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Existence of Periodic Solutions for a Class of
Nonlinear Evolution Equations

RADU CASCAVAL and IOAN I. VRABIE

ABSTRACT. In the present paper we prove an existence result concerning
T-periodic solutions to a class of nonlinear evolution equations of the form

u'(t) + Au(t) 3 f(t,u(t)), t € R,

where A is an m-accretive operator acting in a real Hilbert space H and such
that -A is the generator of a compact semigroup, while f : R x D{4) - H
is continuous and T-periodic with respect to the first argument.

1. INTRODUCTION

Our goal in the present paper is to prove an existence result con-
cerning T-periodic solutions to a class of nonlinear evolution equations
of the form

w(t) + Au(t) 3 f(t,u(t), tER (1.1)
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In all that follows (H,{-,-),||-]|) is a real Hilbert space, B(0,) is the
closed ball with radius » > 0 and centered at 0,A: D(A) C H — 2F is
an m-accretive operator and f : Rxﬁ-(T) — H is a continuous function
which is T-periodic with respect to its first argument. QOur main result
is Theorem 1.1 below.

Theorem 1.1. Assume that A : D(A) C H — 2H is an m-
accretive operator and — A generates a compact semigroup. Assume fur-
ther that f : Rx D(A) — H is a continuous function which is T-periodic
with respect to ils first argument, and which is bounded on bounded sub-
sets in R x D(A). If there ezists T > 0 such that B(0,r) N D(A) is
nonempty, and for each z € D(A) with ||z|| = r, each y € Az and each
te0,7)

(ms'y - f(t,I)) 2 0) (1‘2)
then the problem (1.1) has at least one T -periodic integral solution.

Resuits on this kind of problems have been obtained previously
under various assumptions on A and on f by many authors and we
mention here only [4,6,10,13,16]. For further details on the subject see
[16]. For the case in which f does not depend on u see {1,9,11,12,14].

One of the most usual method for proving an existence result for
T-periodic solutions to (1.1) is to show that the corresponding Poincaré
map, i.e. thé map which assigns to each z € D(A) the values at T
of all integral solutions of (1.1} satisfying u(0) = x, has at least one
fixed point. Since in our case this map is neither single-valued nor even
convex-valued (we recall that f is only continuous) this method is no
longer applicable directly. In order to avoid this difficulty, in a recent
paper by the second author [16], the existence of T-periodic solutions
of (1.1} is obtained by looking for fixed points for a suitably defined
mapping which is always single-valued and continuous. The approach
introduced there permits to prove the existence of T-periodic solutions to
(1.1) without approximating the perturbing term f by smooth functions
in order to guarantee the uniqueness of the integral solutions to the
associated Cauchy problem.

Very recently, Hirano [10] improves the main result in [16] (which
is valid in general Banach spaces) in the specific case in which A is
the subdifferential of a l.s.c. convex and proper function acting on a
real Hilbert space H. More precisely, Hirano [10] shows that if 4 is a
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subdifferential and —~ A generates a compact semigroup, while f : R X
H — H is a Carathéodory function, T-periodic with respect to its first
argument and there exist M;, M3,a,b > 0 such that

12, 2)| < M|z + M (1.3)

forallt€e Rand z € H, and

(2,9 — f(z,1)) > alle||” ~ b (14)

forallt € R, z € D(A) and y € Az, then the problem (1.1) has at least
one T-periodic integral (in fact strong) solution.

His method of proof which has its roots in the calculus of variations
in essentially based on conditions (1.3) and (1.4), and rests heavily on
the fact that A is a subdifferential. As we can easily see, our result is
applicable to a strictly broader class of problems of the form (1.1) inas-
much as we do not assume that A is a subdifferential and the conditions
(1.3) and (1.4) are replaced by the less restrictive ones: f is bounded on
bounded subsets in R x D(A), and respectively by (1.2). It is easy to
see that if there exist a,b,a > 0 such that

(z,y = f(t,z)) 2 af|z||* - b

for each t € R, z € D(A) and y € Az, then (1.2) holds for every
r > (b/a)'/* for which B(0,r) N D(A) is nonempty.

We conclude this section by noticing that the compactness assump-
tion on the semigroup generated by — A is essential. More precisely, it is
not possible to obtain a variant of Theorem 1.1 in the case in which the
semigroup generated by —A is not compact, even if we assume that f is
a compact operator satisfying (1.2). Indeed, a very simple and instruc-
tive example due to Deimling [8, Exercise 6, p. 85] shows that there
exists a compact mapping f : * — [? satisfying (z, f(z)) < 0 for each
x € I? with ||z|| = r, and such that the problem u'(t) = f(u(?)), ¢t € R,
has no T-periodic solution.
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2. PRELIMINARIES

Although we assume familiarity with the theory of nonlinear evol-
ution equations governed by m-accretive operators, we recall for easy
reference some basic concepts and results in the field which we shall use
frequently in the sequel. For further details on this subject see [3,5,7,17)].

An operator A: D(A) C H — 2¥ is called m-accretive if for each
x; € D(A), yi € Az, 1= 1,2,

(231 — T2, — y'l) 2 0$

and for each A > 0, I + XA is surjective.
Consider the Cauchy problem

u!(t) + Au(t) 3 g(t), 0Kt < T, (2.1)

u(0) = ug,

where A is an m-accretive operator, ug € D(A), and ¢ € L¥([0,7); H).
By an integral solution of (2.1) we mean a continuous function u :
[0,T) — D(A), with u(0) = up, and satisfying

[u(t) - || < [|u(s) - =||* + 2/ {u(t) — z,g9(1) — y)dr (2.2)

for each z € D(A), y€ Az and 0 < s <t <T.

It is known that for each (ug,g) € D(A)x L1([0,T); H) the problem
(2.1) has a unique integral solution © = S(up,g). Moreover, if u =
F(uo,g) and v = S(vp, ), then

) = w0l < 11Gs) = ol + [ 1lotr) = h)idr — (2)

for each 0 € s £t < T. See [3] or [5].

Let S(t): D(A) — D{A), t > 0 be the semigroup of nonexpansive
operators generated by —A4,i.e. §()up = I(ug, 0)(t) for each ug € D{A)
and ¢t > 0.
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The semigroup S(t) : D(A) — D(A), t > 0 is called compact if
5(t) is a compact operator for each ¢ > 0.

We recall that a family G C L!([0,T}; H) is called uniformly in-
tegrable if for each ¢ > 0 there exists §(¢) > 0 such that for every
measurable subset £ in [0,7] whose Lebesgue measure is less than ()
we have

/ o)1t < ¢
E
uniformly for ¢ € G.

A remarkable property of compact semigroups is given below.

Theorem 2.1. If —A generates a compact semigroup, then, for
each bounded subset B of D(A) and each uniformly integrable family G
in L'([0,T); H), the set I(B x G) is relatively compact in C([6,T); H)
Jor each § € (0,T). If, in addition, B is relatively compact in H, then
I(B x G) is relatively compact even in C([0,T); H).

The proof of this slight extension of a result due to Baras [2] and
to Vrabie [15] is quite similar to that of [17, Theorem 2.3.2, p. 64] and
50 we omit it.

3. PROOF OF THE MAIN RESULT

For the sake of convenience and clarity we divide the proof of The-
orem 1.1 into three lemmas.

First, let us consider the Cauchy problem
u'(t) + Au(t) 3 f(t,u(t)), 0<t<T (3.1)

2(0) = uo.

In the next lemmas we will assume that f satisfies a slightly stronger
condition than (1.2). Namely, we will assume that

(C) there exist r > 0 and p > 0 such that B(0,7) N D(A) is nonempty
and for each z € D(A) with |Jz|| = r, each y € Az and ¢ € [0,7)

(xvy_ f(t,:t)) Z I8
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Lemma 3.1. Assume that — A generates a compact semigroup and
f: [0,T] x D(A) —» H is continuous, bounded on_bounded subsets in
[0, T)x D(A) and satisfies (C). Then, for each uo € D(A) with ||uo|| < 7,
the problem (8.1} has at least one integral solution u : [0,T] — D(A)
satisfying

llu(t)]| < r for all t € [0,T). (3.2)

Lemma 3.2. Assume that —A generates a compact semigroup and
f: [0,T) x D(A) — H is continuous, bounded on bounded subsets
in [0,T] x D(A) and satisfies (C'). Assume, in addition, that for each
ug € B(0,7) N D(A) the problem (3.1) has a unique integral solution
u = E(up) defined on the whole [0,T]. Then, the mapping ug > E(up)
is continuous from B(0,7) N D(4) inte C([0,T]; H). ~

Lemma 3.3. Assume that — A generales a compact semigroup and
f: [0,T) x D(A) — H is continuous, bounded on bounded subsets
in [0,T] x D(A) and satisfies (C). Assume, in addition, that for each
uwg € B(0,7) N D(A) the problem (8.1) has a unigque integral solution
u = E(up) defined on the whole [0,T). Then, the problem

u'(t) + Au(t) 3 f(t,u(t)), 0<t<T (3.3)

u(0) = u(T)

has at least one integral solution.

Proof of Lemma 3.1. The fact that for each ug € D(A) the prob-
lem (3.1} has at least one noncontinuable integral solution  : [0,Tm) —
D(A) follows from [17, Theorem 3.8.2, p.180]. Then, let uy € D(A)
with [lug)| € r amd let » : [0,T,) — D(A) be such a noncontinu-
able integral solution of (3.1). For each ¢ > 0 let f : [0,Tn) — H
be a C'-function which approximates t — f(¢,u(t)) uniformly on com-
pact subsets in [0,7},), and let ug, € D(A) satisfying ||uo|| < r, and
Hup — uoe|| € €. We note that such an element ug. always exists since
B(0,7) n D(A) is nonempty and D(A) is convex - see [3, Proposition
26, p77.
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Now, let us consider the approximate problem
(1) + Aue(t) 3 fe(t), 0 <t < Ty (3.4)
ue(o) = Upe

In view of [5, Proposition 3.3, p.68] this problem has a unique strong
solution u, : [0,T},) — D(A) satisfying u.(t) € D(A) for each t €
[0,Tr) and such that u. is differentiable from the right at each ¢ €
[0, T)-

Since lim, o fe(t) = f(¢,u(t)) uniformly on compact subsets in
[0, To) and lim¢)p e = uo, from (2.3) it follows that

leiff]l ue(l) = u(t) (3.5)

uniformly on compact subsets in [0,7%,).

At this point let us observe that either there exists £¢ > 0 such that
for each ¢ € (0,e0) and each t € [0,7},) we have

lee(t)ll < 7, (3.6)

or there exist a sequence (&, Jne N converging to 0 and a sequence (., Jnen
in (0,T,) - denoted for simplicity by (¢) and (¢.) - such that ||u.(¢.)|} >

T.

If (3.6) holds, then by (3.5) we easily conclude that
@)l < 7 (3.7)

for each t € [0,T4), and thus, in view of [17, Theorem 3.8.2, p.180],
u can be continued to the right of T,, if 7}, < T". Hence, in this case
T, =T, uis defined on [0,T] and the proof of Lemma 3.1 is complete.

Therefore, let us assume that (3.6) does not hold. Clearly, for each

¢ € (&) there exist s, € [0,T),) and A, > 0 such that [s.,s. + A.) C
[0, T ),

[[ue(s)l] < r for s € [0, 5] (3.8)
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and
Hue(8)|| > r for. s € (8¢, 8. + Ac)- (3.9)

If lim sup, o 8. = Tyn, from (3.5) and (3.8) we deduce (3.7) and this
completes the proof. So, let us assume by contradiction that
lim sup, g 8¢ < Tin. Then, there exists Ty € [0, Ty ) such that s, € [0,To)
for each ¢ € (¢).

Now, taking the inner product in both sides of (3.4) by u.(t) for
t = s,, we get

1d*
5 Sl ()P + (e, velse) — felse) =0,

where v.(s;) € Au(sc). A simple computation along with (C) yields

%%“uc(se)llz < =p+ ||uc(se)l] - |[£(ses ue(se)) — fe(seI

for each € € (). Recalling that lim, o fc(t) = f(¢,u(t)) and
lim, o u.(t) = u(t) uniformly on [0,7T,] and that s, € {0,T5] for € € (&),
from the last inequality, we conclude that for a sufficiently small € € (¢)

we have o+
1 2
5 g7 lue(se)l* < 0.

Hence there exists §. > 0 such that s, s, + §,) C [0,7,,) and
||ue(s)|| < = for s € (8¢, 8. + &),

relation which obviously contradicts (3.9). Thus, the supposition that
lim sup, 8¢ < Ty, is false, and this completes the proof of Lemma 3.1.
[ |

Proof of Lemma 3.2. Let (¢g,)nen be a sequence in B(0,r) N
D(A) with lim,, o 2gn, = up. Let us denote by u, the unique integral
solution of (3.1) with initial datum ug,. From (3.2) we deduce that the
sequence (%, )nen is bounded in C([0,T]; H). Consequently, the family
{f(-,un(-));n € N} is bounded in C({0,7]; H) and therefore uniformly
integrable in L*{[0,T); H). Using Theorem 2.1 we deduce that {u,;n €
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N1} is relatively compact in C([0,T]; H). Therefore, to conclude the
proof, it suffices to show that the only limit point of (un)nen is the
unique integral solution u of (3.1) corresponding to the initial

datum ug. To this aim let us consider a subsequence of (un)nen -
denoted for simplicity also by (4x)nen - which converges in C([0,T]; H)
to some function u. Since, for each n € N, u,, satisfies (2.2), it follows
that u satisfies (2.2) too, and thus it is an integral solution of (3.1)
corresponding to the initial datum ug. Since this solution is unique, the
proof of Lemma 3.2 is complete. ®

Proof of Lemma 3.3. Let B4(0,r) = B(0,r) N D(A) - which is
nonempty, closed, bounded and convex - and let Q : B4(0,7) — H be
the Poincaré map, i.e. Q(up) = u(T) for each up € B4(0,7), where u is
the unique integral solution of the problem (3.1) corresponding to the
initial datum ug. Obviously, Lemma 3.1 shows that @ maps B4(0,7)
into itself, while Theorem 2.1 implies that ¢ has a relatively compact
range in H. Since by Lemma 3.2 @ is continuous from B4(0,r) into
itself, @ satisfies the hypotheses of Schauder’s Fixed Point Theorem,
and thus it has at least one fixed point uo € Ba(0,7). Now it is clear
that the integral solution of (3.1) with the initial datum ue is in fact an
integral solution of the problem (3.3}, and this completes the proof of
Lemma 3.3. ]

Proof of Theorem 1.1. Since f: R x D(A) — H is continuous,
for each & > 0 there exists a locally Lipschitz function f. : Rx D(A) —
H such that

f(t,u)—e-u—fe(t,u)l| <(e-7)/2 (3.10)
for each (¢,u) € R x D(A). See [8, Theorem 7.2, p.44 and Exercice 6,
p. 53).

We may easily verify that, for each € > 0, f, satisfies (C') with the
same r as f does and with p = (¢ - r%)/2.

Now let us consider the problem (3.3) with f replaced with f,. From
Lemma 3.3 we know that for each € > 0 the problem (3.3) has at least
one integral solution u. : {0,7] — D(A). In view of Lemma 3.1 we have
[lus(t)]| < r for each t € [0,T]. This inequality along with (3.10) shows
that {fe(-,uc(-));€ > 0} is bounded in C([0,T]; H). From Theorem 2.1
we then deduce that {u.;e > 0} is relatively compact in C([6,T); H)
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for each § € (0,T). Inasmuch as u,(0) = u(T), and {u(T);e > 0} is
relatively compact in H, we conclude that {u.(0);e > 0} is relatively
compact too. Using once again Theorem 2.1 we deduce that {u.;e > 0}
is relatively compact in C([0,T]; H). Thus, for each sequence ¢ | 0, at
least on a subsequence, (. )c»o converges to a function u which obviously
is an integral solution of (3.3). Since f is T-periodic with respect to
its first argument this solution can be continued on the whole R as a
T-periodic integral solution of (1.1}, and this completes the proof of
Theorem 1.1. |

4. AN EXAMPLE

The aim of this section is to illustrate the effectiveness of the ab-
stract existence result we have proved by showing how this applies to
nonlinear partial differential equations of parabolic type. Thus, let us
consider the nonlinear heat equation

@—Apu:g(t,x,u) for (t,z) e R x Q2

at
u=0  for ({,z) € R x 09 (4.1)
u(t,z) = u(t+ T,z) for (f,z) e R xQ

where {2 is a bounded domain in R™ with smooth boundary aQ, p >
2, g: Rx2xR — R is a continuous function and A, is the pseudo-

Laplace operator, i.e.
P~2 Bu
)

.8
Apu = Z %(
i=1 t

Our aim here is to show that, under some rather general assump-
tions on g, the problem (4.1) can be rewritten as an abstract evolution
equation of the form (1.1) satisfying the hypotheses of Theorem 1.1.

v
61:‘-

We begin by recalling that an equivalent norm on Wol P(§2) is given
by the LP(2)-norm of the gradient. Therefore there exists ¢ > 0 such
that

( /Q |9 ue)Pds + /Q |u(a:)|’°dz) < j |vu@)lPds  (42)
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for every u € Wy *(f).
We are now prepared to prove:
Theorem 4.1. Assume that g: R x I x R = R is continuous,

T -periodic with respect to its first argument and there ezists a > 0 and
b > 0 such that

lg(t, z,4)| < alu| + b for all (¢,z,u) € R x O x R. (4.3)

Assume in addition that there exist o € (0,¢) (where ¢ > 0 satisfies
(4.2)) and 3 > 0 such that

u-g(t,z,u) < aful? + 8 for all (t,z,u) € R x & x R. (4.4)

Then there exists at least one solution u : R — L) of the
problem (4.1) satisfying

u € C([0, T]; L*(Q)) n L=([0, T]; W, *(R2)) (4.5)
du
a1 € LE([0,T); L} (). (4.6)

Proof. Take H = L?(2) with the usual inner product and let us
define the operator A: D(A)C H — H by

Au = -Apu

for each u € D(A), where D(4) = {u € WyP(Q); Apu € L*(Q)}, and
f: Rx H — H by

f(t,u)(z) = g(t, %, u(z))

for each u € L*(Q), t € R and a.e. for z € Q.

Now it is clear that (4.1) can be rewritten as a problem of the form
(1.1) with A and f as before. It is known that — A generates a compact



336 R. Cascaval and L.I. Vrabie

semigroup [17, Proposition 2.3.2, p.59] and, in view of (4.3), that f is
everywhere defined, continuous and T-periodic with respect to its first
argument. Thus, in order to appeal to Theorem 1.1, we have to show
that A and f verify (1.2). To this aim let us denote by || the Lebesgue
measure of Q, choose

r2 7 —a) R0

and let us observe that, in view of (4.4), (4.2) and of the choice of =, it
follows

(Au— f(t,8),u) = /ﬂ (17 u(@)lP - 9(t, 2, u(z))u(z))dz

> /ﬂ (|7 u(=)] - alu(z)? - B)dz
> ¢ jﬂ |V w(z)Pda + (c - a) /ﬂ tu(a)Pdz - 610
pl2
2CL|vM@mu+@_amw%ﬂ”(quWw) - 512

Consequently, if u € D(A) and

(LM@WMYN=n

we have

(Au— f(t,u),u) > c/ﬂ | 7 u(z)|Pdz > 0.

Thus A and f satisfy all the hypotheses of Theorem 1.1. Since {4.5)
and (4.6) follows from [3, Proposition 2.4, p.204], the proof of Theorem
4.1 is complete. N
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Remark 4.1. With some obvious modifications the proof of The-
orem 4.1 can be addapted to handle the case in which (4.3) and (4.4)
hold for some b € L*([0,T); L*(2)) and 8 € L*°([0,T}; L}(£)).
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