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On a Quasi-Variational Inequality Arising
in Semiconductor Theory

JOSE-FRANCISCO RODRIGUES (*)

ABSTRACT. Some new mathematical results of existence and uniqueness of
solutions are obtained for a class of quasi-variational inequalites modelling the free
boundary problem for the determination of the depletion zone in reverse biased
semiconductor diodes. The corresponding one (or two) obstacle implicite problems
are solved by direct methods with weak regularity estimates for mixed boundary
value elliptic problems of second order.

1. INTRODUCTION

The van Roosbroek’s model for semiconductor devices consists of an
interesting nonlinear diffusion system of equations which has been widely
studied in recent years (see, for instance, [MRS] and its references).

For the steady-state case of a pn-junction diode under strong reverse bias,
after a singular perturbation analysis, the determination of the depletion layer
leads to a free boundary problem. For this approximating problem, a double
obstacle variational inequality has been proposed for the electrostatic
potential u=u (x), which is supposed to be defined for xe Q C RN, where
is a bounded domain representing the semiconductor part of an electronic
device (see [HN], [BCM], [S] or [MRS])).

This limit problem consists of finding u, such that,
(1.1) v<u<¢e in{}, and

(1.2) —Au=f in the region D={y<u<e},
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with continuity conditions on the free boundaries d { u =¢} and d {u =y} and
with mixed Dirichlet-Neumann conditions on the fixed boundary 9(}.

In the case of total depletion assumption, ¢ and i are given constants
corresponding to the constant values of the potential at the neutral regions,
which are considered then as being fully conducting. In the noncoincidence
set D, also called the depletion zone, the potential distribution is governed by
the Poisson equation (1.2), where f models the doping effects. For a singular
perturbation analysis of this problem, see [BCM], [BCG] or [Ga] for the one-
dimensional case, [CF] for the bidimensional problem with simplified
boundary conditions, and [HN], [S] for a discussion of this formal limit
problem.

A more complex asymptotic model has been proposed in [NM], where the
physical parameters ¢ =¢(x) and ¥ =4y (x) are the socalled Fermi quasi-
potentials, which are functions depending implicitly on the potential w.
Actually, in [NM], the domain () is of the form Q=Q,UT'UQ,, where the
pn-junction T, given by a smooth known interface, separates two simply
connected subdomains () and ,. The first one, ;, is dominated by the
contributions from the negatively charged free electrons (with density
n=n(x)), while the second one, (),, by the positively charged holes (with
density p =p (x)).

Under certain simplificating assumptions, in particular, neglecting respec-
tively, in (), and ), the densities

(1.3) n=n exp[—k (u—)] and p=nyexp[—k,(u—¥)];

they may be considered defined only in the subregions Q, and (,,
respectively. Here n,, n,, k;=—k,; = k>0 are known physical constants of the
model. Then, following [NM], the bilateral condition may be replaced by

(1.9) u=¢ in O and u=y in Q,,
and in the depletion zone we have
(1.5) —Au=fiin {u< o}NQ; and —-Au=f, in {u>y}NQ,.

The relation between u and ¢, ¥ is given by a nonlinear operator
u—{®(w), ¥(u)}, which is defined by logarithmic transformations of the
solutions w; and w, of the following mixed boundary value problems in (,
and (),, respectively, for i=1,2:

(1.6) V-(e**Vw)=0 inQ,

(1.7) w;=ekg on I, dw/dn=0 ondQ\I,;.
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Here I'; C 90, is an open subset of the boundary d();, where the values of g;
are prescribed in a compatible way with the reverse biased conditions.

The equations (1.6) for w; and w; are derived from the steady-state drift
diffusion equations for the negative and positive carrier concentrations,
respectively n and p. Using the relations (1.3), the Fermi quasi-potentials are
then given, respectively, by

1

(1.8) =7 logw,=®(u) and Y= —kl— log wy="Y (u).
. 2

This general formulation, with the Fermi quasi-potentials as obstacles in
two disjoint subdomains, may be decoupled into two model problems, for
mathematical or approximating purposes, as suggested in [NM] or [M]. For
instance, taking into account only the effects of carriers of type p, we shall
consider first the following implicit unilateral problem in 1 =(;:

(19 u=¥(u), —Au=fand (—Au—f) (u—¥w)=0 ae.in (,

where the obstacle ¥ is defined by (1.8) and by the solution w, of (1.6)-(1.7).
To complete this formulation we need to add, for instance, 2 mixed boundary
condition of the following type (I, C (), I, ©):

(1.10) u=nh on I and Jdu/dn=0 on JO\L.

By applying general results on quasi-variational inequalities (see [M],
[BC], [BL], for instance) and using restrictive estimates on V« in L%, the one-
dimensional problem (1.9) and a particular two-dimensional case, with small
data, has been considered by Nassif in [N]. Using a direct and, in this case,
better approach, which is based on the properties of the obstacle problem
(see, e.g., [KS] and [R]) we are able, in Section 2, to solve (1.9)-(1.10) with
general assumptions and without any restriction on the space dimension. In
Section 3, we discuss sufficient conditions for the uniqueness of the solution
with small data, improving the results of [N]. Finally, in Section 4, we extend
our results to the model with two obstacles, corresponding to the pn-
junctions case.

2. EXISTENCE OF A SOLUTION TO THE QUASI-VARIATIONAL
INEQUALITY

In this section we let Q) be a bounded domain of RN, for arbitrary N=1
and with Lipschitz boundary dQ) if N=2. We consider the quasi-variational
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inequality (1.9) which, incorporating the mixed boundary conditions (1.10),
has the form:

@.1) ueK(y:  [Vu-V(-u)dx= [f(-wydx, YveK ().
Q 4}

Here the convex set K () depends on the solution itself through
2.2) K@={veH' (Q): v=honT,and v=¥(z) in O},

where, for an arbitrary z€ L*(Q), the solution w=w(z) of the following
mixed elliptic problem

(2.3) V-(e*Vw)=0 in Q,
(2.4) w=e*¢ on I, and dw/dn=0 on JQ\T),

defines the obstacle of (2.2) by the relation
1
2.5) V(z) = log w(2).

We assume k>0 is a given constant, I}, and I, are regular, non-empty,
open subsets of the boundary 42, and f, g are given functions, such that
(2.6) feLr2(Q) and g, he W'ir.r(9Q) for some p>N>1, and

feL'(Q) and g, h take constant values, for N=1.

Lemma 2.1 For any z€IL*(Q), there exists a unique w=w(z)€E
H' ()N C%*(Q), for some 0<a<1I-N/p, solving (2.3)-(2.4). Moreover w
satisfies the estimates

2.7 0<elrx=infels<w<ekm=sup ek¢ in Q,
4 o€
(2.8) Iw(z)—wE@a @)= Cllzi- 2/l =)

where C>0 depends on ||z||1=(q) and || z;|| L= ().

Proof: Noting that, for ze °(Q2), we have

0<G=infek<ek<¢=supe* in 0,
Q Q
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The first part of this lemma is immediate by the elliptic theory, the Holderian
estimates up to the boundary (note that g€ C*!"N/? (3(1)) and the maximum
principle.

To prove (2.8) we write (2.3)-(2.4) in variational form for w,=w(z):

ek Tw;Wvdx=0, ¥ veH Q) vI[p=0, fori=1,2,
o}
and we take v=w, — w,=W, letting ¢; = igf e—*21>0, we obtain

TNy < [l T2 dx = Qf (k2 — e—k) U w, - VW dx
[}

2.9 < || e-k21 — e~z || = () IV wall L2¢) VW Il L2(0)-

Since ||V w»ll12(q) is bounded by some constant depending on [|z||L=(q)
and on ||gllg12¢aq), from (2.9) we easily obtain the estimate (2.8), recalling
the Poincaré inequality for w=w(z)) — w(z2).

Remark 2.1 The global estimates of DeGiogi-Stampacchia imply that
the bound on ||w]| 0.« depends only on the constants G., ¢* and the Dirichlet
data g (see, e.g., [R], page 170, and its references). Hence as an immediate
consequence of (2.8), the nonlinear mapping z—w(z) is sequentially
continuous from L*(Q) into H! ()N C% (Q) for any 0=a’'<a, for the
strong topologies.

As an immediate consequence of Lemma 2.1 and Remark 2.1, we can
state:

Lemma 2.2 For any z€ L*(Q), the obstacle ¥ =Y (z)= _}Q log w(z) is,
such that, ¥ € H! (Q) NC%=(Q), for some 0<a<1-N/p, ¥ =g on I'p and

(2.10) 1 <W<n* in Q, independently of z€L*()).

In addition, the mapping ¥ :z— ¥ (2) is sequentially continuous from
L= (Q) into H' (Q)NC%«' (Q) for any 0<a'< e, i.e., if z,—~z in L"(£1) then
¥ (z,) — ¥ (2) in H(Q)NC(Q).
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In order to solve (2.1) we consider, for any z€L1*(Q), the auxiliary
obstacle problem

@.11) w,€K@): [Vu - Vv—w)dx= [f(v—u)dx, We K(2),
9} 0

and we recall some well-known properties of the translated problem:

(2.12) aeKy: fva-V(v—a)dxzo, V veK,,
Q . )

Here, if we suppose € H! (Q), such that, y <0 on I',, we have
(2.13) Ksy={veH'(Q):v=0o0nT, and v=¢ in O} = Q.

Using the standard notations A and V for inf and sup, respectively, we
recall the following results:

Proposition 2.1 For each e H'(Q)N L= (), § <0 on T, there exists a
unique solution i of (2.12) verifying the estimate

(2.14) 0<a4<0Vsupd in Q.
0

Moreover the corresponding mapping § — i () is sequentially continuous
from H' (Q) into H' () and a contraction in L ({)):

(2.15) Na () — 2@l =)= 1) — ¥all 1= (q).

Proof: See, e.g., [R], Chap 4.

~ The reduction of the problem (2.11) to (2.12) is done by considering the
mixed linear problem: -

(2.16) —Aé=fin Q, é=hon T, and d¢/dn=0 on IO\T,.

By C0.« —estimates, we know that the unique solution of (2.16) satisfies, for
some constant C>0 and some 0<a<1—N/p (recall (2.6)):

(2.17) M= ||f||c0‘-r(6)S CAl U(n)+ ”h”w'-/n-p(am)
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Then, letting d=u,— ¢ and U= (z)— & we establish the equivalence
between (2.11) and (2.12), for every fixed z€ L*(€), such that, K (z) #@. This
compatibility condition can be guaranteed, for instance, by assuming

(2.18) inf h=supg and g<honI,NIp.

r'\p I'p

Lemma 2.3. Assuming (2.6) and (2.18), for any z€ L~ (£)), there exists a
unique u, €K (z)\ €7 (Q)), for some 0< y< 1, solving (2.11) which satisfies
the estimate

(2.19) n<u,<2u+n in O, independently of z.

Moreover, the mapping z— u. is sequentially continuous from [*(()), into
H (YN 7' (Q), 0=v' <, and it satisfies

(2.20) N, — u:ll c @ = 1'¥ (2) =¥ Dl @)
Proof: Due to the equivalence of (2.11) and (2.12), we need to garantee
the admissibility condition K(2)#D, i.e.,
J=%¥(z)—h<0 onT,, independently of z€L* ().

Since ¥(z)=g on I}, of course that condition is allways verified if
I, CTp, but in general, we only know that, in Q,

ifgfg:n*S\If(z)Sn* :slyp g, for all zeL*(QY),
D D

and this is the reason to require the sufficient condition (2.18).

Recalling the Holder continuity of the solutions of the obstacle problem
(see [R], Section 5:7) and the Proposition 2.1, we complete the proof of this
lemma by noting that for u, =+ ¢ we have:

Y(@)su,sE+sup[¥(2) - £1*.

Remark 2.2 The assumption (2.18) is satisfied in the physical situation
considered in [N], where I', CT, and g traduces the reverse-biased conditions
(g>0 on [')\T', and g=0 on I'p). Notice that, in [N], u and g were considered
with the opposite signs, corresponding to an upper obstacle, as for the case of
carriers of type »n only.
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Theorem 2.1 Under the assumptions (2.6) and (2.18), there exists at least
a solution u to the quasi-variational inequality (2.1). Moreover, u has the
regularity

(2.21) ue CO7 ()N W2=(Q), for some 0<y<1.

loc

Proof: The solution u is given by any fixed point of the mapping T-
z— u,, defined by the auxiliary problem (2.11). Using the “a priori” estimate
(2.19), we consider as domain of 7 the convex set:

(2.22) M={veCoQ): n.<v<2u+n"in Q}

of the Banach space C°({2). Since Lemma 2.3 yields 7(M) C M N C* (Q0), by
the compactness of C%7(Q)CC°(Q}), the Schauder fixed point theorem
guarantees the existence of u= Tu.

Since u € C%7 (1), by local regularity of the solution of the equation (2.3),
we find w ()€ C"7(Q)) and then also ¥ (u)eC"¥(Q). Hence, by the local
regularity of the obstacle problem, we have also w€ C'¥(Q)) and, by iterating
once, it follows w (1) and ¥ (x) in C27(Q), which is then sufficient to obtain
the optimal regularity uEWIZO':(Q) (see, e.g., [R]).

Remark 2.3 This existence result considerably extends [N], which only
covered the cases N=1 and N =2 with piecewise constant g, with 0 <fc L*(f2)
and with a very restritive smallness condition on g. This was due to the
method of [N] that required an “a priori” estimate on ||V W||=q), Which in
general does not hold for the mixed problem (2.3)-(2.4).

3. UNIQUENESS OF SOLUTIONS FOR SMALL DATA

The existence of a solution 1n the preceding section does not require any
restriction on the size of the data, since it was based on the Schauder fixed
point theorem. For the same mapping T z — u,, we investigate now sufficient
conditions in order to make T a strict contraction in the metric space M,
defined in (2.22). This will imply the uniqueness of the solution, by the
Banach fixed point theorem. It turns out, that it is sufficient to improve the
Lipschitz dependence (2.8) for the solution w of the mixed boundary value
problem (2.3)-(2.4), with respect to z.

For p> N and if I, C 90 has positive (N-1)-measure, we recall that, by the
Poincaré and Sobolev inequalities, we have

@aG.n Vlleo@=G IVVllL(q forall veWI‘,;)P(Q),
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where C,= C(p, N, (},Tp)>0 is a fixed constant, and W, P(Q) is the closure

of the set {ve C!'(Q): supp v NTp ==} in the Sobolev space WLr(Q). Note
that the trace v|I'p =0, for every ve WL7(()).

Theorem 3.1 Under the assumptions of Section 2, namely (2.6) and
(2.18), suppose the solution map z— w(z), associated to the problem (2.3)-
(2.4), applies M into WP (Q) and, for some p> N and some constant A =
AN(M,k, g Q,Tp p)>0:

(3.2 Vw(z)— VW@l =Mlz—2:llom).

Then there exists a unique solution u to (2.1), provided the data are such
that:

(3.3) AC e[k <1.

Proof Recalling (2.5) and (2.7) we have, for ;=¥ (z;)) and w;=w(z),
i=1,2,

| — ol = llogw, — logwal S sup, 151 1wy —w.
hence, using (2.15), (3.1) and (3.2) we obtain, for u;=u(z),

lur — wall o oy < 191 — Y2l o iy < (e * %/ K) {lwy — woll oy
(e *%/k) C, | V(W) —w)llr @y =6 llzi — zall o @)

where 8= C, (e~*"x/k) A <1. Therefore T:z—u, is a strict contraction in M
and the conclusion follows.

We discuss now three cases where the estimate (3.2) holds. First, for N=1
it is immediate that (3.2) holds with p =2, from the estimate (2.8). We can be
more precise on the smallness condition (3.3) if we specify our problem, as in
[N], for instance:

34 0=1]0,/[,,=Ip=90and v=g()<g()=0=hO0)<h()=8.

In this case, we can compute A in the following way: noting that
-v<2z,<2pu, we have an “a priori” bound on ||w}||12,,, from

/ £ £
e—2kp flwﬁlzdxﬁfe—"zz ws|2 dx=(1 _e—kv)//fe—k22 ws dx
0 0 0

=(e~1/v7) (ﬁwwx)'”
0
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(by using the test function v (x)=(1 —e—*v) x//+ e—¥¥ — w,); which, introduced
in (2.9) with ¢ =e-2%#, yields (3.3) with p=2 and

A = kek(4u+) (gkv__1)/ \/Z

Noting that we can take now C, = \/Z in (3.1) and n.=0 we may choose
8 =(ekv—1) ek®s*v and we have the following consequence of Theorem 3.1:

Corollary 3.1 In the one dimensional case (3.4), there exists a unique
solution of (2.1), provided (kv —1) e*@rtv <],

Remark 3.1 Note that u, defined in (2.17), depends on fand on 8. We
observe that if, as in the physical case, f<0, by Theorem 4:5.4 of [R] applied
to (1.11), we may replace 2u exactly by B, yielding, in particular, the “a
priori”, estimate —y<u< f. As a consequence, with the sufficient condition
(ekv—1) ek@B+tv ], that is to say, for sufficiently small values of the
potentials B8 and v, we have uniqueness of solutions near the stable
equilibrium nul state. Corollary 3.1 yields a much more acurate uniqueness

criteria than the previous one of [N].

For the mixed problem in higher dimensions the estimate (3.2) for p> N
is a delicate question. However the extension of Meyers estimate, recently
given in [G], to the mixed problem yields an interesting application to the
bidimensional case.

Corollary 3.2 Let N=2 and suppose that the Lipschitz boundary 3() is
decomposed into Ty, and ION\T, with T,N(AQ\T,) consisting of a finite
number of points. Then, for sufficiently small data, in particular, if the
Dirichlet data g has small variation, there exists a unique solution of the
quasi-variational problem (2.1).

Proof Let e Wir(Q), for p>2, be an extension of the boundary data.
Then the variational solution w of the mixed problem (2.3)-(2.4) may be given
by w=We—*&, where W is the unique solution of

(3.5) »vew;,z(n):!{eksz.Vvdx=!{F-Vvdx, Vve Wha(Q),
D D

with F=k -8V ge[Lr (V)]?, for p>2 and for each z€ M.

Since z€ M, from Theorem 1 of [G], there exists a g, 2<g=<p, and a
constant L, =L (g, O, T, &,, £)>0, such that,

(3.6) IVl ey =Ly IFllLey <k qu?)P @DV E | La(q)
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Considering now w; = w (z;) and w, = w(z,), we easily see that w=w, — w,
is also the solution of (3.5), now with z replaced by z, and F by F = (%2 — k7))
7 w,€[L9(Q)P?, by (3.6). Analogously we obtain, for some r, 2<r=gq:

19wl =L, (IVFllL =L, llek2— ek || =(qy IV WallLeqy

(3.7) S(kz L, L, sup ekCx& ||V &||La(q) sup ekz)”Zl —ollo@-
Q zeM

This yields an expression for A in the corresponding estimate (3.2), which
implies the conclusion of this Corollary.

Remark 3.2 This existence and uniqueness result holds, in particular, in
any domain which boundary is piecewise of class C' and whose vertices are
not cusps, as for instance, in any polygonal domain. A more restrictive result
was presented in [N]for a rectangular domain, in which Grisvard’s results for
elliptic equations with mixed boundary conditions yields a H2(Q)) " W' (Q)
solutions for (2.3)-(2.4) (see [N] or [R], for references).

Nevertheless if IQ\I', =@ in (2.4), the regularity of the Dirichlet problem
holds for every W} (1) and we can state the following result.

Corollary 3.3 For arbitrary dimension N, if T'p,=09Q is of class C! and
(2.6) and (2.18) hold, then there exists an €,>>0, such that, if

lgllwi-ppr (@Q)=¢g,, for some p> N,
there exists a unique solution of (2.1).
Proof: Using the W)?(Q)-regularity of the homogeneous Dirichlet
problem (3.5) in H} (Q) (see, e.g., Thm. 3:7.2 of [R] and its references) and
arguing as in the previous Corollary, we have (3.6) and (3.7) forg=r=p>N.

Then the conclusion is immediate, by recalling the corresponding dependence
of A on g and the condition (3.3).

4. APPLICATION TO REVERSE BIASED pn-JUNCTIONS
In this section we extend the existence and uniqueness results for the
model problem (2.1) to the following similar quasi-variational inequality

correponding to the prn-junction model (1.4)-(1.5):

4.1) ueC(u):fVu-V(v—u)deff(v—u)dx, VveC (),
0 0
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Here we suppose =0, UT'U ), is a Lipschitz domain, such that, each
subdomain ), and (), have also Lipschitz boundaries dQ), and 9Q),, with
'=d0,N02=900,NO#D. Accordingly, we choose f=f; on Q, and f=f,
on (), and we define, for each ze L~ (Q)) and for ', CIQ (T, open, I, D)

(42) C@={veH'(Q):v=honT, v=®(z)in O, and v=¥(2) in O,},

where z—{®(z), ¥ (2)} is given by (1.8), with the auxiliary mixed problem
(1.6)-(1.7), with z instead of « and with

(4.3) ICIONT, %@, g|Ti=g, for i=1,2 and -k, =k, =k >0.

As in the case of only one obstacle, it is necessary to guarantee that
C(2)#J, independently of z. In a similar way to the assumption (2.18) we
shall require the natural compatibility conditions:

(4.4) g=h on I''MIy and infg= sup h;
N TeNIO)O\T

4.5) g=h on I')NTy and supg=< inf h;
I (ToNIO)\T,

and the mathematical expression of the reverse biased conditions:

4.6) <0<inf g.
St{f g lrrglfg

Theorem 4.1 Under the preceding assumptions, namely (4.3)-(4.6) and
(2.6), the quasi-variational inequality (4.1)-(4.2) has at least one solution, with
the regularity

@&.7) ue CO (N W= (Q,UQ,), for some 0< y< 1.

loc

Proof: Since the proof follows the same lines of the one of Theorem 2.1,
we only sketch it, refering the necessary changes. We find the solution u as a
Schauder fixed point for 7°Z >z —u,€Z, defined by the auxiliary problem
(2.11) with K(z), replaced by C(z); the corresponding double obstacle
problem can be reduced, using (2.15), to the simpler problem (2.12) for
ii=u,— ¢, where Ky is now replaced by K? ={veH! ()): v=0o0nT}, v=&in
O, and v= ¢ in ), }; the assumptions (4.4) and (4.5) imply$=P (z2)—h=0
and § =¥ (z) — h<0 on I}, independently of z; while (4.6), by the maximum
principle for (1.6)-(1.7), implies, through (1.8), the conditions ®(z)=0 in (},
and ¥ (z)<0 on (,; hence K;#@ and also C(z)# Y independently of z;
since the analogous of Proposition 2.1 holds for this double obstacle
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problem, it yields inf g A0<d<0 ngp ¥ in Q, which implies the “a priori”

estimate for u,: ! 2

f,Eillzfg—2uSqu2p+s?p g=¢ in ()
1 2

these bounds are, of course, independent of z, and they can be used to define
LZ={veCh7(Q): {<v<§ in O}; using the Holder continuity of each
solution and their respective continuous dependence results, the conclusion
follows similarly, as well as the local W2*-regularity in ), and in (,.

Under similar assumptions, as in Section 3 we can give sufficient
conditions on the smallness of the data so that the nonlinear mapping T
z—u, is a strict contraction.

Denote by C;= C,({};) the corresponding Sobolev constant of (3.1) for
functions of Wlll?”(ﬂ,»), p>N(i=1, 2). Suppose the solution mappings

z—w;(z), associated with each problem (1.6)-(1.7), apply Z into W7 ({))
and, analogously to (3.2), we have, for some A\;>0,

4.8) IV wi(2) =V w;DllLr 0y = Aillz—2llceo@my, i=1,2.

Notice that, if u=u(z) and d=u(%) denote the (unique) solutions of
(2.11), respectively, in C(z) and C(2) (with the definition (4.2)), the analogous
of (2.20) holds in the following form:

||u—-'3l|co(ﬁ)S | (2) — q’(f)HCO(E,) VI¥(2)—-Y(3) ||C°(52)~

Recalling that w;=inf e—*# and the definitions (1.8), as in the proof of

Theorem 3.1, we easily dleduce
IIu—ﬁch@Sﬁ l|z—2 ||C°(ﬁ)
with §=(ek" C, A/k) V (=% Cy N,/ k), =sup ¢ and nz=liqu,
1 2

and the following theorem is then proved.

Therorem 3.2 Under the above assumptions, namely (2.6), (4.3)-(4.6)
and (4.8), there exists a unique solution u to (4.1), for sufficient small data,
namely, if the following conditions holds

4.9 (ekm Cy N [k) V (e=Fm Cy N\ k)< 1.
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Remark 4.1 As in the Corollary 3.1, for the simple case of one space
dimension, with Dirichlet data, the estimate (4.9) can be made more precise
by imposing further specifications into our problem.

Remark 4.2 Also the Corollary 3.2 has its natural extension to the
corresponding bidimensional model for pn-junctions, by applying the W!.4-
regularity estimate for mixed problems to both subdomains (}; and (),, which
yields the required estimates (4.8) for some p>2=N.

Remark 4.3 The extension of the N-dimensional case of Corollary 3.3 is
also possible with the following change in the first part of the assumption
(4.3). for each i=1,2, suppose d(};=T; of class C! and 'y [,=T, with
I'N 3O =; hence the Wl-r-regulariry holds for each Dirichlet problem in (),
and 02.

References

[BC] C. BAlocCHI and A. CAPELO: Disequazoni variazional e quasi variazionali,
Vol. I, II, Quaderni dell’ Un. Mat. Ital., Pitagora, Bologna, 1978, English
transl. J. Wiley, Chichester - New York, 1984.

[BL] A. BENSOUSSAN and J. L. LIONS: Contréle impulsionnel et inéquations
quasi-variationnelles, Dunod, Paris, 1982,

[BCG] F. BREZZI, A. CAPELO and L. GASTALDL: A singular perturbation analysis
of reverse-biased semiconductor diodes, SIAM J. Math. Anal., 20 (1989),
372-387.

[BCM] F. BREzzI, A. CAPELO and L. D. MARINIL: Singular perturbation problem in
semiconductor devices, Lecture Notes in Math. #1230, J. P. Hennart, ed.,
Springer-Verlag, Berlin, New York, 1986, 191-198.

[CF] L. A. CAFFARELLI and A. FRIEDMAN: A singular perturbation problem for
semiconductors, Boll. Un. Mat. Ital., B-7 (1987), 409-421.

[HN] C. HUNT and N. R. NASSIF: On a variational inequality and its
approximation, in the theory of semiconductors, SIAM J. Numer. Anal., 12
(1975), 938-950.

[Ga] L. GASTALDI: Theoretical results on semiconductor equations, in Computa-
tional mathematics and Applications, Proc. 8th France-USSR-Italy Sympo-
sium, JAN-CNR, # 730, Pavia (1989), pp. 207-218.

[G] K. GROGER: A W'»r-Estimate for Solutions to Mixed Boundary Value
Problems for Second Order Elliptic Differential Equations, Math. Ann. 183
(1989), 679-687.

[KS] D. KINDERLEHRER and G. STAMPACCHIA: An Introduction to Variational
Inequalities and Their Applications, Academic Press, New York, 1980.

[MRS] P. A. MARKOWICH, C. A. RINGHOFER and C. SCHMEISER: Semiconductor
Equations, Springer-Verlag, Wien, 1990.

[M] U. Mosco: Implicity variational problems and quasi-variational inequalities,
in Lect Notes Math. (Springer) # 543 (1976), 83-156.




On a Quasi-Variational Inequality Arising in Semiconductor Theory 151

[N] N. NASSIF: On the existence and uniqueness of solutions for a class of a
quasi-variational inequalities to solve reverse-biased semiconductor devices.
Annali Mat. pura ed. appl. 144 (1986), 95-112.

[NM] N. NassIF and K. MALLA: Formulation mathématique du comportement
de quelques semi-conducteurs au moyen d’une inégalité quasi variationnelle.
C. R. Acad. Sc. Paris 294, Ser. I (1982), 79-82.

[R] J. F. RODRIGUES: Obstacle Problem in Mathematical Physics, North-
Holland, Amsterdam, 1987.

[S] A. SCHMEISER: A singular perturbation analysis of reverse biased PN-
Junctions, SIAM J. Math. Anal. 21 (1990), 313-326.

CMAF-INIC and Univ. of Lisbon
Av. Prof. Gama Pinto, 2
1699 LISBOA CODEX (PORTUGAL) Recibido: 20 de febrero de 1991




