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On a Critical Threshold for Nonlinear
Diffusion Equations

M. CHIPOT and R. KERSNER

ABSTRACT. We study some aspects of the asymptotic behavior of the solutions to
a class of nonlinear parabolic equations.

1. INTRODUCTION
Set Ry={7reR|t>0}.

We are concerned here with weak solutions to nonlinear parabolic
equations of the type

u=au).tf(u, in RxXR, (D
ux,0)=u,(x)=0 in R. 2)

Without loss of generality we can assume a(0) =0, f(0)=0. (Indeed one
can replace in (1) a by a—a(0) and f by f—1(0)).

If for some 7>0 we have
f(1)=0 3)
we would like to show that, under additional assumptions on f, some aspects
of the asymptotic behavior of u(x,7) when 71—+ oo are governed, roughly

speaking, by the position of 1, (x) with respect to 7.

It is interesting to compare our results with the results for Fisher type
equations (see [A], [K2]).
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The paper is divided as follows. In section 2 we discuss the existence of
some stationary solutions to (1). In section 3 we state and prove our main
theorems. At last, in section 4 we give some examples of applications-and
discuss briefly the possible extensions of our results in higher dimensions.

2. EXISTENCE OF STATIONARY SOLUTIONS

Our method relies strongly on the existence of stationary solutions to the
equation (1). We will assume here that.

a:[0,+ ) —[0,+) , a(0)=0 , a(u) smooth, increasing for u>0. (4)

We will denote by a—! the inverse function of a. Moreover, we will suppose
that:

f:[0,+)—R , f(0)=0, f of class C' &)

Let 7 be a strictly positive constant. The case of interest here is when (3)
holds and

f)<O0=f(r) Yuec(,7) (6)
— < f7(0)<0. 7
Since our data are smooth and
h(s)=—f(a"'(a(r)—5))

is such that #(0)=0 one has for s>0 close to 0:

h(s)=0(s)
and thus
a(1)™ ds
— ——————+o00, 8
f f@®) ®)

We will consider the case where the problem (1) is degenerate and the case
where it is not —i.e. the two cases (see [K1],[P]):

1
j(.)+ a—l (v) dv<+oo (9)
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and

1
j;)+ a—'(v) dv:—l-oo (10)

'

Under the above assumptions we can prove:

Proposition 1:  Assume (3),-,(7), then

(i) if (9) holds, there exists one and-only one stationary solution s (x) to
(1) such that

s(x)=0 V¥Yx=0, (11)
s increasing on (0, + <), (12)
lim s(x)=r. (13)

N}

(ii) If (10) holds, (1) has no stationary solution s such that s(x)=0 for
x=<0, s(x)>0 for x>0. For any ¢€(0, 7), there exists one and only one
stationary solution s (x, ¢) to (1) such that

s(0,c)=c, ' (14)
s (x, ¢) increasing on (— o, + ), (15)
lim s(x,c)=71 , lim s(x,¢)=0. (16)

N—} N —xx

Proof: A stationary solution to (1) has to satisfy
a(u),tfw,=0 in Re&ea(u) +f(u)=Cst. in R,

If one wants to have u (x)— 7 when x —+ % we must have, Cst. =0. So,
we look for u solution to

a(u),+f(u)=0 in R. (17)
Assume first that we are in case (1).

For s€[0,a(r)) define

F(s):—j\ ds (18)

o flai(s))
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First remark that by (7), one has

1 B a'(s) 1

fa ') a5 @' (s) S (O0)a(s)

when s— 0 and thus by (9), (18) makes sense. Moreover, by (6), (8), F is an
increasing function from [0, a(7)) onto [0, + ). Denote by F~! its inverse
and set

s(x)=0 Yx=0 ,.s(x)=a'(F'(x)) VYx>0.
Clearly s satisfies (11), (12), (13). Moreover oﬁe has

a(s(x))=0 Vx<0 , a(s(x))=F"'(x) ¥Yx>0
and this function has no jump on R. So, in the distributionnal sense one has

a(s(x))=F"'(x);=—f(s(x))
and s is the stationary solution we are looking for (see(17)).
Assume now that we are in case (ii).
If s is a stationary solution to (1) such that that
s(x)=0 ¥Yx=0 , s(x)>0 VYx>0
then v=a(s(x)) is a solution to
ve=—fla'(v)

such that
vix)=0 ¥Yx<0 , v(x)>0 V¥x>0, vlocally increasing for x>0.

This is not possible. Indeed, for v positive one would have

vy(x) o fla'(v(x))))
a'tvix)) a'(v(x))

and thus for s>0, x>0 small enough

a'(v(x)

dx

\ ds [ vo(x)dx oo flat (v(x))))
f\ f f a'(v(x))

G @l (s)
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and a contradiction (by (10), (7)) when s— 0.
Now, if we select ¢ (0, 7) then we can define

' ds
F :*f S
V= T o)

Clearly, F'is a one-to-one increasing map from (0, a(7)) into (—o0,+ ) so
that

s(x, ¢ )=a " (F'(x))
is the stationary solution we are looking for.
Remark 1: In the case where fis not differentiable the above analysis

could have been made in terms of the Osgood condition, i.e. in considering
the cases

1 _ 1
dv < +oo | f _  _dv=—to,
0+

Joom Fa ' () @)

However, the assumption (7) is useful in what follows and we did prefer state
Proposition | under this form.
3. THE MAIN RESULTS

Let us consider now u=u(x, t) the weak solution to (1), (2). It is well

known (see [DK], [G]) that under suitable assumptions on a, f, such an
equation has a unique weak solution.

We have:

Theorem 1: Assume that (3),-,(7) hold. Moreover, assume that

L;) increasing on (t, 7+ 6) (19)

Jor some 6> 0.
Then:

(i) If (9) holds and
liminf uy(x)>r. (20)
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(ii) if (10) holds and if
Uy(x)=a>0 Vx , liminf uy(x)> 7, 2h

for any x€ R one has

liminfu(x,t)>r.

I—+x

Proof: By (19) if € is small enough there exists a unique 7,> 7 such that

f@ S
u

7.

<e on (0, 7). (22)

If we set
S =f(w)—eu

then f satisfies (3), (5), (6), (7) with 7 =7,. If we apply Proposition 1, we can
denote by s, (x) and s, (x, ¢) the solutions to
auw+(f(u)—eu),=0 in R (23)

corresponding to cases (9) and (10) and satisfying respectively (11)-(13), (14)-
(16) with 7=17,. Choosing € small enough one can clearly have:

<7< liminf u(x)

N— -y %

and thus, for x large enough, i.e. x= M, we have

uy(x)>r.
Then, in case (i) one has
Uy (X) =5, (x— M) (24)
and in case (ii)
U(x)=s(x— M, a) (25)

(see (21)). Now, by (23), remark that

s.(ett+x— M) and s, (et+x— M, o)
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are solutions to (1). Since by (24), (25), u, is larger than these solutions at time
t=0, we deduce from the maximum principle that

s.(et+x— M)
u(x, t)= | or

s(et+x— M, a).

Letting t — 4o we get by (13), (16)
liminf u(x, )=7.>r1.

[—yoc

This ends the proof.

Remark 2: It is clear from the proof that in this theorem one can allow
/7 to vanish at 0 i.e —eo<{f"(0)<0.

We can also prove:

Theorem 2: Assume that (3),-,(7) hold. Moreover, assume that
f is increasing on (1 —8,1) (26)
for some 6> 0.
0<uy(x)=<7<7 ¥Yx, y(x)=0 Vx=Z7

where Z is some constant. Then

(i) if (9) holds one has for every x:

u(x,t)=0 for t large enough.
(ii) If (10) holds one has for every x

limu(x, t)=0.

=4

Proof: By (26) if € is small enough, there exists 7. such that
7<7.<r

JSw)+eu<0 on (0,7), f(7.)+er,=0.
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If we set
S =fu)+eu

then [ satisfies (3), (5), (6), (7) with 7=, If we apply Proposition 1, we can
denote by s_,(x) and s_, (x, ¢) the solutions to

a(u) T () teu, = in R 27)

corresponding to cases (9) and (10) and satisfying respectively (11)-(13), (14)-
(16) with 7= 7. If we choose M large enough then we have in case (1) or (ii):

s_ (x+ M)
or = uy(x)

S_ (x+ M, o).

Hence, by the maximum principle (see the preceding proposition, note that,
by (27), s_(—et+x+ M) and s_ (—er+ x+ M, ¢) satisfy (1)):

S_(—et+x+ M)
or = u(x,t)

S (—ettx+Mec)

In case (i) from the above inequality we get

0

u

as soon as —es+x+ M=0. In case (ii) the result follows by letting 1 —+ oo,

Remark 3:  In the case (i), we have proved in fact that if u, has its support
bounded below then, so does u(., ) for any 1. Moreover, the left front of the
support is moving to the right with a velocity greater or equal to e.

The situation can be completely different if in (7) we allow the value
/7(0)=0. Indeed, let us assume that we have for » small, non negative

/(W) | = Cub (28)

a@=0 , |¢"WI=Cu (29)
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where C, B are positive constants and 6 > —1.

Then, we can prove:

Theorem 3: Assume that (4), (5), (28), (29) hold. Then if
Uy (xg) >0 (30)
we have
u(xy, )>0 Yt>0.
Proof: Changing x in x+ x; in what follows we can assume without loss
of generally that x,=0. Consider
v=v(x, t)=e " ([e—x2e )

where e, w are positive constants that will be chosen later on and [ ]*
denotes the positive part of a function.

Set A =¢€—x2¢'. In the domain

H={(x,1) | e—x2e'>0}

we have:

v=—nwAve " —xiu Av e

ve=—2xw Al rv=D

Vo= 2w AT (=D 42 w(w— [) AV e (V=2
Set
Lv=v,—a(v). _f(v)\
=vi—a" (V) ) —d )y —f(V)v,.
We obtain
Lv=—wA" e —x2w A= e~ /("= —g" (v)4x2w? 420 =1 g=2100=1)

dw)2w A e D —q" ()42 w w— 1) A2 e D £ (1) 2ow AL e v,
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By (29) we have for v>0, v small

|a’(v)|§|f“a”(s) ds| sf‘j a’ (s)| ds

v C
S 5(1 = [+6: ‘VvY
Ls s 13" C'v 30
where we have set
C .
C=——, y=1+86>0.
[+s "7

Combining this, (28) and the inequality
12x| <x2+1
we obtain for € small enough (note that 0 <v=<¢*)
Lyv<—wA" e~ — x2w A%—1 e~ 4Cx2 w2 AW6+20v 1) p—i (w5 +2w—2)
F2C"w ATl ety tw =D+ 4C x2w (w— 1) ArvHw=2 =i (wytw=2)
_|._ CxZW AM'B+W—I e—-/(n'B-Hr—l) + CWAW[H-W—I e—l(w,/3+w— I).
Hence:
Lv=—wA%e {1 =2C" A"v—le-!vy=h — C A+B=1 g—1wB-D1
— 2w A4t e~ 1= { | —4Cw ASTw—1e—1(wstw—1)

—4C (w—1). Awv=1e—10vy=N) _CA"B e=wBI},

Select now w such that

wy>1 , wB>1 |, w>1. (32)

We have:
1 _2C’ Aw‘yfl e—l(wy-l)_ CAW,G~I efl(wﬁfl)z 1— 2C’AM'7—I _ CAM‘B—I >0
1 —4Cw AWétw—1 p—i(wé+uw—1 _4C’(W_ l) Awy—1e—t(wy=1) _ C AnB e—wBi >

I —4Cw A =1 —4C (w—1) A7~ — C A"B>0
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provided that e is small enough (see (32), recall that 4 <¢). Now, if we take
into account the fact that a’, £, vanishe at 0 we obtain in the distributional
sense in RxXR, :

ILv=0
for esmall enough. Now from (30), i.e. (0)>0, we have for ¢ small enough
vi(x, 0)=uy(x) VxeR.
Hence, by the maximum principle
vix,t)=u(x,t) in RxR,
and in particular
0<v(0,)=u(0,?) VicR,.

This concludes.

Remark 4: Note that in this theorem we did not use the assumption (6).

Remark 5: A consequence of Theorem 3 is, under the same assumptions,
that when u (x,, 1)) >0 then w (xy, £) >0Vt > t,. Thus, this allows the definition
of the free boundary as a function x=s(z). (By (29), (31) it is easy to show
that we are in the degenerate case). Moreover, 1 =r(x) is a monotome graph
(see [G]).

4. EXAMPLES
Let us consider for instance the equation
u= (um)x\' + (urz).\_ - (up)x (33)

where the real numbers m, n, p satisfy m=1, n=>1, p=1. The equation is of
the type of equation (1) if we set

f)=u"—ur.

If n>p then (6) holds with =1 (see (3)). Moreover, (19) and (26) hold.
Indeed, f(u)=u"—u” is increasing on the left of 1 since

S (=n—p>0
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(u
and similarly for '%: u"='—u”=' Thus, in this case Theorem I holds (see
Remark 1).
If now we suppose p=1, n > 1 then

Jw=u"—u . f(0)=—I

and Theorem 2 holds. In any other cases we are in situation to apply Theorem
3 provided that (28) holds (see Remark 3).

Let us examine some particular cases.

41-Case m=1,p=1,n=2.

The problem is not degenerate and, as we just saw, the theorems | and 2
apply. Now the stationary solutions can be computed explicitely. Indeed, it is
easy to see that for e€(0, I) the equation

u—=u.tWw—uteu),

admits as stationary solutions (see the notation in Theorem | or 2)

1
L4 - ne-tzax

si.(x, )=(l*¢)

Clearly when x —+o°
s(x,c)—1+e¢
and
s_ (x,¢)—0
when x— —o0. This makes explicit the asymptotic behavior described in

Theorem | and Theorem 2, the solution of the time dependent problem being
given by

St (et +xt M)
42-Case m=n>1,p=1.

The equation (33) is now degenerate but Theorems | and 2 both apply. It
is easy to see that, when e€(0, 1), the stationary solutions to

u =" T (U —uteu),
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are given by (see proposition 1)
=zt {[1—e ni
where [ ]* denotes the positive part of the function into brackets. Clearly
when x—+x
s (x)— (1 +e)ml—'
which gives the explicit asymptotic behavior of s.. Considering
S_, (—et-l-.x-i- M)

allows us to see how the back front is moving.

43-Case m>1, n=2m—1,p=1.

The equation (33) is again degenerate. Theorems | and 2 both apply. It is
easy to see that, when €<(0, 1), the stationary solutions to

u = (u’”),\'_\' + (u” —u i € u),\'

are given by

\/E 2(/11—1)»\_ } i
]+

1
Ste (X) = ( V 1 ié m=t { [ Liwj 2m—1)

Vite " \+l

The same analysis than in case 4.2 holds in this case.

In higher dimensions it is clear that our techniques allow to get some
information on the asymptotic behavior of the solution to parabolic
equations of the type

u=A4aw)+f(u); in R"XR, (34)
u(x,0)=uy(x)=0 in R~. (35)

Here A is the usual Laplace operator and f(u), denotes the derivative of
f(u) in the direction of the unit vector &.

Indeed, it is enough to remark that if s is a stationary solution in R to

U=a (”)gg‘f'_f'(u)f
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then s is also a stationary solution to (34) in R” and thus comparison can be
made and results similar to the ones in one dimension obtained.
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