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ABSTRACT. For U open in a locally convex space E it is shown in [13] that

there is a complete locally convex space G(U) such that G(U), = (# (U), T,).

We will show that when U is balanced there is an .%“absolute decomposition
for G(U) in terms of the preduals of the spaces of homogeneous polyno-
mials. For U balanced open in a Fréchet space we investigate neccessary
and sufficient conditions for (#°(U), 7,) to be equal to G(U),.

1. INTRODUCTION

Let U be an open subset of a locally convex space E over C and let
#(U) be the space of holomorphic functions from U into C. We will de-
note by 7, the compact-open topology on -#(U). A semi-norm p on
#(U) is said to be ported by the compact subset K of U if for each open
V,KCVCU, there is C,>0 such that

P(f)scv”f”v

for all f€ # (U). The t,-topology on #°(U) is the topology generated by
all semi-norms ported by compact subsets of U.

If K is a compact subset of E we denote by -# (K) the space of holo-
morphic germs on K. The 7, and 7, topologies are defined by
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(F(K), 7,)=lim (F(V), 7,)

KCU

and

(F (K, 7.)=lim (FO), 1,)

KCU

Let U be an open subset of a locally convex space E. We say that a
seminorm p on # (U) is ts-continuous, if for each countable increasing
open cover {U,}, of U there is an integer n, and C>0 such that

ph = Clflo,

for every f in #°(U). The t5-topology on # (U) is the topology generated
by all 7; continuous semi-norms.

In [10], Mazet shows that there is a locally convex space G(U) and
a holomorphic map ¢, from U into G(U) with the following universal
property: Given any complete locally convex space F and f€#°(U, F)
there is a unique T,€ (G (U), F) such that f=T,00,. In particular if we
take F= C, we see that G(U) is a predual of #°(U). Mujica and Nachbin
[13] give a new proof of this theorem and show that G(U) is also a topo-
logical predual and the inductive dual of G(U),G(U); , is equal to
(F(U), 15). In §2 we show that the spaces (P("E), 7,) and (#(K), 7,,)
also have topological preduals which we denote by Q("E) and G(K) re-
spectively. We show that the spaces {Q("E)}, are an .#absolute decom-
position for G(U) when U is balanced and therefore many of the topolo-
gical properties of G(U) can be obtained from the topological properties of

QC(E).

In the final section we assume U is a balanced open subset of a Fré-
chet space. We show that we can construct (#(U), t,), from the G(K)’s,

and use this result to show that G(U), = (#(U), 1s) if and only
(F(U), 1,) is the bidual of (F#(U), 1,).

If E is a locally convex space and n a positive integer, § E will de-
note the n-fold tensor product of E with itself completed with respect to
and endowed with the 7 or projective topology. We denote by ﬁ% E the

completion of the subspace generated by the symmetric tensors.
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We refer the reader to [6] for further reading on infinite dimensional
holomorphy and to [9] for further reading on locally convex spaces.

2. PREDUALS OF HOMOGENEOUS POLYNOMIALS AND
SPACES OF GERMS

Just as the space of holomorphic functions on each open subset of a lo-
cally convex space E has a predual, the space of n-homogeneous polyno-
mials on E, for each integer n, and the space of holomorphic germs on
each compact subset K of E will also have a predual. In fact, for n-ho-
mogeneous polynomials, by taking Q("E) to be the space of all linear
forms on P("E) which when restricted to each locally bounded set is 7,-
continuous, the proof of Theorem 2.1 of [13] is easily adapted to show the
following:

Proposition 1. Let E be a locally convex space, then for each posi-
tive integer n, there is a complete locally convex space Q("E) and an n-ho-
mogeneous polynomial 0,EP("E, Q("E)) with the property that given any
complete locally convex space F and any PEP("E, F) there is a unique
L,€ L(Q("E), F) such that P= L,00,.

This result has previously been proved by Mujica, [12], for Banach
spaces and Ryan in [14] with Q("E) replaced by @ E. By the uniqueness

of L, it will follow that Q("E) is topologically isomorphic to ® E.

sn,a

Let us define G(K) to be the space of linear maps from #(K) to C
which are 7,-continuous on each set of holomorphic germs which are de-
fined and umformly bounded on some neighbourhood of K. Applying
Theorem1.1 of [13] to the inductive limit (#(K), 1,)= hm H =V, ﬁ, W

we get:
Proposition 2. Let K be a compact subset of a locally convex space
E, then G(K), =(#(K), 1,).

This result had been previously proved by Mujica [11] for E a Fréchet
space. In [11], Mujica points out that in this special case G(K)=(+#"(K),

T,)s-
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The concept of .““absolute decomposition ([5]) allows us to obtain
topological properties of (#(U), ©) from the corresponding propertles of
(P(E), 1), t=7,, 7, or 75 and U balanced. To show that {Q("E)}, is an
Fabsolute decomposition for G(U) we require the following lemma. (See
Proposition 3.15 of [6] for a related result.) We let .5={(a,)EC™:

lim sup, ., la,,l%Sl}.

Lemma 3. Let U a balanced open subset of a locally convex space
E, (a,),€5 and {fy}; be a family of functions in #(U) uniformly
bounded on some neighbourhood of a compact balanced set K. Then
there is an M>0 such that

2 o]

n=0

d"fp(O) <M

v

for every B and some neighbourhood V of K.

For U open in any locally convex space E it can be shown that, for
each n, the map¢ :Q("E)—G(U) defined by ¢ ()= ¢( d"f(O))
¢ EQ(E), fEF(U) identifies Q("E) with a closed subspace of .G(U).

Proposition 4. Let U be a balanced open subset of a locally convex
space E; then {Q("E)}, is an S-absolute decomposition for G(U).

Proof. Let B={f;} be a family of locally bounded function in
A#(U). Recall that the topology on G(U) is the topology of uniform con-
vergence on locally bounded subsets of #°(U). As

1,2 .., .. )ES

it follows by Lemma 3 that for each x we can choose a neighbourhood V,
of I',, the balanced hull of {x}, such that

sup ;nz

Therefore for every m and every 8 we have,

x
VX

d" £,(0)
n!
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©

<3

n=m

d" £50)

n!

i 2 d" £,(0)

n!

=M

x*
14

x

n=m VX

Thus the set

_ , & d"f;(0)
s $TB0

n=m

is locally bounded.

For ¢E€GU), let ¢,=@|per. For each semi-norm a let U,={xEE:
a(x)<1} and B.={PEP(E): ||P|,,=<1}. Then B is a locally bounded
set of holomorphic functions on #(U) and ¢,|B. = ¢|B, is 7,-continuous

and ¢,€EQ("E). Since ¢ is 7,-continuous on B and the Taylor series ex-
pansion of f; about 0 converges to f; in the 7,-topology we have that,

\‘P - mz—,q)k

sup (6 - 'gm)(fﬂ)

= d" £,(0
| (354 )

ﬁ n=m

as m— . Thus ¢=2:= o @ in G().

B

1 |
= m2 l|¢”§_) 0

As
(a,, 2’a,, ..., n’a,,..)ES

for (a,), €.%, it follows by Lemma 3 that for every x€U, we can find
N.>0 such that

3

d" f,(0)
2 B
sgpngon a, —n'

=N,

X

x

for some neighbourhood W, of I',. In particular the set

n!

= 50
n, B
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is locally bounded. Let ¢,—0 in G(U). As every locally bounded subset
of P("E) is locally bounded in #(U) and

d"£,(0)
o, (75 ) <

(¢,),—0 in Q("E) for every_n. This shows that {Q("E)}, is a Schauder de-
composition for G(U). For 2 WPEGWU) and (a,),E.7,

3 a0,
n=k

) 1
”(¢ﬂ)n” _%(l =sup 2 ||¢71"B”
n! B B n a,,

—ZMWM
ofu222)
n!

3%@”

n!

= 1

<lgl 3~

n=k

This shows that {Q("E)}, is an S~decomposition for G(U), and takmg
k=0, we see that the decomposition is .~absolute.

In a way similar to that in which each Q("E) can be identified with a
closed subspace of G(U) it can be shown that each Q("E) can be identified
with a closed subspace of G(K) for K a compact subset of E and E any
locally convex space. By a modification of Proposition 4 we have:

Proposition 5. Let K be a balanced compact subset of a locally con-
vex space E, then {Q("E)}, is an S-absolute decomposition for G(K).

Corollary 6. If E is a Fréchet space then Q("E)=(P("E), t,),.

Proof. Both {Q("E)}, and {(P("E), 7,),}, are .F~absolute decomposi-
tions for G(K) =(#(K), 1,); - O
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3. DISTINGUISHED PREDUALS OF SPACES OF
HOLOMORPHIC FUNCTIONS

In this section we investigate conditions for G(U), to be equal to
(F(U), t5). We begin by relating (#°(U), t,), to the G(K)’s when U is a

balanced open subset of a Fréchet space. We denote by Ry , the map from
F (U) to # (K) which assigns to each f in #(U) its restriction to K.

Proposition 7. Let U be a balanced open subset of a Fréchet space
E, then (#(U), 7,),= lim G(K).

KCU
K balanced

Proof. Since (# (U), t,) and (#(K), 7,) are semi-Montel, we have
that (#(U), 7,),= (#(U), 7,); and (F'(K), 1,); = (F(K), 1,),=G(K),
where 7 denotes the Mackey topology. If K is a balanced compact subset
of U then the Taylor series of f about O converges to f in (#(K), 7,).
Since &#°(U) contains all polynomials, Ry ,((-#(U),t,)) is dense in
(#(K),t,). Therefore the inductive limit

F W), )= lim (F K,

KCU
K balanced

is reduced. Therefore by IV.4.4 of [15] we have that

FWO),5 )= lim (FE,r),= lim GE).

KCU KCU
K balanced K balanced

Lemma 8. Let U be a balanced open subset of a Fréchet space E,
then G(U),=((F(U), T,)1)p-

Proof. It follows by Grothendieck’s Completeness Theorem, Theorem
3.11.1 of [9], that G(U) is the completion of (#°(U),t,),. Therefore,

(FU),1,);) =GU)Y =#(U). To show that these two topologies agree
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it is sufficient to prove that each bounded subset of G(U) is contained in
the closure, in G(U), of a bounded subset of (#'(U),7,),. Let B be a

bounded subset of G(U). Define B by

B:= {2 ¢.: Y, $,EB, mEN }
n=0 n=0
where ¢,=¢@ |~z . By the proof of Proposition 3.13 of [6], B is bounded
and as ¢,EQ(E)= (P(E), 1,);, BC(#(U),1,),. Since 3," ¢,—¢ on

the locally bounded (and therefore 7,-bounded) subsets of #'(U), B is
contained in the closure of B. This completes the proof. m]

The space G(U) is not in general a Fréchet space when U is an open
subset of a Fréchet space E.However, our next result shows that G(U) be-
haves very like a Fréchet space vis-a-vis necessary and sufficient condi-
tions needed in order to show it is distinguished. We will denote by 7, the
topology on #°(U) defined by (#(U), 1,)=G(U),.

Theorem 9. Let U be a balanced open subset of a Fréchet space E,
then the following are equivalent:

(a) G(U)y=G(U); =(F#(U), 1),

(b) G(U) is distinguished (G(U), is barrelled),
(c) G(U), is infrabarrelled,

(d) G(U), is bornological.

Proof. Since (#°(U), t;) is barrelled and bornological we see that (a)
will imply (b), (c) and (d).

It follows from Lemma 8 and the fact that G(U); = (#°(U), 7,), that 7,
is a topology on # (U) which satisfies 7,<7,<7;. It now follows from
Corollary 3 of [1] that (b) implies (a). Since G(U) is barrelled, see The-
orem 4.4 of [13], it follows by Theorem 3.6.1. of [9], that G(U), is
quasi-complete and so (b) is equivalent to (c). Finally, we note that (d) al-
ways implies(c). O

Conditions (a) and (b) of the above Theorem are also true in the case
where U is a balanced open subset of a DF space where we replace Co-
rollary 3 of [1] by Corollary 5 of [1].
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From Lemma 8 and Theorem 9 we see that if U a balanced open sub-
set of a Fréchet space E, then G(U),= (# (U), 1,), if and only if the
bidual of (#(U), t,) is equal to (#(U), t;). The question of when
(F(U), 1)), is equal to (#(U), 7;), was investigated by Dineen and

Isidro in [8]. There they proved the following Proposition.

Proposition 10. (Dineen-Isidro) Let U be a balanced open subset of
a locally convex space E, then ((#°(U), 1,),),=(# (U), ©s) if and only if
(#(U), T5) has a basis of absolutely convex t,-closed neighbourhoods
of 0.

Thus, in the case where U is a balanced open subset of a Fréchet
space E, we see that the sufficient condition given in [13] Theorem 1.1 for
G(U), to be equal to (#°(U), t,) is in fact also necessary.

As a complemented subspace of a distinguished space is distinguished,
and Q(’E) is complemented in G(U) for every integer n, we see that a
necessary condition for 7, to equal 7, is that each Q("E) is distinguished.
This gives us a means of obtaining Fréchet spaces E such that G(U), #
G(U); for any balanced open subset U of E. We begin with the observa-
tion that Q('E)=E, and therefore we have that G(U), # (# (U), 1,) for

any balanced open subset of a non-distinguished Fréchet space.

Taskinen, [16], constructs a Fréchet-Montel space F,, such that

Q(2F0)=F,,§8; F, is not distinguished. Thus we see that G(U), #

(F#(U), 1) for any balanced open subset U of F,. This also means that
there are Fréchet-Montel spaces such that G(U) is not distinguished.

To apply Theorem 9 and obtain examples of open subsets of Fréchet
spaces where G(U),= (# (U), ;) is very difficult. This is because it is
hard to show that an arbitrary locally convex space is distinguished. A
necessary condition for 7, to be equal to 7, is that each Q("E) is distin-
guished. When this holds we have the following Proposition showing that
7, is finer than 7,,.

Proposition 11. Let E be a Fréchet space such that Q("E) is distin-
guished for every integer n, then, for every balanced open set U in E, 1,
is finer than 1, on #(U).
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Proof. For every balanced compact subset K of E, G(K) is a Fréchet
space, and it follows by Proposition 2 of [3], that G(K) is distinguished.
Therefore G(K); =G(K),, for every balanced compact set K of E. Hence

(F W), 7,) = lim (F(K), 7) = lim GK), = lim G(K),

KCU KCU KCU

By the definition of projective limit, lim G(K),. is weaker than
. KCU

MG K, = (F (U),7,)), =G ).
O

If E is a Banach space, Q("E) will also be a Banach space for every
integer n. In particular, each Q("E) is distinguished and therefore by Prop-
osition 11 we have that 7,<7,<7, on -# (U) for every balanced open sub-
set U of E. Therefore if we know that 7,=17, on #°(U), we can conclude
that G(U), = (#(U), ts). For examples of Banach spaces and products of

Banach spaces with nuclear spaces with this property we refer to [4,2,7].
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