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Positive Radial Solutions for Semilinear
Biharmonic Equations in Annular Domains

ROBERT DALMASSO

ABSTRACT. We study the existence of positive radial solutions of
A*u=g(|x|)f(u) in an annulus with Dirichlet boundary conditions. We establish
that the equation has at least one positive radially symmetric solution on any an-
nulus if f and g are nonnegative, g0 and f is superlinear at zero and + . We
also give a property of positive radial solutions.

1. INTRODUCTION

In this paper we consider the existence of positive radial solutions of
the semilinear biharmonic equation

(1.1 Au=g(|x|)fw) in Q(a, b)
(1.2) u= %= 0 on d{)(a, b)

where 0<a<b<+, Q(a, b) denotes the annulus {xER"; a<|x|<b}
]
(n=2), e is the outward normal derivative and f, g satisfy the following

hypotheses
(H,) fe€C([0, + =»)) and f(u)=0 for u>0.

(H,) g€C(a, b)), g(r)=0 for r€Ja, b] and g#0 in [a, b].
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Hy)  Jim f@)/u=+o.
H,) ii_)rgf(u)/u=0.

The analogous problem for the Laplace equation has been intensively
studied in recent years (see e.g. [1]-[4], [8], [11], [12], [15]) and nearly
optimal results have been obtained. In most papers, the shooting method
was used to establish the existence of positive radial solutions. In contrast
the result of [1] was obtained by a variational method and the use of a
priori estimates, while in [15] an expansion fixed point theorem was ap-
plied.

Our main result is the following theorem.

Theorem 1.1. Assume (H,)—(H,). Then problem (1.1), (1.2) pos-
sesses at least one positive radial solution u€ C*(Q(a, b)).

In this paper our method of proof makes use of a priori estimates and
well-known properties of compact mappings taking a cone in a Banach
space into itself (see [7]).

Since we are interested in positive radial solutions, the problem under
consideration reduces to the one-dimensional boundary value problem

(1.3) Au(t)=gOfu@®), t€(a, b)
1.4 u?(a)=u?(b)=0, j=0,1
where A denotes the polar form of the Laplacian, ie. 4=

ti-n _E_. (t"_l .i)
dt dt]’

Our next result gives a property of nonnegative nontrivial solutions of
(1.3), (1.4) when f and g satisfy some monotonicity conditions.

Theorem 1.2. Suppose that f and g in equation (1.3) satisfy the fol-
lowing assumptions:

(Hy) f:[0,+%°)—[0,+ ) is nondecreasing.

(Hs) g:[a,b]— [0,+>) is nonincreasing.
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Let uEC*([a, b]) be a nonnegative nontrivial solution of problem
(1.3), (1.4). Then Au(a)>Au(b).

Remark 1.1. Note that Au(a)=u''(a) (resp. Au(b)=u’’(b)) since
u'(a)=0 (resp. u'(b)=0).

Remark 1.2. Theorems 1.1 and 1.2 can be easily extended to handle
more general nonlinearities of the type f(|x|, u).

Our paper is organized as follows. In Section 2 we give a maximum
principle for fourth order equations and we describe the special shape of
nontrivial solutions of (1.3), (1.4) when f=0 and g=0. In Section 3 we
prove our a priori bounds for positive solutions of (1.3), (1.4).
Theorem 1.1 is proved in Section 4. Finally, Section 5 contains the proof
of theorem 1.2.

2. PRELIMINARIES

We have the following theorem.

Theorem 2.1. Let u€C*([a, b]) be such that

A*u=0in (a, b)
u”(a)=u”b)=0, j=0, 1.
Assume that u=Q0Q. Then:

(i) There exist r, s€ (a, b) such that r<s, Au>0 on [a, r)U(s, b]
and Au<0 on (r, s).

(ii) There exist d,, d,E (r, s) such that d,<d,, (4u)’' <0 on [a, d,),
(4u)'>0 on (d,, b] and (4u)'=0 on [d,, d,].

(iii) u>0 on (a, b). Moreover there exists cE(r, s) such that u' >0
on (a, c) and u' <0 on (c, b).

Proof. We first prove (i). Suppose that Au(a)<0 and Au(b)=<0.
Then the one-dimensional maximum principle ([14] p. 2) implies that
A4u=0 on [a, b]. Since u(a)=u’(a)=u(b)=u'(b)=0, the maximum prin-
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ciple and the Hopf boundary lemma ([14] p. 4) imply that ¥=0 on [a, b]
and we reach a contradiction. Thus Adu(a)>0 or Au(b)>0. Suppose for
instance that Au(a)>0. If 4u=0 on [a, b], we get a contradiction as be-
fore. Thus there exists xE(a, b) such that Au(x)<0 and we can define
r€(a, b) to be the first zero of Au in (a, b). Since u''(a)=Adu(a)>0 we
have ¥>0 in (a, a+ 7] for some #>0. Using the maximum principle and
the Hopf lemma we get u’>0 on (a, r]. Now, if Au(b)=<0, the maximum
prmc1ple implies Au<<0 on (r, b). Since u(r)>0 and u(b)=u'(b)=0, we
again reach a contradiction. Thus we have proved that 4u(b)>0. Now we
can define sE(r, b) to be the last zero of Au in (a, b). Since Au(x)<O0,
the maximum principle implies that Au<<0 on (r, s).

We now prove (ii). Denoting by m<O0 the minimum value of Au in
la, b], we define E= {¢tE(a, b)/Au(t)=m}. Suppose first that E contains
only one point. Then with the aid of the Hopf lemma we obtain (ii). Now,
if E contains at least two points, the maximum principle and the continuity
of Au imply that E=[d,, d,] where r<d,<d,<s. Then, using the Hopf
lemma we obtain (ii).

Finally we prove (iii). We have already seen that #'>0 on (a, r]. In
the same way we show that ¥’<0 on [s, b). Now let #, (resp. t,) be the
first (resp. the last) zero of u’ in (a, b). Clearly r<t,=<t,<s. Suppose
that z,<t,. Then the Hopf lemma implies that either u'(z,)>0 or
u'(t,)<0, a contradiction. Thus t,=¢, and (iii) is proved.

3. A PRIORI BOUNDS

Theorem 3.1. Assume (H,)—(H,). Then there exists M>0 such that

eafl. =M

for all positive solutions u€ C*([a, b]) of (1.3), (1.4).

Proof. We denote by S the set of all positive solutions of (1.3), (1.4)
in C*([a, b]). Let uES. By theorem 2.1 there exist c(u), d,(u), d,(v),
r(w) and s(u) in (a, b) such that ¥'>0 on (a, c(w)), u’'<0 on (c(u), b),
(4u)' <0 on [a, d,(w)), (4u)'>0 on (d,(w), b]l, (4u)' =0 on [d,, d,],
Au>0 on [a, r(w))U(s(w), b] and Au<0 on (r(u), s(u)). Moreover we

have a <r(u)<c(u), d,(w), d,(u)<sw)<b and d,(u)=<d,(u).

We shall divide the proof into several steps. Subsequently C will de-
note various generic constants which may vary from line to line.
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Step 1. We first prove that {gf(u); uES} and {gu; u€ES} are
bounded in L; (a, b). Define

o(®)=(t—a)’(t—b) for a <t<b.
Let 9€ C%([a, b]) be the solution of the boundary problem

A*p=go in (a, b)
#*(@)=¢”(b)=0, j=0,1.

By theorem 2.1 ¢>0 in (a, b) and there exist ¢,>0 and ¢,>0 such that
3.1 CL0=<9=c,0 on [a, b].

By (H,), there exists A>c;"' and u,=0 such that

3.2) fw)=Au for u=u,.

If we multiply equation (1.3) by " ‘¢ and integrate by parts four times we
obtain

b b
(3.3) J " ogfuydt = J t"'ogudt.
From (3.2) and (3.3) we deduce

b b b
J 1" 'ogudt Z,II t"“:pgudt—CZch t"'ogudi—C

that is
b
(3.4) J "1 0 gudt=< e =1
b a
(3.5) I " logf(wydt< m .

Thus {gf(u); uES} and {gu; uES} are bounded in L, (a, b).

Step 2. Now we prove the following lemma.
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Lemma 3.1. Let A be a subset of S. Then:

(i) If {Au;u€A} is bounded in L'(a, b), then there exists a constant
M>0 such that ||ull.<M for all uEA.

(ii) If there exist y>0, >0 and C>0 such that y+n=<b—a and
u(t)<C for t€[a, a+y]U[b—n, b] and uE€A, then there exists
a constant M=C such that ||ull.<M for all u€A.

Proof. (i) follows readily from the fact that ¥ and u’ vanish at least
once in [a, b]. We now prove (ii). Setting m= inf o(f) and using

la+y, b—n)
(3.5) we obtain
b b a+ b—n b
It”“Azudt = It”_lgf(u)dt = r+ J + J
a a a a+y b—n

b—n

1
=C+ J ! 7ng(u)dt

aty

=C(1+ J t"ogfw)dt) <C.

Thus {4%u;u€A} is bounded in L'(a, b). Since u, u’, Au and (Au)’ van-
ish at least once in [a, b] the result follows.

Step 3. Finally we prove that S is bounded in L"(a, b). Let y>0,
7>0 and 0>0 be such that y+#+20<b—a and g>0 on [a+y, b—1].
Define a'=a+7y+0 and b'=b—n—03. Then by (3.4) there exists K>0
such that

b
(3.6) J udt <K.

Let n,>0 be such that 1/n,<(b’' —a')/4. By (3.6) we have

1 b'—a’
(3.7 meas {t€[a’', b'l; u(t) =Zn,K}< —< 4a
R,
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Now define
S.={uES;c(uy>h'}
S_={uES;cw)y<a'}
and
SO= {uES;a' <c(u)<b'}.

Thus S=S_US,US,. Let a=a'+(b'—a’)4 and B=b'—(b'—a')4.
Clearly by the shape of u, (3.7) implies

(3.8) u(t)<n.K for t€[a, f] and uES,
and
3.9 u(t)<nK for t€[a, b] and u€S_.

Lemma 3.2. S, is bounded in L*(a, b).

Proof. Let u€S,. From (3.4) we get
b-n a’ b—n

Czjudtz J udt+ | udt

a+y aty b
which implies

u(®)=<C/9 for t€[a, a+ylU[b—n, b]
and we get the conclusion by using lemma 3.1 (ii).

Clearly Theorem 3.1 follows from Lemma 3.2 and the next lemma.
Lemma 3.3. S, and S_ are bounded in L™ (a, b).

Proof. We shall show that S_ is bounded in L™(a, b). We first prove
that F={u€S_; s(u)>p} is bounded in L*(a, b). We claim that for uEF
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lul|.=M=n,K+T(b—a)

where T=2/(8—a))n,K(b/a)"~"'. Indeed, suppose this is not the case.
Then let uEF be such that u(c(u))>M. We have c(u)<a. Let t€[a, f]
be arbitrary. By the mean value theorem there exists x € (c(u), t) such that,
by virtue of (3.9)

u(®) — u(c(u))

. <-T.
t—c(u)

u'(x) =

Since r(w)<cu)<a<pB<s(u), y"'u’'(y) is nonincreasing on [x, t], thus
we get

OES (i)"_lu'(x)< - (i)HT
t b
with tE[a, B]. This and (3.9) imply

u(t)<n0K—T(%)"—l(t— a) for t€[a, Bl.

For t€[(a+p)/2, f], we deduce

al\r-1f—a
u(t)<noK T(T) >—=0

and we reach a contradiction. Thus our assertion is proved

Now we prove that G={uES_; s(u)<p} is bounded in L"(a, b). Let
tE[B, b). We first show that H={Au(t); uEG} is bounded. Suppose
n=3. Since du(s)=Au(t)=0 for s&[t, b], we have

s \n—2

J((T) . l)sA u(s)ds=C(Odu(t)

u(t) = 2

t

where C($)>0 does not depend on u. Thus, if H is not bounded we get a
contradiction with (3.9). When n=2 the argument is the same.

Now let yEC*([8, b)) be the solution of the boundary problem

4*=1in B, b)
X°B)=x2»)=0, j=0, 1.
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Multiplying equation (1.3) by #"~'x and integrating by parts four times we
get

b b
Is""ng(u)ds= Js""‘xA uds=—t"""x()(Au)' (t)

(3.10) + "y (DAu(®) — " A xu' (2)
b
+ Ay u@®+ Js"'l uds
for all t€[8, b). Setting =/ in (3.10) we obtain
b

b
(3.11) JS"")Cgf(u)ds= =B AxBw' B+ B dx) Bu@)+ IS”'WS-
[

B

Since by Theorem 2.1 Ax(B8)>0, we deduce from (3.9) and (3.11) that
{u'(B);u€G} is bounded. Since 4u>0 on (B, b] when uEG, we have
B u' By<t”'u'(1)<0 for tE(B, b). Hence {u'(s);u€G, sE[B, b} is
bounded. From this, (3.9), (3.10), Theorem 2.1 and the fact that
H={A4u(®);uEG} is bounded for each fixed tE€[B, b) we deduce that
{(4u)’(t); uEG} is bounded for each fixed tE (B, b). Since for € B, b)
we have

b

b duw) (b)y—t"'(duw)' ()= Js "~lof(u)ds

t

we obtain that {(du)’'(b);uEG} is bounded. Now let d be such that
d,(u) <d=<d,(u). Using the fact that " '(du)’ is nondecreasing on [a, b]
we can write

0=d"'(du)' (d)<t""(Auw)' O)=<b"'(du)' (b)

for tE[d, b], from which we deduce that {(4u)'(?);uE€G, tE[d, b]} is
bounded. Since

Au(b)= J (4u)'ds
s(u

)
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we obtain that {4u(b);uE€G} is bounded. Now we write
’ b
Au(d)=Au(b)— I(A u)'ds
d

and we finally obtain that {Au(t);uE€G, tE[d, b]} is bounded. Using the
fact that

b
Jt""A udt=0

for all uES, we easily deduce that {Au;uEG} is bounded in L'(a, b)
and the conclusion follows from lemma 3.1 (i).

It remains to prove that S, is bounded in L”(a, b). The proof is simi-
lar. Using analogous arguments we show that {#€S,;r(w)<a] and
{uES,;r(u)=a} are bounded in L”(a, b). The proof of lemma 3.3 is
complete.

Remark 3.1. Note that the constant M in theorem 3.1 can be chosen
independently of the parameter x€ [0, x,] for each fixed x,E€ (0, + «) if
we consider positive solutions of (1.3), (1.4) for the family of nonlinear-
ities f.() =f(t+x), t=0.

4. PROOF OF THEOREM 1.1

We shall prove that problem (1.3), (1.4) has at least one positive sol-
ution uE€C*([a, b]). The proof makes use of the Kranosel’skii type fixed
point theorem [7] (proposition 2.1 and remark 2.1).

The homogeneous Dirichlet problem

A*v=0in (a, b)
VW (a@)=v?(b)=0, j=0, 1

has only the trivial solution. Then it is well-known (see e.g. [13] p. 29)
that the operator 4> with Dirichlet boundary conditions has one and only
one Green’s function G(t, s). Define the closed cone
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Z={uEC([a, b]);u=0}.

For (u, x) EZ X [0, + ®) we define

b
F(u, x)(n)= jG(t, 5)g(s)f(u(s) +x)ds

and
D(w)=F(u, 0).

By Theorem 2.1 F maps Z X [0, + ) into Z. Since G is continuous, it is
well-known that F is compact. Now the following properties hold:

(i) By Theorem 2.1 and the properties of the Green’s function any
nontrivial solution of the fixed point equation

dPW)=u, ueZz,
yields a positive solution of (1.3), (1.4) in C*([a, b)).

(i) u#60D(u) for all €0, 1] and uEZ such that ||u|,.=r for suffi-
ciently small r>0. Indeed, let a€(0, c;'), where c, is the constant in
(3.1). By (H,) we can choose r>0 such that f(s)<as for 0<s=<r. Now
suppose that there exist 6€[0, 1] and uE€Z such that u=60%P(u) with
||uﬁw=r. Then A*u=0gf(u). With the notations of step 1 of the proof of
Theorem 3.1, we have

N S— O

b b
It"“ggudt = | t"'udpdt= Jt"“qu udt

b b
= BJt"“ngf(u)dtSaczO Jt""ggudt

and we reach a contradiction.

(iii) By (H,), there exists A>c;' (where ¢, is the constant in (3.1))

and x,>0 such that f(zr+x)=Ar for all =0 and x=x,. Then using the
same arguments as in step 1 of the proof of Theorem 3.1, we can show
that the equation F(u, x) =u has no solutions u€Z for x=x,.
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(iv) Finally, using Remark 3.1 and (iii) above we can find a constant
R>r such that F(u, x)#u for all x=0 and uE€Z with ||u|..=R.

Now we can apply Proposition 2.1 and Remark 2.1 stated in [7] to
conclude that @ has a nontrivial fixed point. The proof of the theorem is
complete.

5. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 is based on the maximum principle and the
technique of moving parallel planes as in [9], [16] for second order equa-
tions and [5], [6] for fourth order equations. Subsequently A denotes
equally the cartesian form and the polar form of the Laplacian. In the
same way we write indifferently u(x) or u(|x|).

Assume that du(a)<Au(b) for some nonnegative nontrivial solution
u€C*([a, b]) of problem (1.3), (1.4). Then by Theorem 2.1 we have

+b
u>0 in Q(a, b) and du<Au(b) in Q(a, b). Let AE aT’ b) and de-
fine 2(A)=Q(a, b)N{x=(x,, x')ER", x,>A}. Let 2'(1) denote the re-
flection of X(4) in the plane T,={x=(x,, x')ER", x,=A}. Define the
function
u(xX)=ul—x,,x’) for x€2'(A).
We have the following Lemma.

Lemma 5.1. u (resp. Au) is strictly increasing (resp. strictly de-
creasing) as one enters Q(a, b) from {xER"; |x|=b} along any nontan-

gential direction 5, for some positive distance d>0 into ((a, b).
ou .
Proof. We have u=W=0 on 9{)(a, b). Since by Theorem 2.1 Au
is a positive constant on {xER"; |x|=b} the proof is immediate.

+b
From Lemma 5.1 we deduce the existence of 176(0, fz——) such

that, for A€ [b—7n, b), we have
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ou

u,—u<0in 2'(A) and <0in Z(A)

é.n !

as
A, —u)>0 in '(A) and ——2

>0in 2(4).

1

Decrease A until a critical value u=(a+b)/2 is reached, beyond which
(5.1) is no longer true. Then (5.1) holds for A€ (u, b) while for A=u we
have by continuity

. a
u,—u=0 in 3’ () and a: <0 in Z(u)
1
Y
A, —u)=0 in Z' () and —=>0 in Z(u).

1

Suppose u>(a+b)/2. We have u,¥*u in 2'(u) since >0 in Q(a, b).
The maximum principle ([10] p. 15) and the Hopf boundary lemma ([10]
p- 33) imply that

3
(5.2) u,—u<0in 3'(u) and ?“<0 on T,NQ(a, b)

1

0
where the second inequality follows from the fact that —é;—(u”—u)=
1

ou

-2
ax

on T,N{(a, b). Now (Hs) and (H,) imply that Az(uﬂ—u)SO in
1

2'(u). From our assumption we have Au<Adu(b) in Q(a, b). Thus
A(u,—u)#0 in X'(u). The maximum principle and the Hopf boundary
lemma imply that

53  AGw-w>0in =) and 22

>0 on T ,N{a, b)

X 1

0
where the second inequality follows from the fact that K(A(uﬂ—u))=
1

0Au

X1

-2

on T,NQ(a, b). (5.2) and (5.3) show that (5.1) holds for A=u.

Now our definition of # implies that either there is a strictly increasing
sequence (4,) with lim A;=u(4,>(a+b)/2 v j) such that for each j there is
)—;00

a point x,€2"'(4;) for which
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5.9 ulj(xj)—u(xj) =0 v j

or that there is a strictly increasing sequence (u;) with lim u,=u
,—)ca

(u;>(a+b)/2 v j) such that for each j there is a point z,€X'(u;) for
which

5.5) Auﬂj(zj) —Au(z) <0 vj.

In the situation (5.4), a subsequence which we still call x; will con-
verge to some point x&€2"(u); then u,(x) —u(x) =0. Since (5.1) holds for
A=p we must have xE€0Z'(u); If x€32'(u)\T, then 0=u,(x)<u(x), a
contradiction. Therefore xE€T,. Using Lemma 5.1, (5.2) and (5.1) with
A=u we see that for some £¢>0 we have

du

(5.6) <0in Q(a, H)N{x=(x,, x)ER"; x >u—e}.

1

The straight segment joining x; to its symmetric with respect to T, belongs
to (a, b) and by the theorem of the mean it contains a point y; such that

du
0x,

;) =0.
Since limy,=x, we obtain a contradiction to (5.6).
,—)ou

In the situation (5.5), a subsequence which we still call z; will con-
verge to some point zEX'(u); then du,(z) —Au(z)=<0. Since (5.1) holds
for A=u we must have z€0X'(u); If z€0X'(u)\T, then
Au(b)=A4u,(z)>Au(z), a contradiction. Therefore zET,. Using Lemma
5.1, (5.3) and (5.1) with A=u we see that for some £>0 we have

5.7) oAu

>0in Q(a, )N{x=(x, x)ER"; x >u—e}.

1

The straight segment joining z; to its symmetric with respect to T, belongs
to Q(a, b) and by the theorem of the mean it contains a point ¢; such that

0Au

t)=<0.

Since lim ¢,=z, we obtain a contradiction to (5.7).
j—)w
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Thus we have proved that u=(a+b)/2 and that (5.1) holds for A€

a+b .. .
( 7 b). By continuity we have
R ou .
u,—u=0in 2'(p) and Fw <0 in 2(Q)
1
and
0du

A(u,—u) =0 in 2'(p) and >0 in Z(p)

1

a+b
where g=—2-—. Now let x=(a, 0) then

d
(u,— u)(x)=¥(ue—u)(x) =0

and the Hopf lemma implies that u,—u=0 in 2'(p), but this is imposs-
ible. The proof of the theorem is complete.
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