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Exact Controllability of a Pluridimensional
Coupled Problem

SERGE NICAISE

ABSTRACT. We set a coupled boundary value problem between two domains of
different dimension. The first one is the unit cube of R”, n€ {2,3}, with a crack and
the second one is the crack. This problem comes from {1], that obtained an analogous
coupled problem. We show that the solution has singularities due to the crack. As in
[7], we adapt the Hilbert uniqueness method of J.-L. Lions [11-12] in order to obtain
the exact controllability of the associated wave equation with Dirichlet action on a
part of the boundary.

1. INTRODUCTION
Let us start with some notations. For n€{2, 3}, we set

F={xe]-1, 1[" x,=0,0<x,<1},
o={xeR" x,=0,0<x;<2and if n=3,-1<x;<1},
Q=]1-1,1["\T.

We sometimes identify I' and w with the open sets 10, 1[x]—1, 1[*~? and

10,2[X]—1, 1[*-2 of R*-!. We also remark that () is the unit cube with a slit
along the half- hyperplane x, =0, x,=0 (see figures 1 and 2).

d d
We denote by v; i, ~y+——i (resp. y-u, v- _u_) the trace of the func-
vt dv—

tion u and the trace of the outward normal derivative of 4 on I" from above
(resp. from below) in Q. 9 (resp. dT', dw) denotes the boundary of () (resp.
T, w), and we set I', = dO\TI'. Moreover, in the sequel, for a function u defined
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in Q) we shall also denote by yu (resp. v %l:—) the trace of u (resp. the trace
of the outward normal derivative of ) on I';. And in order to avoid

confusions, for a function v defined in I', we denote by y* v (resp. y* %)
v
the trace of v (resp. the trace of the outward normal derivative of v) on dT'.

Finally, » (resp. v") will be in Q (resp. I"), the unitary outer normal vector on
I'; (resp. on dI").

From now on, A, (resp. V,,) will denote the Laplace operator (resp. the
gradient) in R”.

We first consider the following boundary value problem: given f€ L?(Q)),
g€ L[?(w), find weak solutions u€ H'(Q) and u, € H'(w) of (1.1), (1.2) and
(1.3) hereafter.

—Aju=f in O,
du du .
(1.1 =ty o tyo g o=¢ inT,

—A,_ju;=g in o\T.
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(1.2) yru=vy_u=wu; on I.
u=0 on Fl,
(1.3)
u|=0 on dI'.

Our motivation to study problem (1.1)-(1.3) comes from [1], who
obtained an analogous coupled problem between () and w but more
complicated. Actually, they deduced a coupling between the linear elasticity
system in () and the plate equation in w (in dimension 3). This paper is the
first step in the study of singularities and exact controllability of the problem
given in [1].

Due to the Dirichlet boundary conditions imposed on I';, the boundary
value problem (1.1)-(1.3) splits into two problems: the first one is a coupling
between () and I" i.e. u is a solution of

[ —Au=f in

du du
=&, (r+)t vy EPS +y_ 5,- =& onT,

(1.4) Y+u=<vy_u on I,

u=0 on I,

v+u=90 on JI.

The second one is the Dirichlet problem in w\T i.e.

— A, uy=g in o\L,

(1.5)
u;=0 on J(w\I).

Since this second problem is a Dirichlet problem in a convex domain of
R"=!, we never speak about it (for the regularity of the solution, see [5] and
for the exact controllability of the associated wave equation, see [12]).

We can say that problem (1.4) is a mixed problem Dirichlet-Ventcel (since
on a part of the boundary of (), the boundary condition is of Dirichlet type;
while on the remainder of the boundary, the boundary condition is of Ventcel
type). In dimension 2, Ventcel problems on polygonal domains without slit
were studied by K. Lemrabet [8-9]. Moreover, the regularity results we
obtained in dimension 2 are similar to those of [8].

In view of the exact controllability of the wave equation associated with
problem (1.4), we need a regularity result about the solution u of (1.4).
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Classically, the optimal regularity we expect is H?(Q) for u and H*(T") for
v+ u. But, even for u, it is clear that it-can not have the optimal regularity
since it is a solution of a non-homogeneous Dirichlet problem in (), which is
an open set with a slit (cf. [5] and [7]). Inspired from these results, we can
show that » and <, u admit the following expansion:

(1.6) u=1up+ en (H)r'? sin (%),

(1.7 Veu=un—3en(r?,

where uy € H2(Q) ; uyy€ H2(I'); (r, 8) denotes polar coordinates with origin
(0,0) in the x,, x,-plane i.e. x, + ix, =re®, such that the half-line § =0 is equal
to the half-line x,=0, x,>0 (this means that the half-hyperplane §=0
contains the crack I');n€ Z (R) is a cut-off function satisfying n=11in a

neighbourhood of 0 and suppnC]— 5 % [ ; finally, in dimension 2, ¢ is a

constant and in dimension 3, c=c(r, x3) is a function of the variables r and
x3 such that ce H'(]0, 1[x]—1, 1[). The expansion (1.6) shows that u has a
singularity due to the crack (in dimension 2, this is a vertex singularity, while
in dimension 3, it is an edge singularity). Moreover (1.6) will induce a
singularity to y; u due to the jump of the normal derivative of the singular

part cr'/? sin () of u. This singularity of -y, u is concentrated at the bottom
of-the crack Iy, since c is regular far from I';.

Let us now pass to the wave equation. For Cauchy data (g, ¢y) and
«1,01) (o and ¢, are functions defined in (), while ¢y and ¢, are functions
defined in I") and a Dirichlet datum (v, v,) (as above, v is defined on Q2 x (0, 7),
while v, is defined on dT" X (0, 7)) ; we consider the solution¢ of the following
wave equation:

r<p”—An<p=0 in Qx(0, D),
” dp d .
(r+ )" =B (v+0) tyv+ 5oy tyo 57==0 in I'x(0,D),

Y+¢=7v_¢ on I,
(1.8) @ (0)=¢y, (v+ ¢) (0) =g,
¢ (0)=¢y, (v+¢) (0) =y,

¢=v on I'x(0,D),

| ve=v on II'x(0,D),

where ¢’ denotes the partial derivative of ¢ with respect to ¢ i.e. ¢’'= D, ¢.
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The problem of the exact controllability consists in finding a time T such
that for all Cauchy data, there exists (at least) one Dirichlet datum (v, vp) such
that

e (T)=¢'(T)=0,
(v+o)(D=(v+9) (D) =0.

So, we have to drive our coupled system to rest, by acting on the
boundaries dQ and dTI'.

We adapt the Hilbert uniqueness method of J.-L. Lions [11-12] in order
to apply it to our coupled problem (1.8). Our technics are analogous to those
of P. Grisvard [7], who studied the exact controllability of the wave equation
in nonsmooth domains (see also [14], for the exact controllability of the
vibrating plates equation in a polygon).

In our case, the Hilbert uniqueness method is based on the estimate of the

energy of the solution¢ of (1.8) with homogeneous Dirichlet data (i.e. v=0,
. d d
vp=0) by the L2-norm of the normal derivatives y a_(p and 'y#(;’—;@ of
14 14

and .. This estimate is itself based on the following identity, where m is a
vector field, called multiplier of the form m (x) = x — x,, where xo = (Xo1 »..., Xo,,)
satisfies xg, =0

(1.9) I, (A, @) m- Vo dx

do do
+ fF (—Bn 1 (@) Hye o rty-g =) vam -V (v1e) dXF

n n—1
=(1— ) [, 19wl dx+ (1= [ 19,1 (v49) 2"
1 9% v L # (gt SEYEP) 5 4
=5 Jomey & S do— [ yme vt (vF =Sy do

+ 7 xpy frocz (c*) do*/ 4,

where I'y={x€ dI": x; =0} is the bottom of the crack and c is the coefficient
of the singularity appearing in the decomposition (1.6) of ¢.

The choice of x; is inspired from the results of § 7 of [7]. Geometrically,
this means that x; is in the direction of the crack in dimension 2 and in the
plane of the crack in dimension 3.



96 Serge Nicaise

From (1.9), we can deduce that if xo =0, there exists a minimal time Ty
and a positive constant C such that

do I(v+0) \
. < — Ty T #
(1.10) (T TO)EO_C{fZ?L(XO)(‘Y ™ ) dadt+f22+(xo) (7 o )da dt},

where E; denotes the energy of ¢,

i (xo)={x€T:m(x)-v(x)>0}x(0, D),
33 (x) ={x" €l : m(x*) - v# (x>0} x (0, 7).

Owing to HUM, we arrive to the exact controllability of (1.8) with
Dirichlet data only on X} (x,) and 23 (xo).

For convenience, in all this paper, we suppose that C is a positive

constant, which may depend on the domain () and on the circumstances but
which never depends on the solution of the problem we solve.

2. VARIATIONAL FORMULATION OF THE PROBLEM

Let us introduce the two following Hilbert spaces
H, =L () x [*(w),

Vi={li =, u)€ H' (QO)x H} (w) satisfying
@.1) u=0 on I,
(2.2) vru=7y_u=u; on I}

this last one being equipped with the norm of H'(Q) X H'(w). Let us recall
that H{ (w) denotes the closure in H'! (w) of Z (w) (the space of C*-functions
with compact support in w).

We introduce the form of the gradient on ¥V, as follows: for all & = (i, u)),
v=(v,v;) €V}, we set

b (i, I)'):fnv,,u-v,,vdx-i-fwvn_lu,-V,,_lv] dx" .
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The form b is obviously a continuous bilinear form on V| X V7 ; moreover,
owing to Poincaré’s inequality in () and w, it is V;-coercive i.e. there exists a
positive constant 8 such that

2
b(u, uy=Blalln, Vuel,.

Owing to the Lax-Milgram lemma, we obtain the

Lemma 2.1. For all (f,g)c H,, there exists a unique solution u €V, of

23)  b@B)=[, fvdxt[ gudx', Vi=(v,v)EV. .

Formal applications of Green’s formula drive us to say that @ =(u, u,) is
a weak solution of problem (1.1)-(1.3). Before giving a meaning to (1.1)-(1.3),
we first show that problem (2.3) splits into two problems corresponding to
(1.4) and (1.5). In dimension 2, this splitting is based on the trace theorem
1.5.2.3 of [5]. In dimension 3, we use the following one:

Theorem 2.2. Let 0 be a bounded open set of R3, with a polyhedral
boundary 30, 8 lying on only one side of its boundary, and set 30 =U)_, T,
where T'; are disjoint plane open sets. For allk=1,..., N, let us denote by v,
the trace operator on the face U'y. For a fixed je{l,..., N}, let us set

Vi=lue H'(0): y,u=0, Vk#j}.
Then the operator

u—»'yju

is a continuous operator from V; into 17‘/2(1"]-). Identifying T, with a
polygonal open set of R?, we recall that (see Definition 1.3.2.5 of [5]) ve
H'2 (1)) iff v€ H'?(R?), where ¥ is the continuation of v by zero outside T);.

Proof: Owing to the results of [4], we know that this operator is
continuous and surjective onto the subspace of fe H'2(I") satisfying

dxdy

24) Sy @V < e,

for all /#, || - || denoting the Euclidean norm of R3.
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We now prove that this condition (2.4) implies that

dx
<+oo,
Pj(x)

where p;(x) =d(x, dT}) is the distance from x to the boundary of T;. This will
prove the result, owing to Lemma 1.3.2.6 of [5].

(2.5) fpj |f(x)12

As in [4], by localization and linear change of variables, we are reduced to
the case 0 = G, where G is the trihedral x; >0, x, >0, x3>>0. Let us denote by
Sk, the face defined by x, =0, for k€{l1,2,3}. We may suppose that I;
corresponds to ;.

By a direct computation, we check that for x€ §;, we have

f dy > 7
st |lx—yll3 2x;’
for /€ {2, 3}. Therefore, the conditions (2.4) tanspose to G and the previous
inequality imply that

dx
p1(x)

Js 1@<+,

since on S, p; (x) = min (x, x3). This proves the theorem. .

Lemma 2.3. Let0={x=(x* x,)eR":0<x,<1,x"€6,}, where 6, is an
open set of R"—! with a smooth boundary. Let vy, denote the trace operator
on the part of the boundary of 6 corresponding to x,=0. Let u€ H'(6). Then

(2.6) vau=0 if and only if
td
Q.7 Jluet, x,,)|2ﬂx—xi<+oo.

n

Proof: Let veZ () (the set of C*-functions in 8). We can write

)

0 (%) %) — v (5%, 0) = f o, 1) .

0 n
Therefore, Schwarz’s inequality implies

dv

lv (X, x,) — (Vn v)(X”)szxnfxnl O, ya) |2 Ay,

n
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Dividing this inequality by x,, and integrating over 6, we get

1
(2.8) ﬁ, [V x) — (vn0) ()2 dx dx, = ol 2

.

Since Z (0) is dense in H' (8) (see Theorem 1.4.2.1 of [5]), (2.8) shows that
for all u€ H'(0), the function

(¥, x,) — %/—(u (%, X,) — (Y1) ()

Xn
belongs to L2(6) and (2.8) holds for w.

Let us fix ueH'(0). If vy,u=0, then (2.8) directly implies (2.7).
Reciprocally, if (2.7) holds, then (2.8) and the triangular inequality imply

1
[y 1 (i) (12l i, <+ .

1
This proves (2.6) since —— is not integrable on 0, 1. .

Using local charts and Lemma 1.3.2.6 of [5], we obtain the

Corollary 2.4. Let 0 be a bounded open set of R" with a Lipschitz
boundary. Then

H'20)N H' ()= H)(0). .

Lemma 2.5. Let w); = w\r If§= (u, ul) < Vb then
(2.9) u € H ()N Hi(w)) .
Proof: Applying Theorem 1.5.2.3 of [5] in dimension 2 and Theorem 2.2

in dimension 3 in the open set QT ={x€Q: x,>0}, we deduce that u; =y, u
fulfils

dx
(2.10) Jola@P o<+,

since | —x,;=d(x,dT"), where T' is the part of the boundary of QO
corresponding to x,=0 (notice that TCT).
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Pl
If we denote IT ={x€dI': x; =1} and ¥, the trace operator on ﬁin r,
then Lemma 2.3 and inequality (2.10) imply that

Py
Ju;=0 on JI'.

Since we already know that the trace of u, is equal to zero on dw, we deduce
2.9). .

We are now able to state the splitting of problem (2.3). Let us introduce
the Hilbert spaces:

H=12(Q)x L*(I");
V={uc H'(Q) satisfying (2.1) and y,u=vy_uc H} (1)},
equipped with the norm

We consider the form of the gradient on ¥V as follows: for all u, ve ¥, we
set

@.11) a(u )=/, V,u ¥ vdx+H Voot (v4 1) Vo1 (74 ) dx*.

As previously, this form is a continuous coercive bilinear form on V.

Theorem 2.6. Let (f, g)€ H,. Then i =(u, u;) € ¥, is the unique solution
of (2.3) if and only if

i) u€V and is the unique solution of
@12 a(uv)=[, fodx+ [, gyivdxt, WeV.
ii) the restriction u, of u; to w, belongs to H}(w)) and fulfils

(2.13) . Yt w0y wdx”legwdx#, Ywe H (o).

Remarks 2.7: We see that u, is a solution of a classical Dirichlet problem
in a convex domain of R"-!. Owing to the results of [5], u, € H*(w,) and the
exact controllability of the associated wave equation is wellknown (cf. [12]).
Therefore, from now on, we only study the solution u€ ¥V of problem (2.12).
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The splitting phenomenon is a consequence of the Dirichlet boundary
conditions imposed on I';. For instance if we consider Neumann boundary
conditions on I'}, no splitting occurs. .

In order to show in what sense u€ ¥, solution of (2.12), is a solution of
(1.4), we need the extension of Theorems 1.5.3.10 and 1.5.3.11 of [5] in
dimension 3. The proofs are actually identical using the Green formula
(22.11) of [2] and Theorem 2.2.

Theorem 2.8. Assume that the assumptions of Theorem 2.2 are Sfulfilled.
For p>1, let us set ’

E(A, IP(9)={uc H'(0): Auc L (h)}.

Then the mapping

du
7} aVJ ?

Uu—

which is defined on & (0), has a unique continuous extension as an operator
Jrom E(A,Lr(0)) into (H'2(T)Y. Moreover, the following half Green
identity still holds :

% Ju
(2.14) J, Auvdx = — [ Vu Vudx +,-§. <'ijVj—; yv>,

Jor all ue E(A, L (0)) and all ve D (8) such that YivE D(T), for every
JE{l,..., N}

Theorem 2.9. Let (f, g) € H be fixed. Then the unique solution ue 'V of
(2.12) satisfies

(2.15) —Ayu=f in Q,
d d .
(2.16) ~Bu (e yigty Sh=g in T.

Proof: (2.15) is a direct application of (2.12) with ve & (2). So we deduce
that u€ E(A, L7 (). But unfortunately, Q does not fulfil the assumption of
Theorem 2.8. So we use the following trick. Let us set

O={xe]-1,1[" x;>0},
Ot ={xe:x,>0},
QO ={xeQ:x,<0}.
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Then we know that

uc E(A, Ir(O1), uc E(A, Ly ((1)).

as elements of

d d
This allows us to give a meaning to v, o li and y_ . “

(H'"?(T)Y,

Takingp€ Z (), then ot (resp. ¢~ ) the restriction of ¢ to QF (resp Q)
fulfils the assumptions of Theorem 2.8 in O+ (resp. Q). Therefore, using the
Green identity (2.14) to the pairs (u,¢") in Ot and (4, ™) in O~ and adding
the results, we obtain

du du
fn A, updx= _fn V. uV,,qodx+<'y+W + V-3, Vi,
Owing to (2.12), (2.15) and the previous identity, we obtain
S Tnc Vs (@)t <y Sy Ty >

=[. s(rr0)dx’, Ve T (@).

This proves (2.16). "

3. REGULARITY OF THE WEAK SOLUTION

The aim of this paragraph is to prove the expansions (1.6) and (1.7). Let
us set

G0 1, 0)=n (7)1 sin (),

(3.2) () ==+,

Theorem 3.1. Let ucV be the solution of (2.12) with data (f,g)c H.
Then u and v, u admit the following expansion :

(3.3) u=uy+cS,

(3.4) Y+u=uyntcS,,
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where uy€ H?(Q)), uyy€ H*(T') and in dimension 2, c€ R, while in dimension
3, ce H'(I'). Moreover, we have the folllowing estimate :

(3.5) ”U0||H2(n)+ ”uzo||112(r‘)+ ||C||11‘(r‘)S ClHE DI -

In dimension 2, in order to apply the results of Corollary 4.4.1.4 of [5] to
u, we need to show that vy, u belongs to H32(I"). We use the

Theorem 3.2. Let 6 be a bounded open set of R, m= 1, with a smooth
boundary ; 0 being only on one side of its boundary. If ve H} (6) is such that

A, ve(H2(0)Y,

then
ve H32(6).

Proof: The proof is made by interpolation and using Theorems 1.6.2 and
1.11.7 of [13]. .

Proof of Theorem 3.1 when n=2: Owing to (2.16), v+ ue HY(D) fulfils

du du
(3.6) A, _((v+u)y=g— Vg Y=g,

which belongs to (H"/2(I")y. So Theorem 3.2 shows that

v+ u€ HY(T).

We now remark that u is a solution of the following non-homogeneous
Dirichlet problem in (:

Mu=—f€l?>(Q)) in Q,
u=0 on Iy,

yiu=vy_uc H¥2(NNH(T) on T.

Owing to Corollary 4.4.4.14 and Remark 4.4.4.16 of [5] (see also Theorem
1.4.10 of [2]), we obtain the decomposition (3.3) for .
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Using this expansion (3.3) of w in the right-hand side of (3.6) and
computing the normal derivative of the singular part, we see that y, uc H} (I")
fulfils

A (vrw)=gtenxy?
where we set
auo 8u0 2
&§1=8— 7+ vt —')Lav_ €L (F)
Remark that xi%2? does not belong to L2(I'). But we can compute

explicitly the solution w of

2w 1
T om0 o 101

w(0)=g—;vl(0)=0.

This is w(x))=— % X2,
Finally, the function
(3.7 Up="Y+U—CNW
belongs to H}((0, 1)) and fulfils
—Ajuye L2((0,1)).
So uy € H?((0, 1)) and the expansion (3.4) follows from (3.7).

By Theorem 3.5 hereafter (applied with A =0, see Remarks 3.6), there
exists (K, K,)e H such that

(3'8) C:((f; g)a (KlsKZ))H9
where (,")5 denotes the inner product of H.

Let us define the linear operator

T:H—H>(Q)x H*(I): (£, &) — (uo, tz0) -
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Owing to the closed graph theorem, if T is closed, then T is continuous and
therefore the estimate (3.5) holds. But the closeness of 7 is a direct
consequence of (3.8) and the continuous dependence of the solution u€ V of
(2.12) with respect to (f, g) in H.

This proves Theorem 3.1 when n=2. .
In order to obtain an analogous decomposition result in dimension 3, we

need to study «the Helmoltz equation» in dimension 2. Actually, we shall
extend the results of § 2 of [6] in our situation.

Theorem 3.3. Assume that n=2 and let (f, g)€ H and \ be a real
parameter = 1. We denote by u, the unique solution of
(3.9) a(, )+ A y+u), (0, 7+ VIu=(f,8), (v, Y+ V))u, YveV.
Then u and vy u admit the following expansion
(3.10) u=ugr+ce'Vr S,
(3.11) Y+U=urtce="VA S,

where ug€ H?(Q), uyge H*(I"), and c€R satisfy the estimates

2 2=
(3.12) go A {||“R||Hi(n)+ ||“2R“1L1"(1‘)}S ClE DN u»
(3.13) lel< A=l D)l us

where C does not depend on \ .

Proof: The idea of the proof is identical with Theorem 2.1 of [6] but the
technics are different. The main step is based on an explicit formula for c,
obtained as in [3].

Applying (3.9) with v=u, we can show that u fulfils
(3.14) VUl + M @ v+ DA< CII ()l -
Since u€ V¥ may be seen as a solution of (2.12) with a datum f— Ay,

g—Av+uw) in H, Theorem 3.1 shows that u and v, u admit the respective
expansion (3.3) and (3.4); moreover the estimate (3.5) becomes

Nluoll 20y + Nlezoll sy + el < CLIN DM i+ ANl (4, v )l 1} -
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Owing to (3.14), we deduce that

(3.15) ||u0||H2(n)+ ||u20|i112(r)+ fel=CIN DN -

Unfortunately, this estimate does not allow us to prove the estimates
(3.12) and (3.13). So as in [6], we modify the decompositions (3.3) and (3.4)
of u and -y, u. Setting
(3.16) Ur=ty+c(l —e-"V\) 8, ,

(3.17) r=uxn+tc(l—e"VA)S,,

we directly obtain (3.10) and (3.11) (with the same constant ¢ as in (3..4)).
Moreover, the regularity of ugz and u,; follows from the following lemma,
which is proven by an easy computation.

Lemma 3.4. Let n=2. Then the functions (1 —e V)8, (1—e-"VNY) 8,
belong respectively to H*(Q) and H?(T') and fulfil
(1 —e=V2) Syl 2y < CAV4,

(1 —e=V2) Syl ey = C. .

It remains to prove (3.12) and (3.13). To do that, we need the explicit
formula for c. Let us set

U (r,0)=e"Ar3 sin (%).
We check that
(3.18) (— A+ Ny =0,
(3.19) (= A2+ N) ()|l 120y < Ce—dVA,

for some d>0. But the main problem is that

6_(/; 9 _ —rVA p—3/2
baarre RS ¢ T

does not belong to A~ '(I"). Fortunately, the function ¢, defined by

6 (r.0)=an ()77 |cos(5) le-rVA,
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belongs to H' () (owing to Theorems 1.4.5.3 and 1.7.1 of [S]) and fulfils
ved=v d=dyrie-Vx,

Therefore, on T, the laplacian of v, ¢ is equal to —nr=3 2e-rV\ modulo
H-1 ().

Let ¢, € V be the unique solution of
(3.20) a(e, V)t A{(D1, v+ P1), (v, v+ V)H
=[ {8 — ) (v — V6 Vo v—\v}dx

152 =D (e £ 22 g,

for all ve V.

Let us notice that the right-hand side of (3.20) is well defined since (A, — \)
()€ L2(Q), p € H' (Q) and because vy, ve H} () fulfils xi! vy, ve L2(D).

Now, we are able to give the expression for c.

Theorem 3.5. Under the assumptions of Theorem 3.3, if we set

3.21) K=ny+o+¢,,

then we have
(3.22) —wc:fn dex+fI, gv+ Kdx, .

Before giving the proof of (3.22:. Ict .~ show how it implies (3.12) and
(3.13).

To obtain the estimate (3.13), it suffices to estimate the norm of K in
L?(Q) and the norm of v, K in L2(T"). But we easily check that

Il 20y = CA- V4
[l 200y = CA=34,

v+ &l 2y < CA-V2,



108 Serge Nicuaise
Moreover, since ¢, is a solution of (3.20), we can prove that

bl + V(D1 Y+ d)In=C.

Using the expansion (3.21) of K and the four previous inequalities, we get
(3.23) (K, v+ Kl == CA-Y4
So (3.22), (3.23) and Schwarz’s inequality imply (3.13).

Let us now prove (3.12). Using (3.16), (3.17), Lemma 3.4 and the estimates
(3.13) and (3.15), we obtain:

(3.24) lugll w2+ gl 2y = CIH @) hi -
Owing to (3.10) and (3.11), we can say that
o2
(3.25) 3 a2 {lurllmiot e gell iy ¥
i=0

i

b2
=3 A2 Ul eell iy Wy wll iy
i=0

+leltle=VAS i+ Nle= A Sl iy 31
But we easily check that for i€ {0, 1}:

(3.26) le-VAS | iy < CN 4+ 7,
(3.27) le=VA S|l iy S CA' 7
Using (3.14), (3.13), (3.26) and (3.27);(3.25) becomes
(3.28) 3 X3 (lllwo  ltll iy} < CUL G )
o

The sum of (3.24) and (3.28) yields (3.12). ' .

Proof of Theorem 3.5: Let us denote by I, the right-hand side of (3.22).
Using the expansion (3.21) of K, I splits as follows:

(3.29) I=L+1L+1,
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where we set

Iy=/, fowds,
L=[, fedx+ [ gv+¢dx,
L=|, f¢1dx+fr gv+d dx,.
i) Transformation of ,: I, is the right-hand side of (3.9) with v=4¢,,
since ¢, €V, we get )
(3.30) L=a(¢,u)+N(d1, v+ P, (W v+ W)y

ii) Transformation of I,: The splitting (3.3) of u induces the following
one for I:

(331) I()Z T()+CSO,

with

(3.32) To= [, (—A2+ Nugnurds,
(3.33) So=, (~B+ N)Simupdx.

Now, our goal is to use Green’s formula in the right-hand side of (3.32)
and (3.33).

a) Since uy€ H2(Q) and fulfils 2, (0) =0, Theorem 4.3.2.2 of [5] implies
that uy€ P22 (Q)), for all p<2 (see Definition 4.3.2.1 of [5]). Moreover, we
check that nyeLi(Q), for all ¢g<4. Since ¢ is smooth far from 0,
A(mp)e Li(Q), for all g<4. Therefore, the pair (n¢, w) fulfils the
assumptions of Theorem 12.3 of [3] with some p<2 and g€]2,4[ such that
1/p+1/g=1. Applying the Green formula (12.4) of [3] to this pair, we get

3 3
(3.34) Ty= uo(—By+ M) () dx+ <4 ng) by gz@

3 V+ U >

b) To transform S,, we apply Green’s formula in Q.= O\B(0, ¢), for all
£>0. By a classical computation, letting € go to zero, we obtain

(3.35) %;k&&&+M@@ﬂ—m
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In (3.31), replacing T; and S, by their expression (3.34) and (3.35) and
using again the expansion (3.3) of u, we obtain

d(ny) +oy d(ny)

vt - dv

(3.36) Io=_ u(=Ay+\) () dx+ <y, Ly uS>— e,

iii) Transformation of /, : The first step consists in using the half Green
formula in (). Since u¢ H?(Q)), we again use its expansion (3.3) and we
decompose f a Jédx in two integrals corresponding to the regular part and the
singular one. For the regular part, we may apply the half Green formula. For
the singular part, we use the half Green formula in (), for € >0; letting € go
to zero and using the definition of ¢, we obtain

(337 L=[ (RuVrétrup)dx+[ (—A+N) (v4u) 7+ bdx .

We now transform the integral over I' by using Green formula in
I';=I'\B(0, ¢), for ¢ >0; and by letting € go to zero. Computing the laplacian
of v+ ¢, we get

dn E]
(B38) L=[, (%uY: ¢+ hug)dx—<y. ng) - gﬁ) YUz
_}_j;‘ {4xll/2 (—A1+>\)(ne_xl\/x)—4xl—l/2 a—(nz;“&—}'”udxl.
1

iv) Conclusion: In (3.29), replacing I, I, and I, respectively by (3.36),
(3.38) and (3.30) and using the fact that ¢, is solution of (3.20), we arrive to
(3.22). .

Remarks 3.6: In view of the proof of (3.22), we need to introduce ¢
because, in the right-hand side of (3.36), the duality bracket has a meaning
since 4+ u = v+ gy belongs to the weighted space P2-!/7.»(I"), for some <2
but it has no meaning if we only know that -y, u belongs to H(T). Indeed, if
the duality bracket would have a meaning for vy, u in H}(I'), it would be
sufficient to consider ¢, € V, solution of

a(¢l, U) +A ((¢la Y+ d)l)s (U, Y+ v))H

d d
:j;] Ay — N () vdx — <y, ;:;}:!f) +y_ ;Zij) ;v+v>, for all ve v,

Theorem 3.6 is also true if we suppose that A =0. Therefore, it gives an
explicit formula for the coefficient ¢ of the singularities of the solution u of
(2.12). .
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Let us suppose that n=3 up to the end of paragraph 3. In order to prove
Theorem 3.1, we shall develop u in Fourier series with respect to the basis

.k . . .
{sin Tﬂ' (x3— D }4c - It corresponds to take the partial Fourier transform in

the x;-variable of the solution of the Dirichlet problem in a polyhedral
cylinder 6 xR, where 6 is a plane polygon of R?, as P. Grisvard did in [6].

We use the following notation:

Q=0@x]—1,1[, T=T®x]-1,1{,

where QO (resp. I'®) is the domain € (resp. I') defined in § 1 when n=2.
Moreover, for a point x in Q or in I', we denote

X= (x(2)’ x3) >
where x@ belongs to Q@ or I'? and x;€]—1, 1[.

For an arbitrary function w in L2(Q) or L?(I') and for all k€ N*, we set

+ 1 k
w (x®, x3) sin—zzr— (63— 1) dxs,

wy (x@) = f

. . - . .k
its Fourier coefficient with respect to smT(x:, —1).

We finally denote by ¥, the Hilbert space ¥V defined on Q®.

We can eaéily prove the

Lemma 3.7. For all weV and all ke N*, we have
wi € VD and vy wip="v_w;=(y+Wk. .
We are now able to give the

Proof of Theorem 3.1 when n=3: Let us fix keN*. Using Fubini’s
theorem, we can prove that u, € V® is the unique solution of

fn(z) {V, Vvt

2.2
k 47T u, v}dx@

k2 2
+ @ Vi (v+u) Vi (v 0) + 41r Vi g Y+ v}dxDF

= fg(Z) Sevdxd+ L(Z) g v+ vdx®t YyeV®,



112 Serge Nicaise

This shows that u, € V@ is the solution of the Helmoltz equation (3.9) with

2.2
A= k—f— =1 and a datum (f}, g,). By Theorem 3.3, there exist ug, € H?(Q?),

Uy pe € H2(I'?) and ¢, € R such that

(3.39) w=upt ey s,

(3.40) Yiw=tpit cres S,

Moreover, there exists a constant C independent of k such that

2
(3.41) ;0 kz_i{””Rk“Hi(QO»'*‘ “uZRk”H"(I“Z')}+k”2|ck|}
= C{llfk“umm)'f‘ “gk||L2(r<2>)}~

Let us denote by wg, uy and ¢, the functions defined respectively in (),

T and also I, with respective Fourier coefficients ugy, ure and ¢, 5. The
last function ¢ is actually the convolution K* ¢ in [—1, 1] (with respect to x3)
of the function ¢ and the kernel K with respective coefficients ¢, and e—"7/2,

The estimate (3.41) precisely shows that wye H2(QY), uype H'(I') and

c€ H'(I') and fulfil the estimate (3.5). Finally, the expansions (3.39) and
(3.40) imply (3.3) and (3.4). This completes the proof of Theorem 3.1. .

Remark 3.8: In view of the definition of ¢, it is defined on R*x]—1, 1]
and is a solution of

Aye=0 in Rtx]-—-1, 1],

c(0,)=¢ in ]-—11],

c(wD=c(,—1)=0 on R,
This means that ¢ is the solution of the Dirichlet problem in Rt x]—1, 1
with a boundary datum ¢ € H'/2(]— 1, 1[) (owing to the estimate (4.4)). So
the regularity of c is in accordance with the regularity we expected. Moreover,

far from x; =0, ¢ is smooth. M

In § 5, we shall need the following estimate about ¢ and V; ¢ near x; =0.
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Lemma 3.9. Assume that n=3. Then under the assumptions of
Theorem 3.1, for all e€]0, 1{, we have:

(3.42) f (e, %) 2 dxs = CII(: 213,

+1 C
(3.43) [ moran=< i

Proof: Since the Fourier coefficients of ¢ are ¢, e, by Parseval’s
identity, we have

+1
(3.44) f le(e, x3)|2dxs =3, |ci|2 etk
| kEN*
41
(3.45) f IVac(e,x3)12dx3 < C3, |c|2 k2 e—ck,
—1 keN*

The inequality (3.41) implies that
(3.46) kE lek2k=CI( @) -
€ N*

The inequalities (3.42) and (3.43) are a direct consequence of (3.44)-(3.46)
since we remark that

et < Ck, ke—*:k”S%. -

To end this section, we shall prove that the outward normal derivative
')’# d (7+ u)

P of vy, u on dI" exists and belongs to L2(I").

Theorem 3.10. Under the assumptions of Theorem 3.1, we have
d(y+u)
p QY+ U) 1o
v a7 e L?(dI)
and fulfils

9(v+w)
(3.47) v =5, Nzan =< CIIE D).
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Proof: When n =2, since c is a constant, the claim follows from (3.5) and
the Sobolev imbedding theorem.

Let us assume that n=23. We prove that y, ue W2?(I'), for all p<2 and
fulfils

(3.48) ||’)’+u|||4/2~ﬂ(1‘)S CllED N>

where C may depend on p, for all p<2.

Using the expansion (3.4) of v« and the definitions of S; and ¢, we see
that

A (y+uwy=h — enxy'?,

where k€ L2(1") and

Imll oy =CI¢ -

Since x7"?e Lr (), for all p<2, we deduce that A,(y4u)€ Lr(I), for all
p<2 and using (3.5), we have

1A (v+ Dl iy = CINE ) -

As v, u€ H{(T') and T is a convex domain of the plane, we deduce (3. 48)
(see for instance Theorem 4.4.3.7 of [5]).

Using the trace theorem 1.5.2.1 of [5], the Sobolev imbedding theorem
and the estimate (3.48), we arrive to (3.47). .

4. THE WAVE EQUATION

Our first aim is to establish the existence of a solution to the wave
equatlon associated with the boundary value problem (1.4). The easiest
manner is to introduce a selfadjoint operator 4 from H into H associated
with (1.4).

The bilinear form a induces an isomorphism o7 from ¥ into ¥’ defined by
() (v) =a(u, v), Yu,veV.
Using the density of Z (T') in L2(T') and the density of & () in L?(Q), we

can show that V is dense in H. Moreover, the Rellich-Kondrachov theorem
implies that ¥ is compactly imbedded into H. Therefore, the bilinear form a
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also induces a positive selfadjoint operator 4 from H into H, with a compact
inverse, defined by ’

Dy={ueV:o/ueHj,

du du

Vu€ Dy: Au=(—Antt, ~B,_ (v4 )+ V4t y_—),
dv dv

owing to Theorem 2.9. It is also wellknown that D, is dense in V and
Dyi2=¥ (see [10], for instance).

The wave equation associated with 4 may be written as follows : given
@€V, ¢€H and fe L' (0, T; H), find a solution ¢ of

[ #€C([0, 7], YN C'([0, T}, H),
@.1 ¢"(O)+ Ao ()= f(1), t€[0, T1,
© (0)=¢y,
¢ (0)=¢,,

where ¢’ denotes the derivative of ¢ with respect to the variable ¢.

Since 4 admits a sequence of eigenfunctions, which forms a basis of H,
Theorem 3.1 of [7] can be adapted to our setting. Therefore, we have the

Theorem 4.1. Let ¢y€ Dy, ¢, €Dy 2 and feL'(0, T; Dy 12) with
s=1/2. Then problem (4.1) has a unique solution e C(0,T], Dys)N
C' ([0, T1, Dy-10) fulfilling

4.2) ”‘PlIC([O,T],DA.v)+“‘p”C'([O,T],DAs—lfz)
= Cllleollp,, Tl et 1Al 1o, D410}, -

In the same way, Remark 3.2 of [7] still holds.

Theorem 4.2. Let o,€V, ¢, € H and fELY(0,T; H) and let ¢ be the
unique solution of (4.1). Then there exist sequences ¢o, € Dy, 01, €V, f,€
C ([0, T], V), meN*, such that

Pom—wo In V,
Yim—¢1 in H,

Jm—=f in L'0,T;H), as m—+,
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Moreover, the solution ¢,, of (4.1) with data ¢y, @1m, fn fulfils

em€ C([0, T}, D) N C'([0, T], YN C([0, T}, H),

and

Om— in C([O’T]a V)mcl([O’T], H), as m—+too.

Proof: Direct consequence of the density of Z0,T,V)in L'(0,T; H). =

We now establish a law of conservation of energy.

Theorem 4.3. Leto,€ V, ¢, € H and denote by ¢, the unique solution of
(4.1) with data gy, ¢, and f=0. Let us denote by E(t), the energy of ¢ at time
t€[0, 7] i.e.

(4.3) E(t)=% {llo’ N5+ ae (1), (1)}
Then for all t€[0, T]:

(“.4) E()= Ey: =+ el + aloo, 00}

Proof: In view of Theorem 4.2, it suffices to prove (4.4) for ¢y € D4 and
¢, €V. The advantage is that the corresponding solution ¢ belongs to
C([0, T], D) N C' ([0, T, V)N C*(0, 7], H). Indeed, since ¢ (DEV, we
deduce that

9E ()= ¢ )t al W0 1)

=@" () + Ao (1), ¢ (D)

This proves that
dE
dt (t) —0’ VtE[O, T]

and then (4.4). .

Remark 4.4: Theorems 4.1 to 4.3 may be extended to the following
abstract setting: H and V are two real Hilbert spaces such that V is dense in
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H and V is compactly imbedded into H; a is coercive continuous bilinear
form on ¥V, which is symmetric. ’ .

If ue D,, then Theorem 3.1 shows that # and v« admit the respective
expansion (3.3) and (3.4). Unfortunately (3.3) does not imply that u belongs

to H*(Q)), for some s>i. Therefore, as in paragraphs 6 and 7 of [7]; if we

want to use multiplier technics, we have to establish an identity with
multiplier, which takes into account (3.3) and (3.4).

Theorem 4.5. Let us assume that m(x)=x— Xy, With xg=(Xg s..., Xon)
fulfilling x4, =0. Then for all u€ Dy, we have:

@5) [ (~A,wym-V,udx

du Ju
[ A e s e Ty ) yem e Vo (Vs 1) dx?

= (1= [, 1Wauldx+ (1= 250 [ 19, w2t

_1 du , 1 o 9V 5 oy
2 j;\lm'v(‘y av ) dO'-— 2 ar7+m 14 (‘y aV# )dO'
+rxgf, ¢ (oh)dot/4,
0

where c is the coefficient of the singularity S| appearing in the decomposition

(3.3) of u
Proof: For all e€]0, 1[, let us set
C.,={xeRm: x}+ x}<e},
Q.=O\C,, T, =T\C,,

I, =dQ,NT,, T =30,NIC,.

Theorem 3.1 shows that ue H?(Q,) and y,u€ H?(T,), therefore, they
fulfil the identity (3.4) of [7] respectively in (), and I',. Adding these two
identities and taking into account the boundary conditions fulfilled by u and
v+ u and the fact that

m-v¥f=0 on T,
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we arrive to

4.6) [, (~A,wym-V,udx

d
A ety 2 by )y, (v w) d?

=(1— %)fﬂe |V, ul?dx

—1 . 1
U= [ 1V GrPaxt— - [ mev(y S2do

J
o Ohveme 19, 2= 225y 9, (1) o

3
+f1,25{%m-Vanulz—%m-V,,u}da.

We now pass to the limit as € goes to 0. Since u€ D, it is clear that the
lef-thand side of (4.6) tends to the left-hand side of (4.5). Moreover since
ue H'(Q), v+ uec H (T') and u is regular far from the bottom of the crack, the
three first terms of the right-hand side of (4.6) tend to the respective terms of
the right-hand side of (4.5). So, we are reduced to study the behaviour of the

integrals over dI'; and I',.. Let us denote them respectively by I, and .. We
shall show that

v+ )
d

v#

1
4.7) Ile—’113=—7 3F7+m'l’#('>’# ) do*,

TX01

(4.8) be— [ @@ do*, as e—0,
0

which will prove (4.5).

a) Proof of (4.7): If n=2, we have
o=t (e, 0) 22 () m((1, 09 22 (1)
X1 axl

Moreover, the decomposition (3.4) of v u implies that v, u€ C'(T') and
(4.7) holds.

If n=3, we shall decompose the boundaries of I'; and I" as follows

dl'e="T;cU Lpge, IT =T U T,
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where we set
Lo =T, N T, Tope={ (&, x3): —1 <x3< 1,
) FOIZ{anF:xl>0}.

We therefore decompose I, (resp. I;) into two integrals Iy, and Iy, (resp. Iy
and Ij;) corresponding to I'y;, and gy, (resp. I'g; and I'y).

Since vy u=0 on I'y;, and using Theorem 3.10, we deduce that
(49) ]0]5—’1(“ , as €—0.

For the second part, using the boundary condition vy« =0 on Iy, we see
that

Ioze—loz—f {e—xo) (—— (‘)/+ )( , X3))?
d
+20 CZ 0, — (o~ L e 2
X1 X3

a0 "G o) L ) .

Using the next lemma, Theorem 3.10 and Lebesgue’s bounded convergence
theorem, we deduce that

(4.10) Ippe— Iy, as e—~0.

So the sum of (4.9) and (4.10) gives (4.7).

Lemma 4.6. Assume that n=3. If uc W'.r(I'), for some p=4/3, then
for every e€]0, 1[, we have

+1
4.11) f |U2(€,x3)—u2(0,x3)|dx35C||u||Wl-p(]o,e[><]_1,1[)||u||Whp(r‘),

—1
where u (0, x;) (resp. u(e, x3)) stands for the trace of u on 'y (resp. Tgye). In
particular,

+1
f |42 (e, x3) — 12 (0, x3)|dx;—~0 as e—~0.
—1
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Proof: For ve & (T), we can write
) ) (¢ dv
v (e, x3) —v2 (0, x3) =2 E‘_—(xlaxﬂu(xhxli)dxl-
o 9X

Integrating the absolute value of this identity and using Holder’s
inequality, we get

(4.12) fﬂ | vz.(e, x3) — v%(0, x3)| dx;

<2|| ||m]0 etx1=1,10 1Yl oo, epx1-1,1p)

1 1
when 7 + 7= 1. But the Sobolev imbedding theorem implies that W7 (T")

is continuously imbedded into L4(I") if 1 —2/p=—2/q. This last condition is
precisely equivalent to p=4/3. Therefore, the inequality (4.12) can be
extended to v in W'-2(T"), which implies (4.11). .

b) Proof of (4.8): it is based on the following lemma:

Lemma 4.7. Let n=3 and uc H' (). Then for all e€]0, % [, we have

@’

'+ 2
(4.13) j j lu(e, 0, x3)|2d0dx; < C|ine| ||ul|?

where u (e, 0, x3) stands for the trace of u over I'y,.

Proof: Let us set
Qt={xeQ: x,>0}, O ={xeQ:x,<0}.

To prove (4.13), it is sufficient to establish (4.14) and (4.15) below:

o

+1
(4.14) f f (e, 0, xp)|2ddx, < Cline| ||ull2
0

+1 2w
(4.15) [ f |u(e, 0, x3)|2d0dx; =< C|Ine| IIullfq,(nA)-
-1

™
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The reason of this splitting is that Z () is not dense in H' (2), while Z (0F)
(resp. Z (QV)) is dense in H' () (resp. H' ())).

By symmetry, it suffices to prove (4.14) and only for u€ & (QF). For such
a function, we may write

' d(nu)
or

0 (©) u(e, 6, x3) = f

€

(r, 8, x3)dr.

Using Schwarz’s inequality, we obtain

' d(nu
|u(e,o,x3)|2s|lne|f| (;7,)

€

[2rdr.

Integrating this last inequality over (6, x3) in 10, w[X]— 1, I[, we arrive to
(4.14). .

We firstly suppose that n = 3. Using the expansion (3.3) of u, L, splits into
a lot of terms. One of them is

1 +1 2
~2—f f m |V ol 2 edfdx; .
-t Jo

d
Applying Lemma 4.7 to —%, for i€ {1,2, 3}, which belongs to H' (), this

J
term tends to zero.

Another term is

1 +1 2
34" j m'V|V2C|2|S1|28d0dX3.
-1 0

Using Lemma 3.9 and the definition of S;, we see that this term is bounded
by Ce, which tends to zero.

In the same way, using Lemmas 3.9 and 4.7, we show that all the terms
tend to zero, except the following one

xOI +1 2 . 0
— f (e, x3) sin2( —-)dOdx;.
4 )., ], 2

Using Lemma 4.6, we arrive to (4.8). The proof of (4.8) is identical in
dimension 2, except that no integration over x;€]—1, 1[ appears. Actually, it
is easier since ¢ is a constant.
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The proof of Theorem 4.5 is complete. .
We are now able to establish the estimate of the energy, which is the basis

of the application of HUM.

Proposition 4.8. Leto<c C([0, T], DN C' ([0, T], VYN C*([0, T}, H) be
a solution of

¢"(t)+ Ap (1)=0, 1[0, T],
(4.16) ¢ (0)=¢y,
¢ 0)=¢,.

If x0; =0, there exists a minimal time Ty>0 such that

4.17) (T-Ty Ky

do ¥ I(y+e) ¥
< _—r E- SN i u 5V #
< C{ fzw(y ay) dodt + fz;%)(y 22 dotdr}.

Proof: For a fixed T, let us set
0,=0x]0, T[, 0,=Tx]0, T1,
Z] - FIX]O, T[, 22=8FX]0, T{ .
We denote
_ 2
I_le Do m-V, odxdt .

Integrating by parts over ]0, 7T, we obtain

I=—| o, D om U (Dig)dxds + J, Diom-V,pax|{.
As usual (see [12] or [7]),we show that
. -_n 2
(4.18) ) o, Diom -V (Dyp)dxdt =7 ) o, (Dip dxdr
This is proven by using the Green identity in () in the left-hand side of

(4.18) (it is allowed since D,u€ H'(Q))) and by taking into account the fact
that m-v*=0o0onT and D,¢=0o0nTI'.
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The two previous identities lead to

(4.19) 1:% fQI (D) dxdt+ [, D, om-Vypdx|].

Since D, (y+¢)€ H} ('), we prove in the same way that

(4.20) [, D2(vs0)vsm Vo1 (vre)dxdi

Vo1 (v40)dx*|§.

Applying (4.5) to ¢ (2), integrating the obtained identity over ]0, 7 and
adding it with (4.19) and (4.20), we obtain:

_ 1 9
4.21) 0=1) -~ j;_m vy —5ydodr
__l_f m- v ( #M)zda#dt_l_ﬂ.x f 2(t, o*)do"dt| 4
2Js, 7 LA 0t Jrxqo, 7y €\ 97040

H [, Dy om-V, ¢dx+ [ Di(vs@)vim -V, (y:0)dx]If,

where c(z, -) is the coefficient of the singularity S, appearing in the expansion
(3.3) of ¢ () and where we set

1@)= [, {5 (DP+ (1= )| Vneol?) dxds

+fQ2

Let us now prove the following inequality

n—1
‘T)Nn_l (v+0)|?} dxt dt.

TEO L2n-3 2n -3

42 Ie)=— A+ f Sedrt [ (vae) viedd ]

Using the definitions of the norm in H and of the bilinear form a, we easily
check that

(4.23) () >(

)f (e’ Oli—ate (1), o (1)} dr

+= for{w WG+ at 1), o (@)}dr.
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Moreover, since ¢ is a solution of (4.16), it fulfils

@ @), oWutak (), ¢(1)=0,ae. 1[0, T].

Integrating this identity over t€]0, 7] and integrating by parts in ¢, we
arrive to

(4.24) fOT{Ikp’ WNi—a (@), e ()} dt= (1), 0 (uli.

The inequality (4.22) follows from (4.23), (4.24) and the identities (4.3)
and (4.4).

Using (4.21), (4.22), the hypothesis x3 =0, Schwarz’s inequality and
finally the coerciveness of the form a, we arrive to (4.17). .

Corollary 4.9. Under the hypotheses of Proposition 4.8. If xy; =0, there
exists Ty>>0 such that for all T> T,, the application

@25) o= lieo ol = [, (r 5o

9 (v+9) 2
+ # 2 dot
jg;uw(y TEE Y dot i
is a norm on DyXx V stronger than the norm induced by VX H .
From now on, we make the following assumption

(H) We suppose that x5 =0 and Tj is the minimal time such that (4.17)
holds for all T= T;. We also fix T= T,

We now define F as the closure of DX V for this new norm. So we have
the algebraic and topological inclusions:

DxVCFCVxH.

Proposition 4.10. Under the assumption (H), let {¢,, ¢,}€F and
feL'(0,T; V). Then there exists a unique solution @€ C([0,T], V) N
C' ([0, T). H) of the wave equation (4.1) fulfilling

de¢ d
(4.26) ”'YW”LZ(ZT(XO))+ ||’Y#%‘%(e)—“ﬂ(z;(xo))

= Cllll{eo, @3 + 11N 210, 71} -
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Proof: We argue as in Theorem 5.6 of [7]. Using the linearity of problem
(4.1) and the uniqueness of its solution, we split ¢ =¢; +¢,, where ¢,
corresponds to the Cauchy data (with f=0) and ¢, corresponds to the right-
hand side f (with zero Cauchy data).

The definition of F insures that ¢, fulfils (4.26).

Theorem 4.1 shows that ¢, C([0, T], D,) and fulfils (4.2) with s=1 and
¢y=¢; =0. The expansion (3.3) of ¢, (¢) implies that ¢, (z) belongs to H? far
from the bottom of the crack. Therefore, using the trace theorem of [4], we

dJ
deduce that 'y—a(pTz(t)eLZ (I'")) and fulfils

do
1y == Wl < Cllex (0o,

where C is independent of ¢.

9(v+¢2)

On the other hand, Theorem 3.10 proves that y# Fw
v

and fulfils

(1) € 2 (3T)

I(v+¢2)
“7#_3%(z)||g(m£ Clle2 Dl p, »

C being also independent of .

Integrating the square of these two last inequalities over ]0, 7, we
conclude that ¢, also fulfils (4.26). .

5. WEAK SOLUTIONS OF THE WAVE EQUATION

We transpose Proposition 4.10, we get

Theorem 5.1. Under the assumption (H). Then for all uye H, u,€V’,
v € L2(3f(x0)), v2€ L2(Z5(x0)), there exist unique ue L=(0, T; V), {¢, wo}
€ F', which are solutions of

6D [I<u@), f0>drt<un, 00>~ <t 0>

— ’ 8<P
—<u,,<p(0)>—<uo,<p(0)>~f2:r(x0)v17 5, dod!

I(v+¢)
# #
f22+<x0) Uy EN] do*dt
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for all fe L'(0,T; V), kpo, —¢1} € F, where ¢ is the unique solution of
eeC([0,T], NN C'([0, T], H)
(5.2) ")+ Ao ()=/(0), t€[0, TT;
e (T)=¢o, ¢’ (1) =¢ .
Formally, the solution u of (5.1) fulfils.
[ (t)+ Au(r)=0, t€[0, T},
u(0) =uy, ' (0)=uy,
{UI on X{(xp),
u=
0 on 3\ 3f(xp),

v; On 2EL(3C0),

Y+u= {
0 on 3\ 272F(xo) >

and the final conditions

(5.3) u(D=vo, wW(D=4.

This is actually the case if the data are more regular. Nevertheless, we shall

give a meaning to (5.3) and we shall prove more regularity for u.

For these reasons, we shall say that the solution u of (5.1) is a weak
solution of the wave equation with Cauchy data u,, v, and boundary data v,

vy,

We shall need the following density result, which is proven using the
particular geometry of () and the density of & (0) in L2(0), when 6 is any

open set of R”.

Theorem 5.2. Let v,€ L2(Z1(x)), v2€ L2(Z(xy)). Then there exists a

sequence v, € Z (0, T, C*([—1, 1]") fulfilling

Uy, — 0 on 2:l\ ZT(xO)’
(5.4
Y+Um=0 on 3,\33(x),



Exact Controllability of a Pluridimensional Coupled Problem 127
vm— vy in L2(3(x)),

(5.5) ,
Y+Um—Vy in LZ(Z-{(XO)), as m—+oo,

Theorem 5.3. Under the assumption (H). Let uycV, uy€ H and ve
Z (0, T, C°([—1,11") fulfilling (5.4). If uc L=(0, T; V") and {,, Yo} € F’ are
the unique solutions of (5.1) with data u, u;, vy =v| st V2= Y+v| st then
1 (xg) 2 (xp)
(5.6) ue C([0, 71 NN CY(0, T, H)
and fulfils (5.3), where we set

V={uc H'(Q):ysu=vy_ucH (I}.

Proof: We denote

fi=v"—=8,v, H=(v+ V)" =B, (V4 V).

Since (), )€ L?2(0, T; H), by Lemma 1.3.4 of [12], there exists a unique
solution Y€ C([0, T}, YN C' ([0, T], HYNH?*(0, T; V") of

<Y (),w>t+a(@y(),w)
(5.7) = — [, A @wdx— [ (D) vs wdx*, ae. 1€[0,T], WweV,
b O)=up, ¥ O)=u,.
This means that ¢ is the unique solution of (4.1) with data
S=—(f1, f2), eo=up, 01=1u;.
We shall show that u=uv - ¢ is the unique solution of (5.1) when
Yo=u(D), ¥, =u'(1).
This will imply the desired results.
By Lemma 4.2, we are reduced to check (5.1) for € C(0,T], D,)
NCI([0, T], YN C2([0, T, H). Since ue H%(0, T, V"), integrating by parts

over ]0, 7T and taking into account the initial conditions fulfilled by ¢ and v,
we get

(5.8) foT< u(t), ¢" + Ao >di—<u(T), ¢, >+ </ (1), 0y >
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=<u}, ¢ (0)>—<up, ¢’ (0)>
) ,
< 0 o W>+aW @), o)

+<v"(0), e ()>+(v(0), Ap())pu}dr.

Applying the Green identity in ., and T, for €€]0,I[, using the
expansions (3.3) and (3.4) of ¢ (¢) and y1¢(f) and letting € go to zero, we
obtain:

(5.9 (v, 4¢) =, ~ By vodx+ [, =B, (v+v) yrodxt

de 9 (v+¥)

_fl‘, vy, do — . vzy”—g;#——do#.

Inserting (5.9) into (5.8) and using (5.7), we see that the right-hand side of
(5.8) is equal to the right-hand side of (5.1). This is the desired identity. =

Combining Theorems 5.2 and 5.3, we remark that the unique solution u
of (5.1) belongs to C ([0, T, ¥’) and fulfils «(T) = ¢y. Unfortunately, we know
nothing about the regularity of its derivative. We shall obtain it by studying
the first order equation associated with the wave equation (4.1).

Let us consider the real Hilbert space

A=VxH,

equipped with the inner product

(1, P =awr, ) T (& EDns

when (pi: (‘pi’ gi)’ i= 13 2.
We introduce the linear operator B defined by
DB == DA X V,

VO =(p,§)€ Dp: BP=(—¢, Ay).

It is wellknown that B is maximal monotone, then — B is the infinitesimal
generator of a Cy semigroup of contractions.
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Lemma 54. Let & &, FEL'(0, T, ). Then there exists a unique
solution ®€ C([0, T|, &) of

&)+ BP(1)=F(), t€[0, T],

(5.10)
® (0) =Py,
which fulfils
(5.11) 1 @1l cqo, 11,6y = I Pollsr+ | Fll 1o, 127 -

Moreover, if ®y€ Dy and Fe L'(0, T; Dg), then ®< C([0,T], Dg) and
Sulfils

(5.12) 1 @1l cqo, 11, 0y = 1 Poll p, + | Fll 110, 72, -

Proof: Let S(t) denote the semigroup generated by —B. ® is given by
(5.13) ®())=S() Do+ [ S(t—5) F(s)ds.

It is usually called the mild solution of (5.10) (see, for instance [15]). The
estimates (5.11) and (5.12) are a direct consequence of the properties of the
semigroup S (2). .

Actually, this lemma may be proven using Theorem 4.1 and the following
matrix representation of S(z):

sint\/X
(5.14) S)= cos 1A N
——\/Zsintx/z cost\/X

In the same way, using this representation (5.14) and Proposition 4.10, we
prove the

Proposition 5.5. Under the assumption (H). Let ®,€F and Fe€
L' (0, T, Dp), then the unique solution ®=(¢,§)€ C([0,T], &) of (5.10)

Sfulfils

J
(5.15) 1722 gz o+ 17 22 ey < CLIBol 4 1L Fll o, 7 )
dv av#

If we transpose this Proposition 5.5, we arrive to
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Theorem 5.6. Under the assumption (H). Let Uy,€ ", v, € L*(Z{(xy)),
v, € L2(33(xp)). Then there exist unique /€ L*(0, T; D'g) and Y€ F, which
are solutions of

(5.16) ['<U@), Fay>di+<u, &>

_ do ¢ 9(v+9)
_<U0,<I>(0)>—le+(xo)vl'y o dadt—fg(xa)uzy L2 dotdt,

for all FEL'(0, T; D’'p), o€ F, when ®:=(p, &)< C([0, T),&7) is the unique
solution of

— @' (1)+ BP(t)= F(1), [0, T],
®(T)=d,.

Moreover, we have the following estimate

(5.16 bis)

(5.17) Ul =0, 7.0 F Wl
S C-{ll Upliez-+ lvill 2o T N2l 2sg e} -

It is classical that the wave equation (4.1) and the equation (5.10) are
equivalent when we set F=(0, f), ®o=(pp,¢1) and ®=(p, ¢’). Actually, we
consider (5.10) since by transposition we obtain a vectorial solution U of
(5.16) (since F has, in general, a nonzero first component). Moreover, Uis a
formal solution of the homogeneous equation adjoint to (5.16 bis) i.e.

U+ B*U=0.
Writting U= (u, v), this identity is equivalent to
u=v
v"+ Av=0.
Therefore, we may hope that v is the unique solution of (5.1). Since u=1’,

we would obtain a regularity result for v’. We now clarify these considerations
in the

Theorem 5.7. Under the assumptions of Theorem 5.3. Let uc
[0, 7], YN C' ([0, T], H) be the unique solution of (5.1). If we set

(5.18) U=, u),
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then U is the unique solution of (5.16) with
(5.19) Up=(u1,up) and =/ (1), u(1)).

Consequently, ue C([0, T], V)N C'([0, T, D’,) and fulfils
(5.20) lluell cqo. 1y vn + [lull oo, 1. 07

= Cllluoll y+ eIy + Ml ||1_2(z,*(x0))"L ||U2||L2(z;(x0))}-

Proof: Since & (0, T; Dp) (resp. Dp) is dense in L' (0, T, &) (resp. in %),
it suffices to check that U fulfils (5.16) with F€ & (0, T, Dp) and ®,€ Djp, the
corresponding solution $ of (5.16 bis) belonging to C([0, T], DN

C' ([0, T], &Z). For such a ®=(p,§), it is clear that o€ C?([0,T], H).
Therefore, an integration by parts over 10, 71 yields

T
| <ve, Fo> dt=f0T< u(t), & )+ Ao(t)>di—<u(t), o 1)+ EW)>F.
V Since u fulfils (5.1) and (5.3), the previous identity proves that U fulfils

(5.16) with the convention (5.19). Finally, the estimate (5.20) follows from the
estimate (5.17) fulfilled by U. .

Corollary 5.8. Under the hypotheses of Theorem 5.1 the unique solution
ueL>(0, T, V') of (5.1) satisfies
(5.21) ue C([0, T], V)N C'([0, T], D)
and the final conditions (5.3).

Proof: We use the density of ¥ in H, Theorems 5.2, 5.3 and 5.7 and the

fact that since ¥ is continuously imbedded into D4, the space C([0, T], V")
is continuously imbedded into C([0, 7], D). ' .

6. THE HILBERT UNIQUENESS METHOD
We are now ready to give the main result of this paper.
Theorem 6.1. Under the assumption (H). Then for all uyc Hand u, € V’,

there exist v, € L2(ZT(x,)) and v,€ L2(Z3(x,)) such that the weak solution
ue C({0, 7], VYN C' ([0, T], D)) of the wave equation (in the sense of (5.1))
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[ W (1)+ Au()=0,1€[0, T],

u(0)=u, ' (0)=u,,

v on  Xf(x),
6.1) uz{

0 on I\ Xf(xp),

v; On E"{(xo),
Y+uU= {
\ 0 on 3\3i(x),

Sulfils
(6.2) u(T)=u (T)=0.

Proof: By Proposition 4.10, for {pg,¢,} € F, there exists a unique solution

eeC([0, 7], NN C'(0, T], H) of

¢" (1)t Ae(1)=0,1€[0, T],
(6.3)

¢ (0)=¢p, ¢’ (0)=¢,
which fulfils (4.26).

Let us consider yr& L*(0, T, V), {x1,— xo} € F’, the solutions of

T
(6.4) §<w@. g)>di—<x,m0>+<x0,m>

do dn
=[5ty 5y 7 3y G0t

I(v+0) 4 9(y+m)
_ # # #
fz?(my Wt YT gyf do? dt,

for all ge L' (0, T; V), {ng, m } € F, where 7 is the unique solution of
n€ C([0, T}, N C'([0, T], H),
(6.5) " () + An () =g (), t[0, T,

n(0)=mn, 7’ (0)=17,.
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Their existence follows from Theorem 5.1 inverting the order of time.
Moreover, owing to Corollary 5.8,  fulfils (5.21) and the initial conditions :

b 0)=x0, ¥ (O)=x:.
We now define the operator

A:F—F {¢, 01} = {x1,— Xo} -

Lemma 6.2. For all {¢,, ¢,} € F, we have

(6.6) <Afeo, @1}, {@0, 013> =l {0, @1 }112.

Proof: Since identity (6.4) holds for all 5 solution of (6.5), we may apply
it with n=¢. This leads to

- ﬁo_ 2 a(7+‘P) 2
<—xve>t<xpe>=—[p (ygrdodi—[i. (=5 dot .

This is (6.6) using the definition (4.25) of the norm in F. .

This lemma shows that A is an isomorphism from Finto F’. Given u,€ H,
u; €V, we know that

fu,, —uple VX HC F’.
So there exists a unique solution {p,, ¢} € F of
Adpo, o1} ={ur, —up} .

We build the solutiomp of (6.3) and then the solution ¢ of (6.4). Setting

(‘Y+<P)

u=y, yy=y —— 8 and v, =~* , we see that u is the weak solution of

the backward wave equation
r u”(t)+ Au(t)=0,t€[0, T],
u(D=uw (D=0,
v on  Z{(xo),
(6.7) u ={
0 on 3\ Zf(xp),
v On H(xo),

0 on 3\ E‘{(xo),

’Y+u={
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Moreover, it fulfils
u(0)=uy, ' (0)=u,.

It remains to prove that u is a weak solution of (6.1) i.e. we have to check that
(since we already know that u(T)=u'(T)=0)

68)  [T<u), f>di=<u,00)>—<up' (0)>
0 d
_fET(.w vy deo_dt _IZ;H,,) v Y (glj:p) do’ dt,

for all f€L'(0,T; V), {py, —p1} € F, where ¢ is the unique solution of (5.2).
The next lemma establishes that {¢ (0), ¢’ (0)} € F. Therefore, the identity
(6.4) proves (6.8) (by setting g=1, no=¢(0), n,=¢’(0) and hence n=¢). =

Lemma 6.3. Let {py, ¢} F and feL'(0, T, V). If ¢ is the unique
solution of (4.1), then

(6.9) lo(D,—¢'(D}eF.

Proof: By Proposition 4.10 and the reversibility of the wave equation,
there exists a unique € C([0, T], D,)N C' ([0, T], V) of

¥ W)+ Ay ()=f(), 1€[0, T],
Y(D=y' (D=0,

fulfilling

Yy d(v+¥)
1y =g, Nearop 1Y =57 e = Clf o

Setting x =¢ — ¥, we deduce that x € C([0, T, V)N C' ([0, T], H) fulfils
{ X" )+ Ax (1)=0, t€[0, T],
x(D=e (D), X' (D=¢"(T)

and

ax . 9(v+ x)
||’Y‘;9‘V—||L2(z,*(xo)) + ”7#73;;—|IL2(22+(J¢0))< too.

Using again the reversibility of the wave equation, this proves (6.9). =
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In Theorem 6.1, we establish the exact controllability for controls with
support in %} (xp) and 33 (x,)- In the physical point of view, it would be
interesting to get controls having their supports only concentrated on the
external boundary of Qi.e. no control on the bottom of the crack I'y. To hit
this goal, it suffices (and it is allowed) to choose x; such that x,; =0 in the
multiplier.
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