Answer to a Question by M. Feder About K(X, Y)

G. EMMANUELE

ABSTRACT. We show that a Banach space E constructed by Bourgain-Delbaen in 1980 answers a question put by Feder in 1982 about spaces of compact operators.

Let X, Y be two Banach spaces. By K(X, Y), W(X, Y), L(X, Y) we denote the Banach spaces of all compact, weakly compact and bounded linear operators from X into Y, respectively. In the paper [4] Feder put a question that in light of recent results in [3] can be reformulated as it follows

Question. Do Banach spaces X and Y exist so that $K(X, Y) \neq L(X, Y)$ and however K(X, Y) does not contain a copy of c_0 ?

Feders's question is related to the following problem: let us assume X, Y are such that $L(X, Y) \neq K(X, Y)$; is K(X, Y) uncomplemented in L(X, Y)?

The results in [3] and [4] show that the best result known is the following one: if c_0 embeds into K(X, Y), then K(X, Y) is uncomplemented in L(X, Y); so it remains to study the case of K(X, Y) containing no copy

Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.U.R.S.T. of Italy (40%; 1990).

¹⁹⁹¹ Mathematics Subject Classification: 46A32, 46B20. Editorial Complutense. Madrid, 1993.

of c_0 , if such two spaces exist (i.e. if Feder's question has a positive answer).

Up to now, no answer to Feder's question has been given as far as we know.

In this short note we want to show that a Banach space constructed by Bourgain and Delbaen in[1] (before Feder's paper appeared) answers positively to the above question. The space E constructed by Bourgain and Delbaen is a \mathcal{L}_{∞} -space with the Radon-Nikodym property such that E^* is isomorphic to ℓ^1 . If we take X = Y = E we clearly get $K(X, Y) = W(X, Y) \neq L(X, Y)$. Now, let us assume that c_0 lives inside K(X, Y). We recall that $K(X, Y) \simeq K_{w}(X^{**}, Y)$ and $W(X, Y) \simeq L_{w}(X^{**}, Y)$ where $K_{w'}(X^{**}, Y)$, $L_{w'}(X^{**}, Y)$ denote the spaces of all w^*-w continuous compact, bounded operators from X^{**} into Y, respectively. So we can act in $K_{w}(X^{**}, Y)$. Let (T_n) be a copy of the unit vector basis of c_0 in $K_{w'}(X^{**}, Y)$. For $X^{**} \in X^{**}$, the series $\Sigma T_n(X^{**})$ is unconditionally converging in Y and so, for any $\xi \in \ell_{\infty}$, the series $\sum \xi_n T_n(x^{**})$ is also unconditionally converging. It is not difficult to see that the map $\xi \to \Sigma \xi_n T_n$ defines a bounded, linear operator from ℓ_{∞} into $L(X^{**}, Y)$. We shall prove that, actually, $\Sigma \xi_n T_n \in \mathcal{L}_{w^*}(X^{**}, Y)$. Let (x_α^{**}) be a w^* -null net in B_{X^*} and $y^* \in Y^*$. If we denote by φ_{ξ} the operator $\Sigma \xi_n T_n$, we have to show that

$$\lim \left| \varphi_{\xi}(x_{\alpha}^{**})(y^{*}) \right| = 0$$

Since $\sum \xi_n T_n^*(y^*)$ is unconditionally converging, we have

$$\lim_{n} \sup_{B_{x^{**}}} \sum_{p=n}^{\infty} |\xi_{p} T_{p}^{*}(y^{*})(x^{**})| = 0.$$

So, given $\varepsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $\sum_{p=n_0}^{\infty} |\xi_p T_p^*(y^*)(x_a^{**})| < \varepsilon/2$ for all α ; since $x_a^{**} \xrightarrow{w^*} \theta$, it is obvius that

$$\lim_{a} \sum_{p=1}^{n_0-1} |\xi_p T_p^*(y^*)(x_a^{**})| = 0,$$

and so for α sufficiently large we have

$$\sum_{p=1}^{n_0-1} |\xi_p T_p^*(y^*)(x_a^{**})| < \varepsilon/2.$$

Hence, for α sufficiently large, we get

$$\sum_{p=1}^{\infty} \left| \xi_p T_p^*(y^*)(x_a^{**}) \right| < \varepsilon,$$

which means that

$$\lim_{\alpha} |\varphi_{\xi}(x_{\alpha}^{**})(y^{*})| = 0.$$

Hence, $\Sigma \xi_n T_n \in L_{w^*}(X^{**}, Y)$. In this way, we have defined a bounded, linear operator from ℓ_{∞} into $L_{w^*}(X^{**}, Y) \simeq W(X, Y)$ such that the unit vector basis of c_0 is mapped onto a not relatively compact sequence. A result due to Rosenthal ([5]) implies that ℓ_{∞} must live inside W(X, Y). Since W(X, Y) = K(X, Y), ℓ_{∞} embeds into K(X, Y), too. But this contradicts a corollary of the main result of [2].

We also observe that in the paper [1] another class of Banach spaces F has been introduced; as remarked in the NOTES ADDED to our paper [3] if X=Y=F we get a second example of Banach spaces answering positively Feder's question; even in that case W(X, Y) = K(X, Y). So we can conclude this note with the following questions

Question A. Do Banach spaces X, Y exist so that $K(X, Y) \neq W(X, Y)$ and c_0 does not embed into K(X, Y)?

Question B. Let X = Y = E (or F) be the Bourgain-Delbaen space. Is K(X, Y) uncomplemented in L(X, Y)?

References

- [1] J. BOURGAIN, F. DELBAEN: A class of special \mathcal{L}_{∞} -spaces, Acta Math. 145 (1980), 155-176.
- [2] L. Drewnowsky: Copies of ℓ_{∞} in the operator space $K_{w^{*}}(E^{*}, F)$, Math. Proc. Cambridge Phil. Soc. 108 (3) 1990, 523-526.
- [3] G. EMMANUELE: A remark on the containment of c_0 in spaces of compact operators, Math. Proc. Cambridge Phil. Soc., 111 (1992), 331-335,
- [4] M. FEDER: On the non-existence of a projection onto the spaces of compact operators, Canad. Math. Bull. 25 (1982), 78-81.

[5] H. P. ROSENTHAL: On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 13-36.

Department of Mathematics University of Catania 95125. Catania Italy

Recibido: 17 de noviembre de 1992