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A singular perturbation method for saddle
connections and subharmonics of certain
nonlinear differential equations with
fixed saddle points

PETER SMITH

ABSTRACT. Saddle connections and subharmonics are investigated for a class of
forced second order differential equations which have a fixed saddle point. In these
equations, which have linear damping and a nonlinear restoring term, the amplitude
of the forcing term depends on displacement in the system. Saddle connections are
significant in nonlinear systems since their appearance signals a homoclinic bifurca-
tion. The approach uses a singular perturbation method which has a fairly broad
application to saddle connections and also to various subharmonics. The singular
perturbation is unusual in that it uses a time-scale which has to be constructed over
an infinite interval. The system with a cubic restoring term and a quadratic amplitude
is looked at in some detail.

1. INTRODUCTION

For certain nonlinear differential equations homoclinic bifurcation occurs
when the stable and unstable manifolds of a saddle point of the system
intersect thus creating what is known as a homoclinic saddle connection.
Probably the most widely investigated differential equation which exhibits
homoclinic bifurcation, period doubling and strange attractors is Duffing’s
equation with linear damping, cubic restoring force and harmonic forcing. The
qualitative behaviour of solutions of this equation is now well understood
and a comprehensive account of the subject can be found in the text by
Guckenheimer and Holmes [6]. The review by Greenspan and Holmes [5] and
the book by Thompson and Stewart [13] contain further background
material relevant to the subject of this paper.

In Duffing’s equation the saddle point is associated with the Poincaré map
of the fixed point of an unstable periodic solution. The location of this fixed
point varies in the parameter space of the system. From the point of view of
applying perturbation procedures there is considerable insight to be gained by
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investigating model systems which have fixed saddle points. An equation
which can be made to have this type of fixed point is

) X+kXx +f(x)+ug(x)cos wt=90

where k is the damping coefficient, w is the forcing frequency and u can be
thought of as a measure of the forcing amplitude. We assume that

S/ 8€C (—oo0,), f(0)=g(0)=0, f(x)=—x+0(x)and g (x)=—dx—x’+0(x*)
and that f(x) is an odd function of x such that f(x)—oco as x —oco. We also
assume that f(x) has just one stationary value, which is a minimum, for x>0.
In equation (1) the parameters are .such that k=k,e and u= u,e where k,,
to=0(1) and € is a small parameter. Essentially we intend to treat the equa-
tion as a perturbation of the autonomous system

) X+ f(x)=0.

Equation (1) is a version of Duffing’s equation if g(x)=1, but, in this
form, the permanent equilibrium point at the origin is lost. It can also be
viewed as an approximation to Duffing’s equation in which the unstable
periodic solution is removed by a perturbation of its averaged form (see
Smith and Davenport [12] for this derivation).

If g (x)=x then the equation becomes a damped Mathieu equation with
cubic restoring force. Other versions of equation (1) arise in circuit theory
(see, for example, the work of Salam and Sastry [11], Hasler [7] and Endo
and Chua [4]), where there is considerable interest in chaotic outputs from
systems with particular reference to Josephson junction devices and phase
locked loops.

The purpose of the present paper is to investigate the structure of saddle
connections and subharmonics of (1) as a contribution to nature of the
chaotic regime of the system. It is part of a continuing programme of work
initiated by the paper by the author and Davenport [12].

2. MELNIKOV’S METHOD

We first need to establish the behaviour of solutions of (1) in the
neighbourhood of the origin. If g(x)=—x2+0(x?) (§=0), then sufficiently
close to the origin for e small, equation (1) can be approximated by

3) % +eky % —x=0.

The equilibrium point at the origin is always a fixed saddle point. With
any saddle point we can associate stable and unstable manifolds which are
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sets of points or initial values whose first returns or Poincaré maps, period
21/ w, approach the saddle point for iterations forward and backward in time
respectively.

When =0 as in (3), the stable and unstable manifolds approach the
origin asymptotically along the straight lines y=(—1— % eky) x and
y=(1- % ek,) x respectively, for small e. Timewise x must behave as

1 1 .
x~el-S ¢kt and x ~e('-5 <kt as t — o0 and ¢t — — oo respectively.

If g(x)= — x+o0(x) (case, § = 1), then the linearised equation close to the
origin becomes

()] X+ekyx — (1 —euy cos wt) x=0,

which is the damped Mathieu equation. Floquet theory (see Jordan and
Smith [9]) indicates that the solutions of (3) are of the form

5) X=c e 54 p, (1)+ e F 3% (1)

where + o are the characteristic exponents, p,(z) and p,(t) are periodic
functions with minimal period 27/w and ¢, and ¢, are constants. It is evident
from (4) that the origin is still a saddle point for e sufficiently small, with the
asymptotic behaviour of the stable and unstable manifolds given by putting
successively ¢, =0 and ¢,=0 in (5).

The method due to Melnikov [10] (see also Holmes [8] and Guckenheimer
and Holmes [6] for particular references to Duffing’s equation) is a
perturbation procedure which determines the parameter values for which
intersections ot the stable and unstable manifolds occur. Any such inter-
section signals the appearance of a saddle connection for the saddle point.

Let X =y and put

©  %=[5]=[- - ekor? mogwicos wn| = W +erx,0),

say. The Melnikov function associated with (6) is defined by
™ ME)=[" 1x0))Ag(Xe(1), t+7)dt

where f A g means the wedge product f; g,—f,8 and X, (1)=[x,(2), yo ()] is
the homoclinic orbit or separatrix of the unperturbed system (2). The time
f,€[0, 2m/w) arises since the unperturbed solution x, () can always contain
an arbitrary time translation. The function defined by (7) is a measure of the
distance between manifolds. If there exist of parameter values for (k, u, ) for
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which M (#,) vanishes, then, for e sufficiently small, the stable and unstable
manifolds intersect and each intersection generates a saddle connection.
Substitution of (6) into (7) leads to

ME)=—["_ 3 (®)lkoyo())+ g (% (1)) cos w(t+7,)]dt.

We can illustrate the theory using two examples. In both cases f(x)=—x+ x3
and x, ()= \/5 sech .

Example 1. (6=1). Ifg(x)= —x, then the Melnikov function becomes

®) M(t)=— —g— ko+ mw? u, cosech (% w-rr) sin wi,.
Saddle connections can only occur if
® % = % mw? cosech (% anr).

Example 2. (6=0), Ifg (x)=—x?, then

(10) M(fo)z—%ko+~;- V2 o (w? + 1) sech (%aﬂr) sin wi,

in which case saddle connections only exist if
(1) * s% V2w (w?+ 1) sech (%anr).

In both cases k/u has to be below a critical threshold for homoclinic
saddle connections to appear.

3. SINGULAR PERTURBATION APPROACH

We propose to construct a solution using the coordinate perturbation
procedure developed by Crocco [3] (see also Jordan and Smith [9], Chapter
6)). This will be a singular perturbation of a separatrix solution valid on
" t€(—o0, 00).

Let the right-hand separatrix of the unperturbed system (2) cut the x-axis
in the phase plane at x = ¢, where a, must be the positive solution of

(12) " reodx=o.

For the autonomous case the time of intersection of the separatrix with the
x-axis at a, is immaterial, but it is significant for the nonautonomous system
when we need to know which particular separatrix solution is going to be the
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first approximation to a saddle connection. Our approach requires the
analysis of those solutions which start close to (o, 0) at time of approxi-
mately 7,, which is not known a priori, but will be defined by the required
behaviour of the solutions as ¢ — *co.

Consider now those solutions of (1) which start or end at x=a,+e€a; +...,
% =0 at time 1 =1{,+e¢f, +.... Both forward and backward in time these initial
conditions become
(13) x(ty+ et +...,€) =y +€a; + ..., X (ty+ et +...,6)=0.

The introduction of the expansion

x(te)=xy(t)+ex, () + ...

into (1) leads to a sequence of differential equations of which the first two are
(14) Xo+ f(x0) =0,
(15) X+ 7 (xp) x, = — ko %o — ng (x,) cos wt,
subject to the initial conditions |
(16) Xo(ty) = @, X, (1) =0,
a7 x, () = ay, X (L) =—1, %, (to)

The general solution of (15) can be expressed in terms of the separatrix
solution x, (z) of (14): it is

(18) x; ()= Au, (1)+ Bu, (U‘*J” [t (5)uy (D) —uy () uy (1) ]q (5) ds

o

where

(19) =%, wO=u) | - (t)]z,
and

(20) q(1)=—ko %o (1)— ug[x (1) cos .

The constants A and B as determined by the initial conditions are given by

(21) A:*tl, BK: ),
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where
K=limu, ().

t—1p

The asymptotic behaviour of the homogeneous part of equation (15) is
covered by a theorem due to Bellman [1] (see also Cesari [2], Section 5.4).
This is justified since the conditions

1+ £ (x,)—0 as t—t oo andf [1+f (x) 2ds<oo

0

hold. Bellman’s theorem then states that the homogeneous part of the
solution of (15) behaves as ex¢*0M) for both ¢ — + . These solutions can be
identified with u, (z) and u, (¢) in (19).

It is a direct consequence of this asymptotic behaviour that secular terms
(that is, those behaving as 7 or cos wt as t — 3 o0) will arise from the second
integral in (18). They appear specifically from the integration of the product
of u,(s) and any linear terms in x, and X, in g (z). Such terms can be elim-
inated by a suitable coordinate perturbation in the form

(22) t=71+eT (7)) +....
In terms of the new time scale 7 the perturbation becomes
x=X(r,e)=xy(t+eT (7)+...)+ex, (r+eT () +...)+...,
=x,(N+[T (D) x5(T)+x,(T) ] €+....

where x;(7)=dx,(7)/dr. We now choose T,(r) to take out the secular
expression in the second term of the expansion: thus we put

T

(23) T,(r)= — f u, () ko %, (s) — ndx, (s)cos ws] ds.
o
With this correction the expansion finally becomes

(24) x=X(r, &=x (1) + €[ — 1,1, () + (—%) u, (7)

+ uz(r)f w,(5)q (s)ds + , (7) f iy (5){ g [ %0 (5)]

fH 0
+ubx,(s)cosws }ds]+....
If we assume that 7 =74+ €7, +... then t =ty +€t, + ..., then from the coordinate
perturbation (22)

t():To, t[:T|+6 TI(T0)+....
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In the previous approach to Duffing’s equation by Smith and Davenport
[12], a version of Lighthill’s method [9], Section 6.3 was used to obtain a
different coordinate perturbation.

4. SADDLE CONNECTIONS

We can treat (17) and (18) as «initial» conditions both forward and back-
ward in time. The forward solution approaches the saddle if x (7, ¢)— 0 and
X (t,¢)—0 as t —oo, and the backward solution emanates from the saddle if
these limits also hold as t——oo. A saddle connection is formed if all four
conditions are met. From the remarks on asymptotic behaviour at the end of
the previous section, a saddle connection occurs if both

(25) B+fm u, (s)q(s)ds=0
and '
(26) B-JmeMQﬂk:Q

Elimination of B between (25) and (26) leads to the condition

f”m@qmm=o
or -

27 fw xb (5){ ko x0(8)+pogl X0 (s)]cosws } ds=0.

—o0

In the particular case in which f(x)=—x+Xx* and g (x)=— x?, the first term
in the expansion is given by x,(7)= /2 sech (r—1,). The zeros of the
Melnikov function determined by (10) coincide with those given by (27).
When ¢, is known from (27), B can be found from (25) and x, is then given by
(24). The time 7, which arises in Melnikov’s method in Section 2 is the same
time as ¢, or 7,, and £, is the time, to lowest order, when the saddle connection
cuts the x-axis.

5. SUBHARMONICS

The singular perturbation method of the previous section can be adapted
to find the location of certain subharmonics of equation (1) when homoclinic
bifurcation has taken place. Equation (1) has many characteristics which are
similar to those of Duffing’s equation and the behaviour of the stable and
unstable manifolds as k/u decreases through its critical value is very similar
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to those depicted by Guckenheimer and Holmes [6], Section 2.2. Equation (1)
develops an attracting set of first returns which includes a period doubling
sequence. It is unlikely that the perturbation procedure of Section 4 can be
adapted to approximate to the period doubling sequence since these subhar-
monics grow from the centre of the original unperturbed system.

Orbits which are close to the saddle connection of the previous section will
cut either the x or y-axes near the origin in the phase plane. A direct
perturbation analysis on the autonomous system (2) easily reveals that
solutions which pass through x = ¢, +€a,, ¥ =0 whichever occurs first in the
neighbourhood of the origin in the phase plane both forward and backward
in time. Typical solutions are shown in Figure 1. As e — 0, the time interval of
this approximation approaches +co and the corresponding orbit tends to the
separatrix of (2). To simplify the analysis we shall now assume that § =0 in
the definition of g (x).

y
05
X
1
0 1
—0.5

Fig. 1. Orbits which pass close to x=1+/2 for equation (1) with f(x)=—x+x3 and
g(x)=—x2, and parameter values k=0-1, u=0:2, 0 =1-2.
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Assume also that x is still given by (24), that is, still subject to the initial
conditions (16) and (17). The two cases in which the advancing path first
meets the x-axis and the y-axis must be investigated separately. The former
case occurs where ¢ satisfies

(28) x(t,¢)=0.

This time will be a function of € so that some care is required in assessing the
contributions of terms in the expansion of x (7, ¢). Equation (28) leads to

(29) x3(1) +e[ T, (1) xg (1) + x{(7) ] +... = 0.

Now on the separatrix for x<<0, x,(7) satisfies

G0 x5 (1) =~ — X (7)

close to the origin in the phase plane. Thus for x>0 and x<<0 both small in
magnitude

u(N==x(1), w®)==1/[2%(")]

Substitution of these approximations and (23) into (29) leads to the result
that, for x,(7) small,

60 —x@- L[ B+[ w@a@@]R@1 06T 1. =0

In the construction of (31), equation (30) has been used where necessary. The
upper limit of the integral can be extended to infinity since the remainder is
o(1) as e— 0. If we now put the first two terms of the expansion equal to zero
in (31), then, to lowest order,

(32) %o =V[Cs (o, o, o) €]+ O(1),
where
(33) C. (ks oy 1) = — %{m f “u, (s)q(s)ds]-

Such an intersection will only take place if C, (kq, o, 7o) > 0. Furthermore the
solution will approach the saddle if C, (kq, i, 7o) =0 thus agreeing with (25).
On the neighbouring stable separatrix

(34 Xo (1)~ Dy €=,
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where D, is a known constant. Comparison of (32) with (34) implies that the
time lapse between the successive intersections with the x-axis is given by

(39) r—ro== 2 InesIn{ Do/ VIC (ko oy 7)1} +0 (1),

By a similar argument the prior intersection with the x-axis occurs at

(36) Xo= I C_ ko, o, 76) €1+ O(1),

where

37) C (ko pto, 1) = — % { B_ f_l u, (5)q (s)ds }

at time

(38) — TOZ%InH-ln{ D_INIC. (koy o, 7) €]} +0 (1),

provided, of course, that C_(k,, u,, 75) >0. In (38) D_ is given by the asympto-
tic formula

(39) Xy (1) ~ D_emo

on the neighbouring separatix.

In a similar manner we can find the locations of intersections with the y-
axis in those cases where occur first. At these points in the phase plane

(40) x5 () =F V[ = Ce (ko, 1o, ) €1+ O(1)

fory§0.

Subharmonics in x>0 can be found by matching (32) and (36) at time
differences 2mn/w (n=1,2,...). This leads to the two conditions

(a1) Co (ks or 75) = C_ (Ko, btoy 73) OF j u,(3)q (s) ds =0,
and
@2) 2mn=wlIn[D, D_/eC, (ko, oy 1) ].

Obviously such subharmonics will only be present if C,, C_>0. Equation (41)
is the same condition as (27) so that these subharmonics will be a consequence
of homoclinic bifurcation.
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For the system with f(x)=—x+x*and g (x)=—x* we can find C, (k, to, 7o)
explicitly. Since x,(7) = /2 sech (r — 1), it follows that D, = D_=2 V2. Also

(43) u, (1) =—+/2 sinh (r — 7,) sech?(r — 7,
and
(44) * w(n)= %\/5 [2—3(r— 7o) tanh (7 — 74) — sinh? (1 — 7,) I sech (7 — 7).

The constant B from (21) becomes B=a,+/2, whilst condition (41)
reduces to ‘

(45) sin wr, =2 \/2k, cosh (%m) | [nowr (1—a?) ]

as in Section 2. Thus (33) becomes

(46) C, (ko, oy TO)Z—%al\/E—%f:ul (s+70) g (s+70)ds
where

qg@s+1y)= % \/2 k, sinh ssech? s + 2, sech?s cos w (s + 7).

The first term in the integral in (46) is a standard form whilst the second
can be transformed by the identity

\/EI“LO f sinh s sech*s cos w (s + 7,) ds

0

£

- %po\/i[(2+w2)cosw1ro—w(l+w2)f

sechssinw(s+ 7,) ds ]
0

In the final integral substitute the series

sechs=2 3 (—Dme-embs, (s3>0),

m=0

and integrate term-by-term. The result is

47) C.(ko, po T0) =— —;— o V2 +% ko+ o M (@) cos 7o+ py N (w) sin o,

where

(48) M(w)ZiZ-[2+w2—2w2(l+w2)§ ___(__—l)m—_],

m=0 (2m+1)*+w?

(49) N(w)= —% wm (1 +w?) sech (—;— @ )
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Similarly
C _ 1 1 .
" (ko, Mo, To) = — % V2— ?ko + o M (w) cos wmy — po N (w) sin w,,.

For each positive n, equations (41), (42) and (47) now define «,, the
coordinate of the point where the coresponding subharmonic cuts the x-axis.
The results are particularly simple for the critical tangency of the manifolds.

In this case wry= v whilst from (42)
€, =—38 \/ie—z’"'/‘".

Note that a;—0 as n— o which implies that the critical saddle connection
cuts the axis at x=a,=1/2 to order e.

These subharmonics have a single cycle in each period unlike the multiple
cycling which occurs in the period doubling cascade. Similar subharmonics
have been previously discussed in some detail by Greenspan and Holmes [5]
who investigated them using a subharmonic Melnikov function. There are
differences between the methods and the results which arise because the
present approach is based on a perturbation of the separatrix of (1) whilst the
Melnikov method used by Greenspan and Holmes uses a periodic orbit of the
centre as the starting point.

6. STABILITY OF SUBHARMONICS

We are now in a position to test the stability of the subharmonics of the
previous section. Suppose that o, and 7, satisfy

(50) sin wn, = 2v/2 k, cosh (% am-) [ o wrr (1+w?)],
GhH - %al € V/2+ ey M (w) cos wry=8e-2m/s,

This particular pair («,, 7,) defines the initial state of a subharmonic of
order n. On y =0 perturb the initial state to (a; +po, 7o+ ¢,) at 4 (see Figure 2),
where |pyl, |g,l are assumed to be sufficiently small. Suppose that the orbit
next cuts the x-axis in the neighbourhood of A at C where the displacement-
time pair is given by (o, +p,, 7+ ¢,). We now find the linearised relations
between the perturbations at 4 and C. From (32) and (47) it is possible to find
x at B, say x,, for e fixed (but small) and to orders o (p,) and o(q,). The result
is

(52) xp=A,+ e[ — /2P, + 2 (v, + 7)) q]/ (44,),
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X

Fig. 2. An orbit close to the theoretical position of the subharmonics for parameter
values k=0-2, u=0:2, w=1-2.

where

A=/ [%eko+8e‘2""/”’],

(53) Y =— wiy M (w) sin w, ¥2= N(w) cos wr,.

The prior intersection of the path through C must also pass through B so
that

(54) xp=A,+e[— 2P, +2(v,— ) 4,1/ (44,).
From (52) and (54) it can be inferred that

(55) - %\/EPAI +(Vi—v)q=— %\/EPOJr (71+72) qo-
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If the path from A arrives at B at a time corresponding to 7, then, from
(35), it follows that

(56) To~mi+go+In(2V2/xp)

~ 010 @v2) 4)+[ $VEepi+ @Al evi—evd | 04D,
Similarly the scaled time 7, prior to the time at C is given by
(57) |
T~ T+ Qmn/w) =22/ A,)+ —%x/fepl+(2A5+e%—ev2)q.]/(2A3).
Thus, from (56) and (57) with (42),
(58) —2V2ep+ QAR reyi—ev) 4= 5 V2epo + A3 +ev, — v qo
Finally, from (55) and (58), the first returns can be expressed by
(39 E p=Ep,

where
D (i=0.1) E _‘%‘\/—2-5 (V1 +72)e
pi= [ ] i= s ) 0=
q; %\/5E 2A,2,—e‘y| — €Y,
- %ﬁe (71— 7>)e
E =

—-%\/—2_6 2A2 +ey,— €y,

The stability of the periodic solutions will depend on the magnitudes of
the eigenvalues of the matrix E{'' E, in transformation (59). It follows that its
eigenvalues A, A, are the roots of the equation

(A —1)2+2\ey,/A2=0.
Since A\, \,=1 and N(w)#0, one eigenvalue must exceed 1. Thus (E7' Ey)"
will be unbounded for large n, and all these subharmonics must be unstable.

7. LARGE AMPLITUDE SUBHARMONICS

We can also use the singular perturbation method to search for large-
amplitude subharmonics of the same equation. In certain parameter domains
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these solutions appear to be numerically stable over long term runs. Figure 3
shows a period 5 harmonic computed numerically for equation (1). In order
to find an approximation to this trajectory we must match solutions which
cross the y-axis at B and D in Figure 3 at such times as to make the period
a multiple of the forcing period. Suppose that the required approximation
passes through A at 7=1, and through C at r=r,. From (40) we can find
xg (7) corresponding to points B and D as they arise from A: they are, say, y,
and y,, where

(60) Upg= — \/[ C; (Ko, to, T €],
(61) o=V [— C_(ko» ttor 7o) €.
y

1 =

D
C | A

B

1

Fig. 3. Period 5 orbit for parameter values k=0-06, u=0-1, w=2-8.

We can construct perturbations for x<<0 by observing that the original
differential equation is unchanged by the mapping x — — x, p,— — u,. Hence,
it follows that y, and y, as generated by initial conditions at C are

(62) y5=—V [~ C_(ko, — o, ) €1,

(63) o=\ [— Ci(kos — pos T) €]
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From (60)-(63) it follows that
(64) C+ (k09 Mo, TO) = C— (kO, — Mo T2)a

(65) C_(ky, 1o, 79) = C; (Ko, — to» T2).

We now have to ensure that the closed orbit has a subharmonic period.
Let the path start at D and pass through A, B and C at times corresponding
to 7,, 7, and 7, and reach D again at time ;. For B and D, 7, and 7; are the
actual times whilst 7, and 7, correspond to the real times 7,— €T, (%) and
,— €T, (1,). However, to the lowest order we need only consider scaled times.

From (35) and (38), it follows that, approximately,

(66) T[zro—%lneﬂn{ Dy NI Ci (ko 10y ) 1}

while the initial time at D must be, for periodicity m, r,— 2mm/w where
67) T3:2m7ra)+T0+% Ine—In{ D[~ C_(ko, oy ) 11

In a similar manner, for x<<0,

(68) ni~ Tyt I { Dy W= C- Gk — o )1},

(69) r~n— 2 In{ D_ N[ Ci (ko= oy )1}

Various relationships between the scaled times can now be found.
However, it can be verified that there do exist solutions of (64)-(69) given by

(70) sin wry= — sin wr, = ko/[Be N(w) ],
(71) n=1(r+7)

and

(72) n= o (n 4 ) +me.

It follows from (70) that we must choose w7, and wr, to differ by an odd
multiple of 7 for periodicity reasons.

Some numerical computations of these subharmonics can be found in the
paper by Greenspan and Holmes [5]. The location of the period three har-
monic would indicate that the perturbation procedure is likely to be valid for
m=5, since the amplitudes of the subharmonics approach \/5_ as m—oo,
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There is a consequent narrowing of the attracting set for the higher order
subharmonics which makes them increasingly difficult to locate.

The theoretical amplitudes of these subharmonics can be deduced from
(66), (70) and (71), from which we infer that

(73) ea; =\/2[ u M(w)cos wry+8e-m*], m=3,5,7,...,

where wT, is given by (70). Numerical computations indicate that only the

principal values of 7, given by 0 <w7 < 1. generate stable subharmonics

although from the earlier comments on thé size of attracting sets this is not
conclusive. The theoretical amplitude perturbation versus the forcing
amplitude is shown in Figures 4 and 5 for the case m=35. The dots are some
spot checks on the amplitudes from corresponding numerical computations.
The differences between the theoretical and the computed amplitudes is
exaggerated by the shortened vertical scales. For smaller values of w and
larger values u either the subharmonics are unstable or their domains of
stability are extremely small.

€q,
w=34
0.1 |-
3.2
] |
0 0.1 0.2 u

Fig.4. Theoretical amplitude perturbation e, versus forcing amplitude p for period
five oscillations with X =0-06 and o in the domain (2-4, 3-4). The dots have been
obtained from numerically computed amplitudes.
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€Q;

0.1
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1.6

1.8

2.0
2.2

0 0.1 0.2
u

Fig. 5. Theoretical amplitude perturbation ee, versus forcing amplitude u for period
five oscillations with k=0-06 and w in the domain (1.0, 2-2).

8. CONCLUDING REMARKS

The singular perturbation method outlined in this paper provides a
possible approach to a wide range of initial value problems controlled by
equation (1). A particular feature of the approach is its generality since it is
possible to obtain an integral solution which does not depend on the precise
details of the restoring and amplitude terms. Using this technique a large
range of saddle connections and subharmonics can be theoretically deter-
mined.

Further developments should include investigations of the bifurcation
values of multiple loop and transverse saddle connections of the type
obtained for the Duffing oscillator by Smith and Davenport [12], and
particularly the stability of large amplitude subharmonics.
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