %;;. From our construction,
it is easily checked that B; N By = @ for i # h, and this completes the
proof of Theorem 4.1. ®

The relation of link-homotopy was introduced in classical link the-
ory by Milnor [M], and studied higher dimensional links by Massey- .
Rolfsen [MR] and Koschorke [K], etc. We record a corollary to Theorem
4.1 on link-homotopy.

4.2. Definition. Let Py,---, P, be polyhedra, and let P = P, II .
-+ 1I P, be their disjoint union, and let X be a manifold. A continuous
map f: P — X is said to be a link-map, iff f(P;)Nf(Pr) =0 fori# h.
Two link-maps fy end f; of P into X will be called link-homotopie, iff
there exists a homotopy {n:}ier : P — X such that o = fo, m = fi1,
and (P Np(Pr) =0 fori# h and eacht € I =[0,1).

4.3. Theorem. Let O; = Oi1U---UO;y, ) be a trivial link in the 3-
space R? = R3[0] C R3[0,00) for §* C D*) fori=1,---,pu, such that
O1U- - -UO,, is also a trivial link. Let P; = D4 1I.. -I.[D?n(‘-) be the disjoint
union of n(i) 2-cells fori=1,---,u, and we set P = P 1l --- 11 P,. Let
f and e be non-degenerate link-maps of P into R® (or §3) such that

f(@D,?J-) =0 = e(anj) Jori=1,---,pandj=1,---,n().

Then, § and e are link-homotopic in R*[0, 00) (or D*) keeping Oy U
-+ U O, fired.

Proof. Let f(D?j = D;;and D; = DyyU---UD,yfori=1,---,u
and j = 1,---,n(i). Let g: P — R® be an embedding, and let g(D};) =

Dyjand Df = D U---U Dy, . In this notation, it suffices to show that

in(

f and g are link-homotopic in B3[0,c0) keeping Oy U---U O,.

In the notation of Theorem 4.1, we have a finite union of singular-
balls BjU---UB,, B; = ByU---UB;y;) In R3[0, oo) such that B;nB, = P
for i # h and 0" Bi; = I;;. Let b;; : D?* xI — R3[0,00) be a continuous
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map of the 3-cell D? x I such that 4;;(D? x I) = B;;. We may assume
that b;;|/D? X 0 = f|D¥; and b;;|D? x 1 = g|D Then, associating with
these b;;, we have a hnk-homotopy {m}ier: P — R3[0,00) defined by

n(DY;) = bi;(D? x t)

. for every t € I. From the condition of the singular-balls B, U---U B,
in Theorem 4.1, it is easily checked that this homotopy {7n:}:er between
f and ¢ satisfies our required condition, and completing the proof of
Theorem 4.3. ®
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