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On Multilinear Mappings of Nuclear Type

MARIO C. MATOS

"Dedicate to the memory of L. NACHBIN"

ABSTRACT. The space of multilinear mappings of nuclear type (s;r,,...,r,) between Banach
spaces is considered, some of its properties are described (including the relationship with
tensor products) and its topological dual is characterized as a Banach space of absolutely

summing mappings.

1. INTRODUCTION

In [15] A. Pietsch remarked that the attempt to classify the nonlinear
operators between Banach spaces should have its starting point in the
study of the different classes of multilinear mappings. See also [4] and
[19]. On the other side the research in the Theory of Infinite Dimensional
Holomorphy has dealt with several topological vector spaces of n-linear
mappings. See [1], [3], [5], [6], [7], [8], [10], [11], [12], [13] and [14]
among other articles. Motivated by these facts we introduce in this paper
the class of n-linear mappings of nuclear type (s;r,,...,r,). We may think
them as the multilinear counterpart of the (n,+oo,g)-nuclear linear
operators of Pietsch (see [16], Chapter 18) as well as the natural
generalization of the n-linear mappings of nuclear type considered by C.
Gupta in [10]. Naturally we cannot forgive that the nuclear linear
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operators were introduced independently by A. Grothendieck in [9] and
AF. Ruston in [17] and [18]. The spaces we are studying will lead to the
consideration of new examples of the holomorphy types conceptually
introduced by L. Nachbin in [13] and S. Dineen in [7]. In section 2, after
defining the vector space of n-linear mappings of nuclear type (s;r,,...,r",)
we consider a natural complete metrizable topology on it determined by
a (quasi-)norm. In the presence of the bounded approximation property,
we show that this topology can be generated by a simpler (quasi-)norm
when restricted to a convenient dense subspace (that of the finite type n-
linear mappings). In section 3 we consider certain (quasi-)norms on tensor
products and their connections with the spaces of absolutely summing
mappings. These results are a preparation for the proofs and results of
section 4, which characterize the topological duals of the spaces of
multilinear mappings of nuclear type as spaces of absolutely summing
mappings. These characterizations might be important for a further study
of convolution equations on certain spaces of entire functions on Banach
spaces. See remark at the end of this paper.

I would like to thank professors K. Floret and J. Mujica for some
remarks and suggestions made during my seminar exposition of these
results at UNICAMP.

Now we fix the notations used in this paper. For Banach spaces
E,,...E, and F over K (R or C) we denote by S(E,,....E;F) the Banach
space of all continuous n-linear mappings from E, X ... X E, into F, under
the natural norm

IT| = sup IT(x,,.... x|

x,€Bg,

Here B,, denotes the closed unit ball of E, centered at 0. If ¢, is in the
topological dual E, of E,, k = 1,...,n and be F we denote by @; X ... X ¢,b
the element of Y(E,,....E,;F) defined as being @,(x,)...9,(x,)b at the point
(X.-%,). These mappings generate the vector subspace S(E,,...E;F) of
the finite type n-linear mappings.
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If s € (0,400) we denote by 4(F) (or ¢, if F = K) the vector space
of all sequences (y;)7_; of elements of F such that

o 1
IOl = [ Iy KT < +eo
j=

If s 21, ||f, is a norm and, for s < 1, it is an s-norm. In any case we
have a complete metrizable topological vector space. We denote by 0}(F)
the vector space of all sequences (y,)7., of elements of F such that

10Dk, = sup (@)l < +oo
q)eBF:

@5(F), 11, is a complete metrizable topological vector space. If s=+oo
we consider {_(F) = £(F) as being the Banach space of all bounded
sequences (y;)7., of elements of F under the norm

10D =10 =suply)

2. MULTILINEAR MAPPINGS OF NUCLEAR TYPE (s;r,.,...,r,)

We consider s € (0,4¢2], r, € [1,400], k = 1,...,n such that
1 1 1

IS—+—+. . +—
r Iy

2.1. Definition. A mapping T € HE,,....E,;F) is said to be nuclear
of type (s;r,,...,1",) tfthere are (7»)7 -1 € U(€ cyif s = +), (y,)7., € L(F)
and ((Pk,),-x et (Ek )., k = 1,...,n such that

T(x ..., =Z=1: AP, (X))@, (x,), )
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The vector space of all such mappings is denoted by

L (E,,...E;F) and it is a complete metrizable topological vector
space under the ¢,-norm

) n
LU (O CAATR § IO
=1

where the infimum is taken over all possible representations of T as
described in (1) and ¢, € (0,1] is given by

1 1 1 1
—S— et
t s rl’ ,«n’
If r, =...=r,=r we replace (s;r,,...,r,,) by (s;r) in the preceding notations.

If ¢, = 1, s can be writen in terms of the r,s and we say that T is of
nuclear type (r,...,r,). In this case (s;r,,...,r,) is replaced by (r,,...,r,) (or
r, if r, = ... = r, = r) in the above notations. We simplify these notations
in the case r=1 by ommiting the letter r in the notations.

The following result can be proved easily:

2.2. Proposition. If T € &£*""(E,,....E,;F), A, belongs to (D E,),

k=1,..nand S € & (F;G), then S T o (A,,...,A,) is of nuclear type (s;
ry,....r,) and

ISToA,. Ay, <SISNT,,  TT I
k=1

Another characterization of the n-linear mappings of nuclear type
(8574,...,1,) uses the following examples.

2.3. Examples.

(1) It is clear that S(E,,....E;F) < L{F™"(E,,....E,;F) and
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lpx..x@,bly ., . =l9,l...10, 1151

for ¢, € E,, k = 1,...,n and beF.
(2) An easy application of Holder’s inequality shows that

ITI<IT1

N(S57peensl,)

fOl’ every T e glflsmw’h)(E],n.,En;F)' .

(3) We consider (0)7., in ¢ for s € (0,+e0) and in ¢, for s = +oo.
Now we consider the "diagonal” mapping

D(qj);l € Q(erl ,...,an/ ;01)

defined by
Dy (€, )y, i) =08, 8, D

We note that this mapping can be represented by

D =2 O(mX...XT)e,
=

where (&, ,)m1) = &, for k=1,..,n and j € N and e; = (0,..,0,1,0...),
with 1 in the j -th component. Since (n) L€ 0, ) C 0 ((, )’ ) (stric
inclusion for 7| = +co) with ||(1t) A, = 1 for k = 1,..n and le A =1 for
all j € N we have D ;- of nuclear t);pe (8;7y5...,r,) and

, 1

"D ©)5 " N(ST e}~ “ (O.J) )i=1 "s

2.4. Theorem. For T € HE,,....E,F) the following conditions are
equivalent:

(a) T is of nuclear type (s; r,,...,r,).
(b) There are A, € Q(Ek,(? ), k=1,...nYe fl,F)and (c)7_, €
? (e cywhen s = +°<>) such that
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T=Y oD@FIo(Al,...,Ak)
In this case

n ‘ g
"THN,(s;rP...,r_)=inf“Y'H Mknn(cj);l L
k=1

where the infimum is taken over all possible factorizations as decribed in

(b).

Proof. By 2.2 and 2.3 (3) we have that (b) implies (a) with

n
“TMN’(_‘.;,-I,._J")S“Y""I! lAkn .n(oj)j=l Hs

Now we assume (a). For each € > 0 we consider a representation of
T as in 2.1. such that

KOO LT b@, 5, S+ Ty, )
k=1

If we define A,(x,) = (@, (x))7 for x, € E,, then A, € Q(Ek;ﬂrz) with
Al < ll((pkj);,llw'n, , k= 1,...,n. Now we consider Y € ¥({;F) defined by

V(&)=Y &b,

for €)7., € &. Thus Y] < [(5)7.,l... If follows that
T=YD, . °(A,.--.A,)

with
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L(TCORTR § EZNESR L M

Now we consider some inclusion results.

2.5. Theorem. For s,t € (0,+o<.>], rupy € [1,+00] such that s <t,
rn<pok=1,...n

and

I 1 1.1 1 1

s JE S

r r. § p, b, t

then &""(E,,....E,;F) Ly E,... E,:F) with
Il T\

ISTORIS S L MY

for every T of nuclear type (s;r,,...,r,).

Proof. We consider

1 1 1 171 1
=—-—, k=1,.,n; —=—-—+..+—
r, u s

qk k ql qn

Hence u < t. For T of nuclear type (s;ry,...,r,) and € > 0 we choose a
representation of T in the form
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T=2 OO, X o X 9,
-
such that 6, > 0 for all j € N and

n
"(Gj);il "sl_[ " ((Pk‘,);;] Ilw,r; ||(YJ);| ““S(l +€ ) “T"N,(s;r],...,r")
k=1

- s s s
_ i 4,
T=Y o Lcj (Pu] X o X (oj (pw.lyj
=1

We can write

and have

s s s
CRMECRMECANIE

s s

A o oo oo
166, @)l , SIS M@,

Jopml, [ 1@ )l

for k = 1,...,n. Thus T is of nuclear type (t;p,,...,p,) and
I <(1+e)IT|

N(Ep D)™ N8yt

for each £ > 0.

2.6. Corollary. (1) If r, < pi, k = 1,...,n every T of nuclear type
(1),...1,) is of nuclear type (p,,....p,) and
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IIT“N,(pl ,p,,)S"T"Nv(’p"-’rn)

J—

(2) If s < t, every T of nuclear type (s; r,,...,r,) is of nuclear type
(t;ry,...,r,) and
IIT“N,(t;r,,...,r,,)S"T"N,(.v;rl,...,r")

B)Ifr,2p, k=1,.n everj); T of nuclear type (s;r,,...,r,) is of
nuclear type (s;p,;...,p,) and

" T“ s,(t;pl,...,pn)S IIT"N,(s;rI,...,r")

2.7. Remark. It follows from the definition that $(E,.....E;F) is
dense in L E,,...E;F). Since every T of L(E,....,E,;F) has a finite
representation of the form

T=Y 69, X .. X @ b, 2
j=1

with o, € K, ¢, € E,, k=1,..,n, b€ F, j=1,..,m, it is natural to ask
when it is possible to have

1Ty, . =1l

N(sir e, NA(SiF ppeesl)

where

n
. m
LU CORIR ) FCR A WG AT

with the infimum taken for all representations of T as in (2). It is clear
that we always have

" T"N,(s;r,;..‘,r”)SII T"N,,(s;rl,...,r")

It is natural to hope that equality might take place when E, is finite
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dimensional for k = 1,...,n. This is indead a fact as we show in the
following result.

2.8. Proposition. If E,,..E, are finite dimensional and Te
YE,,.. .E,F), then

'IT“N,,(s;r,,...,r,) = “T“N,(s;rl....,r_)

Proof. In this case ¥(E,,...E;F) = S(E,,...E;F) and this is a
complete space for both #,-norms || * ly ..y and || - lyn..ny- By the
open mapping theorem these #,-norms are equivalent. Hence there is ¢20
such that

"TIIN,,(s;rl;...,r,)ScIlTIlN,(s;rl....,r")

for every T of finite type. For € > 0 we choose a representation
T=JZZ: 0P, X . X @,

such that

[CHRTCHATE § FICIp =L WECR L M
=1

There is m € N such that

c“z oj(pl,i X . X (pn,)y j“N,(s;rl....,r‘)Se ||Tlll\f,(.w;rl,...,r")

om

We have
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3

m

t’l n

Ty sy...) S(Hg Oy X o X O My i)
P

t
+("E Gj(pu X .. X (Pn‘r'yj“N,,(s;r,.....r,,))

>m

<(1+e)"(IT

I
N,(s;rl....‘rn))

t H
e (1Y GOP,, X .. XOQ, ‘;yj"N,,(s;r,,....rn))

j>m

S[( 1+ )t" tE ’"]( "T"N,(s:rl,...,r"))t"

2.9. Proposition. If T € &*""(E,,....E,;F) and S, is in (D, ;E,),
k=1,...,n, then

n
" To(Sl""’Sn) "N,,(s;rl,...,r”)S"T"N,(s;r,,...,rn)H "Sk"
k=1

Proof. If J, is the natural injection from S,(D,) into E,, we can write
Sy = Jp o S, with S, = S, K = 1,..,n. Hence T ° (J,,....J,) is in
LLS,(D)),....,S,(D,);F). Now we apply 2.8. and 2.2. in order to have the
result.

2.10. Theorem. If E,,....E, have the bounded approximation property,
then
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T, , =TI

N (837 peees NAST 50eT,)

for every T € S{(E,,...EF).

Proof. First we consider n = 2. The proof for other n’s is analogous
as one can note easily. Since T, € L(E;L(E,;F)) for T (x;)(x;) = T(x,,x,),
x, € E,, k= 1,2, for each € > O there is S, € L(E;E,) such that T © §,
=T, and |S,| < (1+€)A, (because E; has the A,-approximation property
for some A, > 0). Hence

T(S,(x).x)=T(x, %)  (VxeE, k=12)

By the same reasoning T, € L(E;L(E;F)), given by Ty(x,)(x,) = T(x,,x,),
with x, € E,, k = 1,2, is such that there is S, € L(E;E,) satisfying T, ©
S, =T, and ||S,|| < (1+€)A,. We have

T(x,,S,(x,)) =T (x,.x,) (Vxe€E, k=1,2)

Thus T =T © (S,,5,) and, by 2.9,
Ty oy AT S Dby

<ITly g, IS IS, IS +e YA AT,

Ny(s;r.ry)

Therefore
ITl,, ., . <AMITI

Ny(sirpr) ™ N(8ir 1)

Now with the same argument used in the proof of 2.8 we have

<
L NS ) P
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3. ABSOLUTELY SUMMING MULTILINEAR MAPPINGS AND
TENSOR PRODUCTS

We recall the concept of absolutely (s;r,,...,r,)-summing n-linear
mapping from E, x ... X E, into F (See Pietsch [14] for scalar valued
mappings).

In this section, s, r, € (0,+e], k = 1,...,n are such that

1 1 1
— e A—
S r r

1 n

3.1. Definition. A mapping T € HE,,....E,;F) is said to be absolutely
($,7y,....,r,)-summing if there is ¢ 2 0 such that

WTG, e, Db ST NG, ©)
k=1

forme Nx,e E,k=1,..nandj=1,..m.

We denote by Li""(E,,....E,;F) the vector space of all these
mappings. The smallest possible value of ¢ in (3) is denoted by
I Tl 4ss:,...r,- This gives a s-norm (for s € (0,1)) and a norm (for s > 1)
making <L{""(E,,...,E,;F) a complete metrizable topological vector
space. When r, = ... = r, = r we replace (s;r,,...,r,) by (s;r) in the
preceding notations. In the last case for s=r we replace (s;r) by r in the
above notations. When r = 1 we do not write it.

An interesting special case of absolutely (s;r,,...,r,)-summing
mappings is obtained when we have
1 1 1

—=—t
s r r

1 ‘n

In this situation the mappings are called (r,....,r,)-dominated and we
denote the corresponding vector space and s-norm (or norm) by
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LirNE,,...E;F) and ||, ., respectively. If r; = ... = r we replace
(y5--o1,) By r in the preceding notations. When r = 1 we do not write it.
The use of the word "dominated” is justified by the following result
mentioned by Pietsch in [14], for scalar valued mappings.

3.2. Theorem. For T € Y(E,,...E,;F)and s, r € (0,4%], k=1,...,n
such that

1 1 1
—=—t =
A rl r"

the following conditions are equivalent
@) T is (ry,...,r,)-dominated

(b) There are c 2 0 and regular probability measures n, € W(BE;) ,
k=1,...,n such that

n 1
7Gx, <] | [ [ oty @ " “)
k=1 &/

for ever x, € E,, k = 1,...,n.

In this case

inf c=min c=|T|

@ @ d(rr,)

Here W(B;.) denotes the set of all regular probability measures
defined on the Borel o-algebra of B,,, with the weak-star topology.

Now we are going to introduce some special ,-norms on E;, ® ... ®
E, ® F in such way that the topological dual of this metrizable
topological vector space is isometric to a space of F’-valued absolutely
summing mappings on E, X ... X E,.
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3.3. Definition. For r € (0,+), k = 1,...,n and s € [1,+o0] such that

LN ®)

s r r,

we consider t, € (0,1] such that

1 1 1 1
—=— bt t—2]
tn rl . rn § !

and define

8(s;r|,,,,,r., m)(u) =inﬂ'(}\'1);;1 "s’g "(xk,[)]”;l “W,rkn(bj);:l "“

where u € E, ® ... ® E, ® F and the infimum is taken over all
representations of u of the form

u=y, Ax,, ® .. ® x,; ® b,

=
withme N, x,;€ E, k=1,.nAeK beFj=1.m

When we have equality in (5), ¢, = 1. In this case we have a norm
denoted by &,

TiyeoesFn,+00)°

3.4. Proposition. 3, . .. isat-normonE, ® .. ® E,® F and
€ <8, ..y Where € denotes the injective normonE; ® ... ® E, ® F.

3.5. Proposition. If s<t, r,<p, k= 1,..,n and
1 1 1 1 1 1

— o A— =S — 4 t———

r, r, s_p1 p, t

then
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)

<
(s;r,,...,rn,fan)—s(t;p,,...,p",+°o)

Proof. It is an adaptation to this case of the proof of 2.5.

3.6. Remark. It is a consequence of 3.5. and the fact that Osen... 100i100)
= [1 (the projective norm) that all norms §,,, . ..., are reasonable cross-
normson E, ®@ .. QFE, ®F.

3.7. Theorem. The topological dual of (E, ® ... ® E,®F, 3§, ., ..)
is isometric to L5""E,; ® ... ® E,;F’).

Proof. (1) f T € &L (E, ® ... ® E,;F’) we consider the linear
functional fyon E, ® ... ® E, ® F defined by

@)=Y AT(x, j..x, )(b)
jl

for u with a representation of the form

m
u=E ?»jxu ® .., x, ®b
=

where m € N, AeK, x;; € E, k=1,..,n, b; € F, j = 1,...,m. Hence

1, ) IUO b, NT G e, DN

n
< VOVl M, T 1G )b, KB
k=1

Thus f; is d,, . ..,-continuous and
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'VTIIS“”m;(:;r|,....r_)

(2) Now we consider a continuous linear functional fon (E; ® ... ®
E,®F,%,, ,.) and define the n-linear mapping T; from E, x ... X E,
into F’ by

Tyt )B)FX, ® ... ® x, ® b)

forx,€e E,k=1,.,nand b € F.

We consider m € N, X,; € E, k=1,...,nandj = 1,...,m. For each £>0
there are b; € F, |b)| = 1, j = 1,...,m such that

,Z=1: ||Tj(x1J,...,an)||sss +,Z=1: ITt(xl,i’"' ’xn,j)(bj)ls=®

For conveniente Xj e K |7»j| =1, j = 1,...,m we may write

®=e+|Y A, A|fx, ®..8x, ®b)|"'x, ®..8x, ®b)|

Jj=1

<e+Ifl S, , Q. MlAx, ®..8x, ®b)|'x, ®..8x, ®b)
i=1

m 1 n
<e MY [ix, ©...x, ®b) [T ] Nox il KB
= k=1

1
—

<e +IT0x, o, Db T T M DTN,
k=1

Since € > 0 is arbitrary we have
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VT, e, D, <IlﬂIH IRl

Hence T; is absolutely (s;r,,...,r,)-summing and

uT,f'“a.s',(s;r,,...,rn)S'Iﬂ|

4. CHARACTERIZATION OF THE TOPOLOGICAL DUALS OF
THE SPACES OF MAPPINGS OF NUCLEAR TYPE

In this section, s,r, € [1,400], k = 1,...,n and

1 1 1

1$—+—7+...+—, : )
S 8"

If we consider E; ® ... ® E, ® F with 8., ..., it is clear that it
is isometric to L(E,,....E;F) with ||y, through the mapping taking

—E AQ, ®..8¢, ®b,
into

—E A®,; X .. X @b,

This fact, Theorem 3.7. and Theorem 2.10 give the following
characterization result.

4.1. Theorem. If E,,....E, have the bounded approximation property,
the tqpo]ogtcal dual of " AE,,...E,; F) is isometric to
52 (E1 e sF ') through the mapping
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By)®,,....0,)B)=y(9, X ... X @b)

forallbe F, o, € E, k=1,.., nand y in the required dual.

In particular the topological dual of ""(E,,....EF) is isometric
to L;"NE,,...E.;F’) [under condition (5) with s > 1].

A result of A. Defant and J. Voigt (see [2] for a proof) state that
L (E,,... E;K) is identically isometric to Y(E,,...E;K). If n > 2 it is
proved in [2] that & (E,,..E,F) is identically homeomorphic to
S(E,.....E;F) when E, has the Orlicz property, k = 1,...,n. These results
and Theorem 4.1 allow us to state the following results.

4.2. Theorem. If E,,....E, have the bounded approximation property,
the topological dual of the space of scalar valued n-linear mappings of
nuclear type (+o0;+0) on E, X ... X E, is isometric to HE,,...E.;K).

4.3. Theorem. If E, is either ¢, or {,, p € [2,+), for k = 1,...,n and
n > 2, then the topological dual of L;*"*(E,,....E,;F) is homeomorphic
to HE,,.. .EF)

Remark. When s < r, s € (0,4%] and r € [1,+0] it is possible to
consider the n-homogeneous polynomials from E into F of nuclear type
(s;r) canonically associated to the symmetric elements of L\ (E...,E;F).
Analogous results as described in this paper are still valid for the spaces
of polynomials. Now the use of the idea of homomorphy types (see [13]
and [7]) allows us to consider holomorphic mappings of nuclear type (s;r)
from open subsets of E into F. See [10] for the case s = r = 1. A careful
lecture of the result of [10] shows us that we can define a complete
metrizable space of entire functions on E of bounded nuclear type (s;r),
with topological dual isomorphic to a natural subspace of "absolutely
(s’,r’)-summing" entire functions on E’. Again following the routine of
[10} we can show that convolution equations on the space of entire
functions of bounded nuclear type (+eo,+c0) have always solutions and a
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Malgrange type approximation result holds for solutions of the
homogeneous equations. Theorem 4.2. is a key lemma for the proof of
these facts. A hard open problem is to know if results of this type for
convolution equations can be proved when (s;r) is different from (1;1)
and (+o0;+o0). Another problem is to check if the results of Dinnen’s
paper [7] are true in this case.

References

(1]

[2]

(3]

[4]

(5]

(6]

(71

(8]

(91

[10]

[11]

ALENCAR, R.L. Multilinear mappings of nuclear type and integral type. Proc.
AMS., 94 (1), 1985.

ALENCAR, R.L. and MATOS, M.C. Some classes of multilinear mappings
between Banach spaces. Publicaciones del Departamento de Analisis
Matematico. Universidad Complutense de Madrid, 1989.

ARON, R. Holomorphy types for open subsets of Banach spaces. Studia Math.,
45 (1973), 273-289.

BRAUNSS, H.A. Riume multilinear Abbildungen und deren Dualrdume. Wiss.
Zeitschr. Pid. Hochschule Potsdam, 28 (1984), 159-165.

BOLAND, P.J. Malgrange theorem for entire functions on nuclear spaces.
Proc. Infinite Dimensional Holomorphy. Lecture Notes in Mathematics, Ed.
T.L. Hayden and T.J. Suffridge, 364 (1974), 135-144. Springer-Verlag.
DINEEN, S. Complex Analysis in Locally Convex Spaces. Mathematics Studies,
57, Notas de Matemadtica 83, North-Holland, Amsterdam, 1981.

DINEEN, S. Holomorphy types in a Banach space. Studia Math. 39 (1971),
241-288.

DWYER III, T.A.W. Partial differential equations in Fisher-Fock spaces for
the Hilbert-Schmidt holomorphy types. B.AM.S., 77 (1971), 725-730.
GROTHENDIECK, A. Sur une notion de produit tensorial topologique
d’ espaces vectoriels topologiques, et une class remarquable d’ espaces vectoriels
liées a cette notion. C.R. Acad. Sci. Paris 233 (1951), 1556-1558.

GUPTA, C.P. Malgrange Theorem for nuclear entire functions of bounded type
on a Banach space. Notas de Matemdtica 37 (1968) and Indag. Math. 32
(1970), 356-358.

MATOS, M.C. On holomorphy in Banach spaces and absolute convergence of
Fourier series. Portugaliae Mathematica 45 (4) (1988), 429-450.



On Multilinear Mappings of Nuclear Type 81

[12] MATOS, M.C. and NACHBIN, L. Silva holomorphy types. Functional Analysis,
Holomorphy and Approximation Theory. Ed. S. Machado. Lecture Notes in
Math. 843 (1981). Springer-Velar, 437-487.

[13] NACHBIN, L. Topology on spaces of holomorphic mappings. Ergebn. Math.
Grenzgeb. 47. Springer-Verlag, New York, 1969.

[14] NACHBIN, L. Concerning holomorphy types for Banach spaces. Int. Coll.
Nuclear Spaces and Ideals in Operators Algebras. Studia Math. 38 (1970), 407-
412,

{15] PIETSCH, A. Ideals of Multilinear Functionals. Proc. 1I Intern. Conf. on
Operator Algebras, Ideals and Appl. in Theoretical Physics. Leipzig (1983)
Teubner-Texte.

[16] PIETSCH, A. Operator Ideals. Dt. Verl. Wissenschafter, Berlin (1978) and
North-Holland, Amsterdam (1980).

[17] RUSTON, A.F. Direct products of Banach spaces and linear functional

" equations. Proc. London Math. Soc. (3) 1 (1951), 327-348.

[18] RUSTON, A.F. On the Fredholm theory of integral equations for opergtors
belonging to the trace class of a general Banach space. Proc. London Math.
Soc. (2) 53 (1951), 109-124.

[19] SCHNEIDER, B. On absolutely p-summing and related multilinear mappings.
Wiss. Zeitschr. Brandenb. Landeshochschule Potsdam, 35 (1991), 105-117.

IMECC-UNICAMP Recibido: 13 de noviembre de 1991
Caixa Postal 6065 Revisado: 15 de octubre de 1992
13081 Campinas, S.P.

BRASIL



