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ABSTRACT. Two properties on projective tensor products are introduced and
briefly studied. We apply them to give sufficient conditions to assure the non-
containment of /' in a projective tensor product of Banach spaces. )

Our notation is standard and we refer the reader to [3]. Let £ and F be
Banach spaces. L (E, F) and V (E, F) denote respectively the Banach spaces of
bounded (linear) operators and of fully complete operators (i.e. those
operators sending weakly convergent sequences into norm convergent ones)
from E to F. Recall that every compact operator from E to Fis fully complete
and the converse holds whenever E has no copy of /' (cf. [3,17.1, and 17.7]).
EQ®F denotes the projective tensor product of E and F. As usual, we make
the canonical identification of the dual space (£ ®F)’ with the Banach spaces
L(E F)and L(F, F).

Let (x,), and (y,), denote sequences in the Banach spaces E and F
respectively. We consider the following properties on EQF:

(@) (x,y,), is weakly null whenever (x,), and (v,), are weakly null.
@) . (x,Dy,), is weakly null if (x,), is weakly null and (y,), is weak-Cauchy.

(b)  (x, By, is weakly null if (x,), is weakly null and (y,), is bounded.

Note that the property (b) is not symmetric, e.g. I ®co enjoys (b) and
Co ®1' does not do it as can be easily checked.

The following result summarizes some basic facts on (a), (2’) and (b).
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1. Propesitben: Let E and F be Banach spaces and consider the
Sfollowing assertions:
() L(EF)=V(EF)
(ii) E QF has the property (b).
(ik) EQF has the property (2').
(v) EQF has the property (a).

Then one has the chain of impkcations (i) e (ii) =e (iii) e (iv). Moreover
(W¢) e i) whenever F Aas no copy of I'.

Proof. (ii)==(i). Assume that there is a continuous linear mapping f
from Einto F’ which does not belong to V' (E, F’). Then, there is a weakly null
scquence, say (x,),, such that (f(x,)), does not converge to 0 in norm. By
taking a subsequence if 1t is necessary, we can choose a bounded sequence
(¥Jn In F such that

<Y [(x) > =< %, By, f>=1
se centradicting (ii).

(iv) == (iii) follows by a standard argument (e.g. sec [1, Theorem 1. (c) =
(d)]). If Fhasno copy of /!, then (ii) follows from (iii) by using the celebrated
Rosenthal’s '-theorem ([4]). The remaiming implications are straightforward.
a

We use (a) and (b) to give a characterization of the classical Dunford-
Pettis and Schur propertics. We first recall the definitions: (D-P) A
Banach space E is said to have the Dunford-Pettis property provided
lim<x,, x%,> = 0 whenever (x,), 1s weakly null in E and (x%), is weakly null

flTE’. (S) We say that a Banach space E has the Schur property if weak
Cauchy sequences in E are norm convergent.

2. Propositien: Let E be a Banach space. The following are equivalent:
() EQE’ has the property (a).
(ii) E has the Dunford- Pettis property,
(%) E®F has the property (ln)for every Banach space F.
(iv) E QF has the property (a) for every reflexive Banach space F.

Proof. (i)=w(ii). Take (x,l/),, and (x}), weakly null sequences in £ and E’
respectively. We denote by /- the identity map of E” and set (< x,, x5 )n =
=(<x,,Ip (x3)>),=(<x,®x%, [->), which is a null sequence by (a).
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(ii) = (iii). Let (x,), and (y,), weakly null sequences in E and F
respectively and take any f€L(F, E’), then (f(y,)), is weakly null in E’
hence (< x, @Y, , f > )= (< x,, f(¥n)>)n converges to 0. Thus (x,®y,), is
weakly null.

It is clear that (iii) implies (i) and (iv). we finish the proof by showing that
(iv) implies (ii). Indeed, by (iv) and by Proposition 1 it follows that
L(E, F)=V (E, F) for every reflexive Banach space F. Thus every weakly
compact operator from E into any Banach space X is fully complete (use [3,
17.2.9]) and this already implies that E has the Dunford-Pettis property ([,
Theorem 1. (a)]). m

We omit the proof of our next result since it is quite similar to the above
one.

3. Proposition. Let E be a Banach space. The following are equivalent:
i) E Q E’ has the property (b),
(ii) E has the Schur property, .
(iii) E ® F has the property (b) for every Bar;ach space F,

We are now ready to provide sufficient conditions for the non-
containment of /! in a projective tensor product of Banach spaces. Recall that
a subset A of a Banach space E is said to be weakly conditionally compact
(wee) if every sequence in 4 has a weak-Cauchy subsequence. From
Rosenthal’s Theorem, E does not contain a copy of /' if and only if all
bounded sets of E are wce. So the next lemma is the key to our main result.

4. Lemma. Let Eand F be Banach spaces and let A and B be wcc sets
in E and F respectively. Then T'(AQ®B) is wecc whenever EQF has the

property (a).

Proof.  According to the results of [5] it is enough to show that A ®Bis
wee. Indeed, let (x,®y,), be any sequence in AQ B. By passing to
subsequences we assume that (x,), and (y,), are weak-Cauchy. We are done

if we show that (x, ® y,), is weak-Cauchy. Indeed, in other case there weuld
be ¢e>0, fE L(E, F’) and a sequence n; <n,<..., such that

) | <X @ Vg — Xy O Vmpsy s [ > | >€
However, we can set
<x,,k®y,,k _x"k+l®ynk+l > :<(xnk _xnk+1)®y,,k,f>+

+<xnk+| ®(ynk _ynk+l)’f>
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and these sequences are null by (a’) (recall that (a’)¢=(a) ). This contradiction
establishes our assertion. m

The theorem below is our main result. It has been independently obtained
by G. Emmanuele [2, Theorem 15], and it was already proved in [6, 4.4] under
the additional hypotheses that E” has the Radon-Nikodym property and the
approximation property.

5. Theorem. Let E and F be Banach spaces which do not contain a
copy of I and such that EQF has the property (a). Then EQ F does not
contain a copy of I'.

Proof. It readily follows by Lemma 4. =

I thank Prof. Bombal for useful conversations and for the reference [2].
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