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Comparison Results for a Class of
Variational Inequalities

M. R. POSTERARO - R. VOLPICELLI

ABSTRACT. In this paper we study a variational inequality related to a linear
differential operator of elliptic type. We give a pointwise bound for the rear-
rangement of the solution u, and an estimate for the L’-norm of the gradient of u.

1. INTRODUCTION
Let ) be an open bounded set of R" and let
Au=—(a;(0u,),+ ®d,&u), +cx)u
be a differential operator whose coefficients satisfy:
a;, b, cEL"((})
(1.1) a,x)&E=|E% for a.e. x€Q, EER"
Ib?<B>

Let u€H,(Q) be a solution of the related variational inequality

1.2) a(u, U—u)_>_Iﬂ fx)(U—u)dx v UEH,(Q), U, u=0

where
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ale, Y)= J (a,), ¥, —b Xy, +cX)ey)dx,

and fELXQ).

Schwarz symmetrization allows us to obtain sharp estimates for a so-
lution u of (1.2) comparing u with the solution vE Hy(Q2*) of the «sym-

metrized» variational inequality

a* (v, V—v) = L#vxi(V—'v)xﬁB ﬁv(V— v) o= V(Y —v)dx=

(1.3)
= J AWV -—v)dx v VEH,; (%), V,v=0
n#

where (% is the n-dimensional ball centered at the origin with measure
|Q], f*(x), c*(x) are the spherically symmetric decreasing rearrangements
of f(x) and c_(x)=Max(—c(x), 0), respectively (see § 2).

More precisely in this paper we show (see theorem 2.2) that the point-
wise estimate

(1.4) u* () =v(x)

holds for all x€Q*. Such an estimate gives an optimal upper bound for
the LP-norm of u and for the measure of the set {x:u(x)>0} or, that is the
same, an optimal lower bound for the coincidence set of u.

As consequence of (1.4) we derive an estimate for a(u,u) and for the
L*norm of Vu in terms of a*(v, v) and the L*norm of Vv respectively.
Finally the previous results are applied to the obstacle problem when the
obstacle is in H}({2).

The first results in this direction, in the case b,=0, c=0, are due to
Bandle-Mossino [BM] and Maderna-Salsa [MS]. In particular in [BM] the
case of a non-linear operator is considered. Subsequently Alvino-Mataras-
so-Trombetti [AMT] considered a variational inequality of general form
taking into account also the influence of the term c,(x)=max(c(x), 0),
but with constraints on the coefficients different from (1.1). As far as
variational parabolic inequalities concern we recall [DM].

The method used was introduced by Talenti [Tal] for an elliptic equa-
tion without lower-order terms and was extended to elliptic equations of
more general form by several authors (see i.e. [AT], [ALT2], [Ba], [FP],
[GT], [Ta2], [TV]).



Comparison Results for a Class of Variational Inequalities 297

2. MAIN RESULTS
If Q is an open bounded set of R", we will denote by |Q| its measure
and by Q7 the ball of R" centered at the origin whose measure is |Q)].
Moreover if ¢ is a measurable function,
p0)=|{xEQ:9(x)>1}, tER,
is the distribution function of ¢ and

e*(s)=sup{tER:u(t)>s}, s€[0, |Q|f,

is its decreasing rearrangement. If C, is the measure of the n-dimensional
unit ball,

¢*(x)=¢*(C,|x|", xEQ*,
is the spherically symmetric decreasing rearrangement of ¢(x). For an ex-
haustive treatment of rearrangements we refer for example to [ALT1],

[Ba], [CR], [HLP], [Ka], [Mo]. Here we just recall the well known Hardy
inequality:

(]
J ux)vx)dx< I u*(s)v*(s)ds
[)) 0

where u(x), v(x) are measurable functions.

The firts step to get the comparison result is to obtain a differential
inequality involving the decreasing rearrangement of u. In the following
we will consider f,, f_%0. In the other cases proofs are simpler.

Theorem 2.1. Let u be a solution of the variational inequality (1.2)
with conditions (1.1), then

~2+2/n s
—ur(s)= izcyn L(f*(a)+c":(o)u*(a))da +
@.1)
Bs—1+1/n
+ —ETu*(s) a.e. in [0, |#>0]].
n n
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Proof. Following [BM] we choose as test function U in (1.2) ut @,
where

h ifu>t+h
D, (x)={(ux)—1) if t<u(x)<t+h
0 otherwise

with >0 and tE€[0,sup ul.

We have

1 1
70(14,@,,) = 7J0f¢hdx

and by ellipticity condition, letting 2 go to 0, we obtain

d

2 d _
Cdt L>,| Vultdx= ?Lmb‘(x) U pdx+ LM(f(X) c()u)dx.

From now on we give a sketch of the proof because the tools are standard.
We have (see [ALT2])

) (-4 ) Jviar)
——1 b <Bt |-— dx
dt u>tbl (x) ux‘udx Bt dt u>t| vu|

and by Hardy inequality
()

J (f(x) —cxux))dx= I (™*(0) + c*(o)u*(o))do.

0

Then

d d
—-—J |Vu|2dx—Bt(———-J |Vu|dx)$
. dt Ju>t dt Just

2.2) ™
< J (f*(0) +c*(o)u*(0))do.

0

Isoperimetric inequality [DG], Fleming-Rishel formula [FR] and Schwarz
inequality give (see [ALT2], [Ta2])

d
nClu(p' "< - E—LJ Vul=
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2.3)

— ! 12 —_d_I | 2)1/2
<[-u'() ( v

Now we observe that the right hand side of (2.2) is non negative. As a
matter of fact, letting ¢ go to 0, from (2.2) we get

#0)
J (f*(0) + c*(0)u*(0))do=0
0
and then
(o)
(2.4) I (f*(0) + c*(0)u*(0))do=0 v tE[0, supu]
0

because f*(0)+ c*(0)u*(0)is a decreasing function.

Hence by (2.3) and (2.4) we have

1210
I (f*(0) + c*(0)u*(0))do=
o .

—1+1/n 2 (4
5i(t)7_[_lul(t)]l/2(__.._d_J |Vu|2) J (f*(a)+
nCim dt Ju>: 0
+ c*(0)u*(0))do.

Then by (2.2) and (2.3)

d J ' 12
-—1 |V ’dx) =<
( dt u>t | “ |

2.5)
—1+1ln [ 4O
=Bt[-p'®1"+[—u' O] %—L (f*(0) + c*(0)u*(0))do.

Using again (2.3), we obtain
‘ nclln’u(t 1-1/n
[—n' @®1"

—141n (HO
A

n 0

=Bi[-u' O +
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Making a change of variables we get (2.1). O

We consider the variational inequality (1.3) whose data are spherically
symmetric. If its solution v is spherically symmetric and decreasing, then
repeating the above proof, it is easy to verify that all the inequalities used
to get (2.1) are equalities. As in [AMT] a way to establish the existence
of such a solution is given by the following proposition:

Proposition 2.1. Let us consider the differential operator

A*y= —Av—B(vi) —c*(x)v.

x|

Let us suppose c*=0 or let any one of the following conditions be
satisfied:

(i) there exists a non negative function H%#0 such that the Dirichlet
problem

A*Z=H in Q*
ZEH(O%)

has a non negative solution Z;
(ii) the first eigenvalue of the problem

A*p=Ap(x)¢ in Q*

2.6) {wEHc‘,(ﬂ*)

where pEL"*(Q*), p(x)*0 is a non negative function, is posi-
tive;

(iii) there exists a>0 such that

(n—1)
x|

za[m M|V d|dx v PEH (UF).

L,e‘“""q Vo|-B @~ ctPYdx =

Then (1.3) has a unique solution v=v*. Moreover for A* a maximum prin-
ciple holds, that is
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Q2.7 A*V=0in QF, V=0o0n 0Q*=V=0in QO*
The proof of this proposition wilbl be given in the appendix.
The above arguments yield to state the following

Proposition 2.2. If one of the conditions of proposition 2.1 is verified
then the solution v=v* of (1.3) satisfies

—242m (S
—v¥(s)= 2O L (f*(0) + c*(o)v*(0))do +
(2.8)
Bs—1+1/n
+— o Ve a.e. in [0,|v>0]].
n n

At this point we are able to prove the comparison result.

Theorem 2.2. If one of the conditions of proposition 2.1 is verified
and u, v are solutions respectively of (1.2), (1.3) with the assumptions
(1.1), then

u*(s) <v*(s) in [0,|Q]].

Proof. Starting from (2.1) and (2.8) we show that, setting
w=u*—v* we will show that

—1+1/n —2+2n

+ I c*(o)w(o)do in [0, |u>0|].

2.9 -w'(s)=B nCY" it n*c*

Obviously (2.9) holds for all s€ [0, min{|u>0]|, |v>0|}], then it is trivial
if [u>0|<|v>0|. We suppose |u>0|>|v>0|. By regularity results (see
[BS]) the solution of (1.3) is in H*(Q*), then v*E€C'(10,|Q|]) and
v (lv>0[)=0.

Hence by (2.8)

[v>0] |v=>0}
(2.10) J f*(o)do+ J c*(o)v*(0)do=0.
(4]

0
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By (2.1), taking into account that w(s) u*(s) for [v>0|<s<|u>0| and
(2.10), we get

—1+1/n —2+2/n —242/n

’ s '
-w'(s)<B nCi" w+ n2Co L c*(o)w(o)do +

— d
e o PO

for [v>0|<s=<|u>0|.

Then we obtain (2.9) observing that by (2.10)

v>0|
I f*¥(o)do=<0,

which implies f*(s)<O in [|v>0];|Q[] because f* is a decreasing function.

To get the thesis we first suppose c*>0. Setting V= | c*(o)w(0)do, (2.9)
0

can be written as

le/n VI ’ s—2+2/n le/n
_(exp( i ) c*) ~ g exp( i )VSOin [0, |u>0|]

2.11
- V(0)=0

V'(jlu>0|)=<0.

We will show that V<0. If we suppose ab absurdo V, %0, then there
exists § such that V(§)>0,V'(§)=0 and V. %0 in [0,5]. We denote by B
the ball centered at the origin whose measure is § and we consider the
eigenvalue problem

A*p=Ac*(x)p in B
2.12) {q;EH},(B).
If we observe that

-1
A#¢=lc’f(x)q)¢— (eB‘xl(px,-)x,-_ "B E‘WL o— il Ct(x)lp = eB]XIiC#_(x)(p
X

then the first eigenvalue of (2.12) can be characterized by
n—1
B (n—1)

A,= min x|
' senyd [se™ct(x)D%dx

J:e(V @|*— D2 — c*(x) DY)dx
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Since BC Q*,by (ii) of proposition 2.1 we find A,>0. On the other hand
if ¢, is the eigenfunction corresponding to 4,, we have

~1+1/n —2+2/n

- (s)"B—‘Pl(s)_nz—anm

nC,',"' L c*(o), (0)do=

_ J c*(0)e,(0)do a.e. in [0, 5].

=A——
n’C*" Jo
5

Hence setting ¢=J c*(0)p,(0)do, it is easy to verify that A, is the same
0

as the first eigenvalue of the problem
le/n ¢r 4 s—2+2/n le/n
_(eXp ( cim ) e ) T CXP( c )¢=

(213) s-—2+2/n le/n
=4, g exp c D

n

P0)=2D'(5)=0.

By (2.13), using the variational characterization of 4, and (2.11), we get

3 B 1in VIZ —2+2n B n
I exp( > ) v S exp ( u )Vids
0

cm ) oc* n*c? c
2’1 = 3 s—2+2/n le/n SO
JO nZ CZ/n exp ( Cl/n ) Vi‘ ds

which gives the absurd.

Using again (2.11) we have

le/n V' B
“(CXP( c )_c—i‘—) =0
V(0)=0
V'(lu>0])=<0.

Integrating between s and |u>0|, we obtain V’'(s)=<0, that is w(s)<O.
The result in the case ¢c*=0 can be proved by approximation tech-
niques. O



304 M. R. Posteraro - R. Volpicelli

Making use of the techniques of the proof of theorem 2.1 it is possible
to estimate the L>-norm of Vu. We have the following

Theorem 2.3. If one of the conditions of proposition 2.1 is verified
and u, v are solution respectively of (1.2), (1.3) with the assumptions
(1.1), then

j IVu|2dfoJ | Vv|%dx.
Q . o*

Proof. Starting from (2.5) and squaring both sides we get

d
_—?d_t—J l Vu|2dxs
ﬂ(t)—l+ll"

nC»

2

u(e)
J o)+ C”i(a)u*(o))da] )

0

=—u'(t)|Bt+

Integrating between O and sup » and making a change of variables we ob-
tain

J |V ul?dx<
Q
—1+1/n

Bu*(s)+ o

0]
S J
0

By Theorem 2.2 we have u*(s)=<v*(s), which implies also
|u>0|=<|v>0|, therefore we conclude observing that

J (o) + C’E(O)u*(a))da]zds.

0

=
Q

[v>0| —1+Un (S
= J [Bv*(s)+ a J j*(a)+c"i(a)v*(o)da]2ds.

nC™ Jo .

Using the previous results we can get also an estimate for a(u,u).

Proposition 2.3. Under the same assumptions of theorem 2.2, the
following estimates hold
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(@) a(u,u)+ L c_(wtdx<a*(v,v)+ J c*o)vidx;

n#
B) au,wy=a*@v,v) if b,(x)=0.

Proof. If in (1.2) we choose as test function U=0 and U=2u we
obtain

a(u,u)=-Jn Jf(x)udx.
By Hardy inequality we have
o]
a(u,u)+I c_(uldx< J (F¥(s)u* + c*(s)u*)ds,
1) [}

and integration by parts gives
Il lal (s
J (¥ () + c*(s)u*)u*ds= J I (@) + cx(Ou*)dt(—du*(s)).

By (2.4) we have

J (F* (D) + c*(Ou*)dt =0,

0

moreover (2.1), (2.8) and theorem 2.1 imply

du* dav*
<

ds dv
Then

1ol ol (s
J (F*(s)u* + c*(s)u*?)ds < I J @O+ c*@)v*¥)dt(—dv*(s)) =

0 ] 0

o
- J (F*(s) + ct(s)v*)v*ds=a*(v,v) + L#C’E(x)vzdx,

(4]
that is (&) or, which is the same, (8) when c_(x)=0.

If b,(x)=0, then the bilinear form a*(u, v) is symmetric and hence we get
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a(u,u)= L f(x)udeI L ffoutde=a*(v,uh)=<
(2.14) a

<Va*,v) Va*@*, u*).
Ellipticity condition, Polya Szego and Hardy inequalities give

a*(w*,u*)= L,| Vu*|*dx—~ Jn, ctxyutdx <

(2.15) .
=< L| Vu|dx— Lc_(x)u’dxi:a(u,u).

By (2.14) and (2.15) (B) follows. O

Remark. We can apply the previous results to the obstacle problem
(2.16) a(u,qv—u)ZJn flo—w) VY 9EH, () g,u=y
where the obstacle y € Hy(2) and
Ay =—(a,()y,),,+ (b,X)Y), +cx)y in L?(Q).
Setting u=u—1 and g=f—Ay we have that i satisfies
a(ﬁ,fp—ﬂ)ZL glp—un) 9EH () ¢, #=0.
Hence we can compare # with the solution of the symmetrized problem

a#(v,V—v)ZL# gV —v)dx v VEH,; (0% V,v=0.

Acknowledgement. We would like to thank prof. J. I. Diaz for
having suggested to estimate the energy in complete form.

APPENDIX

Proof of Proposition 2.1. Following [AMT] at first we prove that
conditions (i), (ii), (iii) are equivalent. In order to do that let us observe
that
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(A.1) A*Z=H<—(e®¥Z,), —e"*B 27D ;o ct(Z="H

x|

then the first eigenvalue of (2.6) can be characterized by the Rayleigh
principle

L, e”""(IV@P—B—(n';'l) &~ c* (1) D)) dx
(A2) A= min

PeH Q%)

L“e""" p(x) D*dx
@) = (i)
By (A.1)
A,L, e®p(x) D Zdx = Jn,eb"'H D dx,

where @, is the first eigenfunction of (2.6). Then, since @, has constant
sign in (¥, we have 1,>0.

(i) = (iii)
(n—1)
||

-1
(D) ¢>2—c’f¢2) dx—aI e™| V| %dx=

] of

Choosing in (ii) p(x)=B +c*(x), and using (A.2) we get

[ (ol-s
[4]

=1 o,
x|

-1
=l(1-a) L,e"""p(x)sbz— a L,e”"" (B (n|x| ) D+ c*_‘d?z) dx=

=(1-a)| | VD|dx— | ™ |B +ctd?| dx=
o* o

=1, —ol,—a) L‘e""" (B %¢2+ c’_'cb’) dx.
x

A

Taking 0<a<
g A+

, (ii1) follows.

(i) = (@)
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By (iii) the problem
1
—eiz,), —e BTV 7t yz=etil in
(A.3) xl
ZEH(OY)
has a unique solution. Moreover this solution is positive. As a matter of
fact setting Z_=max (—Z,0) by (A.3)

(n—1)
x|

=— J e HZ dx<0

o

aL,e"'*'| VZ_|dx=< L,e"'*' (] VZ_|*-B zi—ci‘zi)dx =

and then Z_=0.
With similar arguments, by (iii), we obtain (2.7).

Now we observe that (1.3) is equivalent to the variational inequality

( —1)
Il — —
L,e" [vx'_(¢ v),—B "

> L,eﬂ'*'f*(x)@—v)dx v dEH) (Q*) @,v=0

———v(DP—-v)— c#(x)v(¢ v)]dx>

which, by (iii), has a unique solution v.

To prove that v is decreasing for the s'ake (I>f simplicity we suppose v
v>0

C.

sufficiently smooth. Setting r=|x|,R =( , V=v, and deriving

with respect to r the equation
A*v=p* in {x:v(x)>0}
we obtain

(=D +( =D _p D —cf(x))v=
r r r

(=1
' 7
-

v+(c®) v in [O,R].

Since f*—B (n

v=<0, we have
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arv+ 2Dy
x|

and V(R)=0.

: (n=1)

We conclude observing that the operator A#+T has the property

2.7. O
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