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Projective Limits of Vector Measures

FIDEL J. FERNANDEZ and P. JIMENEZ GUERRA

ABSTRACT. A necessary and sufficient condition for the existence of the projective
limit of measures with values in a locally convex space is given. A similar theorem for
measures with values in different locally convex spaces (under certain conditions) is
given too (in this case, the projective limit is valued in the projective limit of these
spaces). Finally, a result about the projective limit of vector measures is stated.

1. INTRODUCTION AND NOTATION

In [26] L. Schwartz has proved the Prokhorov’s theorem about the
existence of the projective limit of a projective system of finite (scalar) Radon
measures (of type (%)) on Hausdorff topological spaces. This result has been
extended in [16] for arbitrary (scalar) Radon measures of type (&) on
topological spaces.

As it is well known the Prokhorov’s theorem has a very important role in
the study of cylindrical measures and in general in probability theory.

The main object of this paper is to prove a Prokhorov’s type theorem for
vector Radon measures. This has been made here for Radon measures of type
(&) on an arbitrary topological space E with values in a complete locally
convex Hausdorff space X. Of special interest are the following particular
cases: (1) Eis a Hausdorff topological space and & is the class of all compact
subsets of E, and (2) X is a Banach space.

In the last section we give the relation between the projective limit of a
system of product measures (y; ®v;);; and the tensor product of the limits of
the systems (u,);¢; and (¥,);c - This result remains valid in general without any
assumption about the regularity of the measures. A theorem of this type for
scalar Radon measures has been proved in [12].
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Let X be a complete locally convex Hausdorff space whose topology is
defined by a saturated family % of seminorms, and denote by E, ¥, & and
% a topological space and the classes of its open, closed and Borel subsets
respectively.

If p:% — X is a (o-additive) vector measure, and pe ¥, the p-

semivariation of u will be as usual the mapping |||, B —RTU{+0o0}
defined by

IIullp(B)=SupP(il yu(d))  (BeB)
2

where the supremum is taken over all partitions of B into a finite number of
disjoint sets {4} ;2,C % and all finite collections of elements {£;} ;7 C'R with
|l =1 for every j=1,...,n. It is easily proved that

n .
[1ullp, (B)=sup (lex'n(Aj)I) (Be )
=
where the supremum is taken over all finite partitions {4} ;% C % of Band

all x’€ X" such that |x’(y) | <p (y) for every y€ X, where X’ denotes the dual
space of X ; and

lull,(B)=2 sup {p(u(A4)): A€ B ,ACB}

for every borel subset B€ 4.

2. EXISTENCE THEOREMS FOR PROJECTIVE
LIMITS OF VECTOR MEASURES

Definition 1. A borel subset BE @ is said to be u-compact if for every
open cover {G;};.; of B, every seminorm pe & and €0, there exists a finite
subset JC I such that

il (B=Y G)<e [1.1]

Definition 2. Ler &7 be a family of closed subsets of E. We say that u is
a Radon measure of type (&) if the following statements hold :

2.1. Every He & is u-compact.

2.2. For every Be B, pc P and ¢>0, there exists He ¥ such that
HCBand ||ul|,(B— H)<e.

If 4 is a Radon measure of type (&¢') then it is easily proved that every
Borel subset of E is u-compact.
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Definktion 3. Let E be a projective limit of the projective system
(E, IL;)ijc1 of topological spaces and denote by 1l; the corresponding
projection from E into E; (i€ l). If for every i€l, u;:%;,— X is a Radon
measure of type (&;) (%; denotes the Borel family of E;; and &, a family of
closed subsets of E;, which is closed under finite unions), we say that (u;);.;is
a projective system of Radon measures of type (¥;), if IL;j(u;)=u; (i.e.
ui(B)=w;(117] (B;)) for all B,€%b,) for every i,j€ I with i<j,; and a Radon
measure of type () u:B— X is said to be the projective limit of the
measures (u;)ic; (it is immediately proved that if the projective limit measure
exists then it is unique) when II;(u)= p; holds for every i€l (i.e. u;(B;)=
=u(II/(B,)) for every B, #;and i€ l).

Let us introduce the following conditions:

3.1. & is closed under finite unions, HN Fe &  for every He & and
Fe % W;(H)e &; for every He & and iel, and for every He &Z there
exists iy e I such that II;(H)e B; for every i=iy.

3.2. For every iel and pe &, there exists a non negative and finite
measure v»: #;,— R* such that

3.2.1. IL;(v?)=v% for every pe & and i, jel with i<}

3.2.2. vP(B)=inf{vP(G,): B,CGie ¥}, for every iel, pe# and
B,'G.@i.

3.2.3. For every ¢e>0 and pe & there exists i el and n>0 such that
il (B;)<e€ for all i=i, and B;e &; with v?(B,)<n.

Lemma 4. If the Radon measure of type (¥') u:B— X is the projective
limit of a projective system (u;);.; of Radon measures of type (¥,) and
conditions 3.1 and 3.2 are verified, then

w(H)=lim p; (1;(H)) [4.1]
_EH
for every He & Moreover, u is of bounded semivariation if and only if the
semivariations of the measures p;(ie€ ) are uniformly bounded.

Proof. It follows from conditions 3.1 and 3.2 that for every He <,

(w;(Il;(H)))i=i, is a Cauchy net in X.

Let us set

AH)= llgn wi(l;(H)). [4.2]
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(If the semivariations (||u,|[,);; are uniformly bounded (for every pe &),
then (u;(I1;(H)));z;, is a bounded Cauchy net in X and so the limit [4.2]
exists also assuming only that the space X is quasi-complete.)

Let HeZ, pe ¥ and ¢>0. Then

=0 ' (=" ' (@),

iZiy iZiy
and there exists i ,..., I, ¢ I such that
|11, (L5, (O, CED) — E)N(N T, (T, (D)) )=<e.
Therefore, if i, el is such that iy <i, and {,<i, for h=1,...,r, then
ull, (7 T, (H) — H)< €
for every ie I with i=i,, and
p (I (H)) — p () =p (u (I ' IL(H)) — n(H)) =
=p (' I;(H)— H) < || pll, 7 TLH) ~ H)<e
for every ie I with i,<i. So, p(A(H)— u(H))<Z¢;
from where it follows immediately that u (H)= A (H).

Moreover, if u is of bounded semivariarion then the measures u;(ie I) are
of uniformly bounded semivariation since

Nl (BY=11pll, T (B))

for all pe & and B;e ;. Conversely, if for every p € & there exists K>0 such
that ||u,||,(E) = K for every ie I, then for every ¢ >0 and Be %, there exists
He & such that H C B and ||ul|,(B— H)<¢; therefore ,

p(u(B)=pp(B—H))+pH)=||ull,(B—H)+
+P(>\(H))Se+§ulpII#,-II,,(E.-)SGJFK;

iziy

and ||ull,(E)<2-sup{p(u(B)): Be# }<2K<+oo .

Theorem 5.  Let (u,);. ; be a projective system of Radon measures of type
(;), and assume that conditions 3.1 and 3.2 are satisfied. Then the projective
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limit p of the system (uy);. s exists and p:B— X is a Radon measure of type
(&), if and only if the following statements hold:

5.1. For every pe %, ¢>0, He < and open cover {G;};c; of H, there

exists a finite subset J'CJ and i, e I such that i,= iy, with H;= H——jkcJJ, G;,
and

il l, (W (H—Y, G))<e
for every i= i,

5.2. Foreverype X ¢>0,ieland H;e ;, there exists He & such that
HCI;'(H) and

iir |, (W) (H)—T1, (H) )< e,
for every i’e [ withi’=Ziand i’= iy.

Proof. The condition is necessary. Consider pe &, e>0 and He &7 If
{G}};es is an open cover of H, there exists a finite subset J’CJ such that

el (H=Y, G)=e/2.

Set HH=H —_UJ’ G; es%% then as we have seen in the proof of Lemma 4,
. . J€ S s
there exists i, € I such that i,=iy and

|, (07 TL (Hy) — Hy) < €/2
for all ie I with i=1i,. Therefore, we get
Hawal |, AL(H— ) G =|pll, G L(H))<
S ull, (G IL(H) — H) + el (H) <e,
for all i=i,(i el), and 5.1 holds.

Moreover, for ie I, Hie &;,pe & and ¢>0, there exists He & such that
HCII;'(H;) and

Hell, (0 (H) — H)<e.
Therefore we get, if j=i and j=iy (je D),
gl |, (T (H) — T (HD)) < |l |, (I (T (H) — TG(HD) )=

= [ pl, (0 (H) — T T ()< | |p] |, (I (H) — H)<'¢, and 5.2 holds.
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The condition is sufficient. Let A be defined as in [4.2]; then we have:
i) If H,, Hye X satisfy H,N Hy=@, then
AMHUH)=A(H)+A(H,). [5.1]

In fact, H,CE— Hy=U (E— I (IL;(H)) ), and it follows from 5.1 that

for every seminorm p e % and >0 there exists i, e ] such that
luil,(IL;(B))<e for every Be# and jel such thaw j=i,

BCH NI (I;,(H)) and IT;(B) ¢ #;. Therefore,
PAH)+N(HY—N(HUH))=

=p(lim (i (I (HY) ) + i (T, (HR) ) — i (I (H U H) ) ) =

=lim P (ALHA)NIL(H)) )=sup  Hull, ALH)NIL(H)) =
le>l ) ) 2y, iy, iy,

iZig,ig,

=sup
iZio,iHI,iH2

and the equality [5.1] holds.

el |, (LG NI T (H)) )<e,

ii) Forevery He &, pe & and €>0, there exists Ge & such that HC G
and
PN(H)—A(H")—A(H))<e
ifH He%, HCH and - GCH”"CH —H.

To prove this, let us remark first that for every He &, pe & and ¢>0,
there exists i,= iy (i, e I) such that if k=j=i, (k,jel), then

el |, (D! (TG (H) ) ~ T (H) ) <e/2.

Moreover, there exists n >0 and i, €  such that || ;| |,(B) <¢/2 for every
lZil(lfl) and Bif,@,‘ Wlth V{,(BI)S"]. .

Let us consider j=1,, ;. Since i,= iy, II;(H) e %; and then
ve(IL;(H))=inf{+»?(G): I,(H)C Ge ¥},
and there exists G;e &, such that II;(H)C G; and vO(G—1L(H))=n.

So we have
vP(IT;'(G) — 1L (IL(H)) ) =vE(G;— IL;(H))<n,
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and
w1, (7' (G) — TL(H)) <
< a1, (I (G — T TL(H) ) + | il |, (TG T (H) — TL(HD) <
<e/2+€/2=¢,
ifi=j (el.
Set G=1II;'(G)); then HC G and
II~(H’)—I'I‘(H”)CI'I;'(GJ») if ), H”e?, HC H’,
—GCH”CH’— H and i=. Therefore,

PAH)=AMH)=AN(H)=pA(H)—A(H*UH))=

=plim (L (H))— p(L(H"UH)) ) )=
=im  p(u(IL(H) ~ IL(HTUH))) <
SSUp (L) — (L () UTL (B )<
<sup |11l (L7 (G) ~ TL(H))<e |

as stated.

iii) If (H);.,C & is a decreasing filtering net then
A(ijHj)zlijm)\(Hj) .

Let us suppose first that ﬁ H;=9. In this case H,C U (E H)) for every

reJ; and it follows from 5. r that for every pe & and 550 there exists ke J
and i, e I such that

Hpal |, (I (H) )< e
for every r=k (reJ) and i=1i,, iy (iel). Therefore,
p(A(H))=lim  p(u;{L (H)))=sup [lull,(IL(H))<e
iZip, iy iZiy, iy

for every r=k (reJ); hence

lim \(H)=0=\().
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Let us consider the general case. Let pe & and €>0. As we have proved
before, since ﬂ H;e &, there exists Ge ¥ such that ﬂ H;CG and, if H,
eé’/verlfy ﬂ H,CHand '~ GCH”"CH — ﬂ H;, then we get

PA(H)—ANH”)—A(H))<¢/2.
Therefore, if for every jeJ we introduce H;=H ;— G, then we get
PNHY—N(H)—N() H,))=<€/2.

Moreover, since ﬂ H;=9, there exists j, €J such that p (A (H;))<¢/2 for
every j=j (jeJ); and therefore,

P H) =M, H)YSpOH)=~ N, H) = N(H]) + p(\(H})< e

for every j= j,;and
)\(_ﬂj H)=1lim \(H)).
Je J

i) For every Be 4, the net (A (H))y. P(B)N ¢ 1S convergent.

In fact, for every pe & and ¢>0, there exists >0 and i, e/ such that
Huill, (B)<¢€/2 for every i=i, (iel) and B;e &, with v?(B)=n.

Set
A, (H)=inf{vP(T;(H)):i=iy}
for every He &7, then
rg=sup{A,(H):BOHe & }<+o

for everv Be @, and there exists H,e < (with &= P(B)N') such that
rg—n/2=N(H,)=rp; and so,

0<A,(H)— X, (H,)<n/2
holds for every He & with H,C HC B.
Moreover, there exists r€ I such that r=i,, iy, iy, and
Ao (H)< v (T (H) )< X, (H)+ /2
for all j=r (jeJ). Therefore,

vi(L,(H)—1L;(H,))=v] (;(H))— v} (T;(H,))=
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<\, (H)+n/2—X\,(H)<n
for all j=r. Then,
p(N(H)—N(H,))= }_iznrl’iﬁ’iﬁup(w (1L (H)—11;(H,)))=
= sup il (I (H)—11;(H,) )< €/ 2,

PZrig.iy,

and

P(N(H)—A(H))=¢

if H H’e 3, H.C HC Band H,C H’C B. The result now follows immediately
since the space X is complete.

¥) The mapping

p:B——X

B B)=1li A(H
©(B) IIIH:;%()

is well defined, and clearly u (H)=A\ (H) for every H e
vi) For every Be 4, the equality
u(B)=u(BNF)+ n(B—F) [5.2]

holds for every closed subset FC E.

In fact, let Be &, F be a closed subset of E, pé % and ¢>0; then there
exist H, H,, Hye </ such that HC B,

H,C BNF, H,CB—F, p(AN(K)— u(B))=¢€/4,
pN(K)—u(BNF))<e/4 and p(\(K”)—pu(B— F))<¢/4 for every K, K,
K”e & such that HCKCB, HHCK’CBNF and H,C K”CB—F.

Moreover, as we have proved in ii), there exists an open subset G C E such
that H{U(HN F)CG and

PONH)—N(H?)—N(H,U(HNF)) )<¢/4

if H’, H” ¢ % are such that H|U(HN F)CH’ and
H'—GCH”CH — (HU(HNF)).
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Let be ’=HUH,UH, and H’=H,U(H- G). Then H’, H’e¢ ¥,
HUMHNF)CH, — GCH’CH'—(H\U (HNF)), HC H’C B,
H,CH,U (HNF)CBNF and H,C H”C B— F; and therefore,

P(u(B)—p(BNF)—u (B—F))=
=p(p(B)—N(H))+p(\(H)—AH")—NHVHNEF)) )+

+p\(H")—u(B—F))+p\ (HU(HNF))— u(BNF))<e, and [5.2] holds
trivially.

Vil) If (A, nC A is a decreasing sequence then

p(NA)=lim u(A4,). £5.3]
neN n—+oo

Let pe & and €>0; then there exists H, e & such that H,C 4, and

PAN(H)—A(H)))<¢/8
if He & and HiC HC A,. Thus, if He & verifies HC A, — H,, we get
P(N(H))=p(N(HUH\)—A(H)))<¢/8;
and therefore, p(u (B))<¢/8 for every Be # with BCA,— H,.
Moreover, there exists H, e Z such that H,C A,N H, and

PA(H)— N(Hy))<¢/16 if He ¥ and H,C HC A,N H,. Consequently, if
He& and H,C HC A, we have

p(N(H)—N(Hy))=p(A\(H)—A(HNH))+pA(HNH)—\(H))=
=p(\N(H)—ANHNH))te/16=pu(H—H))te/l6=
<e/8(1+1/2).

So, if He & and HC A,— H, then
P(N(H))=p(A(HUH))—\ (H,))<¢/8 (1+1/2);
and p (1 (B))<€/8 (1+1/2) for every Be & with BC A,— H,. In particular,

P(k(A)—N(Hy))=p (u(Ay— Hy))<e/4

Proceeding in this way, we construct a sequence (H,),.yC & such that
H,CA,NH, , for n=2 and
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n—1
p(u(B))= 6/8(_% 1727)  (<e/4)
=

for every Be % such that B CA,— H, (and in particular,

P(r(A)—N(H,))=p(u(A,— H))<e/4)  (neN*).
Since (H,),.y is a decreasing sequence, we get
A (F)VH,,):lirE A(H,),
and there exists #n, € N such that

PN(Hp)— N1 Hy))<¢/6

for every m=n,,.

Moreover, there exists H e & such that "(DN H,C HC ’DNA,, and
PN(H)— () A))=<€/6;
the sequence (HN H,),.y C < is decreasing, and there exists n; e N such that
P()\(HmHm)—)\("ONH,J)SEN

for all n=n,.

So, if m=max (ny, n,), then

P (b (An)— 1 (N, A))=

<P (4 (Am) = A (Hp) )+ O\ (Ho) = N (0, Ho))+

+p (A (N, H)— X (HN Hy) )+ p (N (HN Hp)— N (H))+
+pON(H)— 1 (0, A))<e;

and [5.3] holds.

Vi) As it is easily proved, the set

L ={AeB u(B)=u(BNA)+ u(B— A) for all Be #}

is an algebra.
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iX) If (A,)nC & is an increasing sequence, then '&JN Ane < and
k(BN (};’N An))z}'i_{riwﬂ(BmAn)
holds for every Be 4.
In fact, if (A,)..y C &£ is an increasing sequence and Be 4,
then N ((BN(Y, A,))— A,)=9 and
0=1im p (BN (U, A))— Ap)=
=u (BN (nLéJNA'L))_ ljnm w(BNA,):

and therefore,

#(BO(HNA,J)'*‘#(B—}&JNAJ:
=lim s (BN Ayp) +lim  (B— Ap) = s (B),
and L()N A e &

X) Evidently, u is a finitely additive vector measure and & is a o-alge-
bra.

Xi) u is a Radon measure of type (&%).
Let Ae B, pe P and €>0; then there exists He < such that HC 4 and
PAN(F)—A(H))<¢€/2
if Fe & is such that HC FC A. Thus, if Fe < is such that FC A — H then
PN(F))=p(A\(FUH)—X(H))=¢/2,

and p (u(B))<¢/2 for every Be & with BC A— H. Therefore,
[ull,(A—H)<2sup{p(u(B)):Be B, BCA— H}<e.

Moreover, every He &  is u-compact, since for every open cover {G};, of
H, pe & and €>0, we get from condition 5.1 the existence of a finite subset

J'C J and i,el with i,= iy, with H;=H— U, G,;, such that
Je
il | (IIi(H—_L}, G,;))=¢/2 for every i=i,.
Je

So, if H’e& and H’C H— L{' G, then
je
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P (u(H))=lim pui((H)))<sup |lull,(IL(H))=¢€/2;

Ziy iy, iZiy, iy,

and
H#H,;(H'—jg. G)<2sup{pu(H")):He¥, H'C H—]%,Gj}Se.
xii) It follows from the last results that u is o-additive.

iii)
p (I (H)) = i1 [5.4]

for every iel and H;e ;.

In fact, it follows from the condition 5.2 that for every iel, Hie &}, pe &
and €>0, there exists He & such that HC II;' (H,) and .

w1, (35 (H)—T1;(H) )</ 2

for every j=i, iy. Moreover, there exists H’e & such that HC H’CII;' (H)
and

P (H))—N(H))=¢/2.

Therefore,
p(p(I7 (H))— i (H))<
<pu7'(H))—NH))+pA(H)—p(H))=

<¢/2+lm  p(u (T (H))— pi(H))=

J=i, iy, i

=¢/2+lim  pu((H))— w0 (H)) )=
=i, iy, iy

=e/2+sup il 1, (0 (H)—1L(H?))<
J=Zi, iy, iy

Se/2+§ggiﬁllujl |, (' (H)—T1;(H))<e¢;

and u;(Hy)=p(II;' (H)).
XiV) Let us prove that u is the projective limit of (x,);;.
For this, we consider the family

Si={Aie B p(A)=pd7'(4))}  (el)
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Then, if F; is a closed subset of E, then for cvcry pe P and €>0, there
exists He&% and Hes%suchthatHCF,, HCIIV(F), il |, (Fi— H)<¢€/2
and ||u|l, I Y(F)— H)<¢/2. Therefore,

p(wi(F)—p@; ' (F)) )<

<p (i (F) — w(HVIL(H))) + p (ui(HVIL(H))—p (L (F))) <
< wil |, (Fi— (HVTLH))) + [l |, G (F)— H)<e;

and Fie .

Moreover, if A;, Bie & and A CB thcn B,— A;e &;; and U Ale & for
every increasing sequence (A.),.y %

Now it follows immediatley that S, = B, and that p;(A)=p (L' (4))
for every i€ ] and A,€ %;, as we wanted to prove.

This ends the proof of Theorem 5.

Let us consider now a Hausdorff and complete locally convex space X
which is the projective limit of a projective system (X, f;)); je; of Hausdorff
and complete locally convex spaces and denote by &; a generating and
saturated family of seminorms on X; (we will assume that if i, je I, p;e & and
i< j, then p; f;;e &), and by f;: X— X, (ie ) the canonical projection.

As we have made before, let ((E;, ¥), II, )i, jer DE a projective system of
topological spaces, with %, the Borel o-algebra of E;, &; a family of closed
subsets of E;, which is closcd under finite unions, and u,: 4,— X; a Radon
measure of type (7).

Let E=lim E; and denote by # the Borel o-algebra of E and by
Il;: E— E; (ie I) the canonical projection.

We will assume that
pi(A)= ij(l“j i_j] (4)) )
for every A;e B, i,jel with i< j.
Definition 6. We say that a measure u.: B— X is the projective limit (it

is easily proved that if the projective limit measure exists then it is unique) of
the last system of measures (uy);c; if

/

Sie (07 (A)) )=pi(4)
for every A;je B;and iel.
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Let us assume that &7 is a class of closed subsets of E which verifies the

condition 3.1, and that for every iel and every p;e & t'. re exists a non
negative and finite measure ’

vPi: B,— RT such that:
a) The equality

vPi(A)=inf{v]"(G): 4,CG, G open subset of E;} holds for every ie],
piG% and A,'G..@,’.

b) For every iel, p;e % and >0 there exists i,=i and >0 such that
if je I and A;¢ %; are such that i,< j and v"/¥ (4)<n, then

Wil p, 7, (AP <e.

c) II; (vj"ff‘/)z v? holds for every i, jel with i< j and every seminorm
pie %

Then proceeding like in last proofs, the following results are obtained:

Proposition 7. For every He& and iel, (fij(i;11;(H)) )=y is a
convergent net in X;; and the mapping \ : &— X such that

N(H)=Ilim (fgrz Jijw I (H)) ) [7.1]
i J=H :
is well defined.

Theorem 8. The projective limit p of the (last) projective system of
measures (i) exits and p: B— X is a Radon measure of type (), if and
only if the following conditions are fulfilled:

8.1. Forevery He, iel, p;e P, ¢>0 and every open cover {G,},.; of
H, there exists a finite subset L’CL and i,el such that i,=i, iy , with
H,=H-— UL,G, , and

il f;, (L (H— Y G)<e
holds for every j Z.i,,.

8.2. For every iel, p;e P, Hie ¥; and >0, there exists He & such
that HCII;! (H,) and ’

Nl p, f; (05 (H)— T (H) )< e

for every j=i, iy .
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Moreover, if p=1im g; exists and is a Radon measure of type (&), then
it is unique and u (H)=\(H) for every He &, \ being the set function
defined in Proposition 7. Also, the measure u is of bounded semivariation if

and only if the semivariations { ||yl ], 5 =1} are uniformly bounded for
every iel and every p;e . '

3. ON THE PROJECTIVE LIMIT OF PRODUCT
MEASURES

Let us continue with the notations of last section and consider two
projective systems of Hausdorff and complete locally convex spaces
(Y: gi)ijerand (Z;, hy));je, with Q, (resp., %) a generating (and saturated)
family of seminorms on Y; (resp. on Z;) (i€ I), and suppose that g;g;;¢ Q; and
rih;je Z; for every pair of seminorms g€ Q;, r;e %; and every i, je I with i< j.
We shall write Y=1lim Y;, Z=lim Z, P={p; fi:p,€ P, ieF}, Q={qg;:
q;eQi, iEI} and @:{rihi:rie .@i, IGI} (g,'.' Y— Yi and hi:Z—’ Z,', iéI,
will be the natural projections as usual).

Let us consider another projective system of Radon measures of type
(F), (F, &), I, 1L, v); je 1, Where ; is a family of closed subsets of F;,
closed under finite unions, %, is the Borel o-algebra of F; and v;: B, — Y,
is a Radon measure of type (%), i€ I (see definition 3).

Let % be the Borel o-algebra of F, where F= g_ng F;; we shall use the
following notation: II}: F— F; is the natural projection (i€ I),
néf:(n"’ Hl’j)’ ll]:(ﬁj’ gij)’ ni:(n,‘, H:) and li:(f;'tgi) fOI‘ all i,jéI Wlth
i<j.

Suppose that, for every iel, there exists a bilinear and .continuous
mapping 6;: X;x Y;— Z; such that the following diagram is commutative for
i<j(i,jel):

o

X;x Y, — Z,

A L

and let §: Xx Y— Z be the function (8));, .

Theorem 9. If the projective limits u and v of the systems of measures
(Bierand (vi)ie; (k=1lim p;, v=1lim v,) and the product measures p;Qv; (ie I)
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exist, then the product measure Qv exists if and only if the projective limit
measure (lim u;®v,) of the system of measures (u;Qv,); exists, and in this
case they coincide.

Proof. Let us suppose that the measure y = m u; @v; exists; then it is
easily proved that for every A,e #; and i€ the equality

y (7 (A)x By =8 (u(IT7 ' (4))), »(B))
holds for every Be %°, from where it is deduced that
Y(AxB)=8(u(4), v(B)
is verified for every A ¢ & and every Be %’ and consequently y=u Q.

The other implication is trivial.
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