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Symmetric stochastic matrices with
given row sums

RYSZARD GRZASLEWICZ

ABSTRACT. Characterizations of extreme infinite symmetric stochastic matrices
with respect to arbitrary non-negative vector F are given.

1. INTRODUCTION

Let 7= (ry, ry, r3,...) be a sequences of non-negative reals. We say that a
matrix P=(p;;) is symmetric stochastic (substochastic) with respect to F if

PijZO >
Pij=Dji,
ZPU: T (;}pqé ri)

J

Note that every symmetric stochastic matrix with respect to F is doubly
stochastic with respect to (7, 7). In this paper we consider the affine structure
of the set of symmetric stochastic matrices, in particular we identify extreme
points of the set of symmetric stochastic and substochastic matrices with
respect to any arbitrary non-negative vector F. Note that to each result in
symmetric stochastic matrices there corresponds a result for doubly stochas-
tic matrices (d.s.m.). Proofs of this facts have some similarity, thought
symmetric stochastic matrices have their own specificity.

We denote by &“(F) and &(<¥) the sets of all symmetric stochastic and
substochastic matrices with respect to P, respectively. The sets of their
extreme points ext &(F), ext “(<F) were considered in certain particular
cases. Forr=(1,1,...,1,0,0, ...) the extreme points of &“(F) and &(<F) were
shown by M. Katz [13] and [14]; for a corresponding to d.s.m. result see
Birkhoff [2] and Mirsky [18]. This was generalized to the infinite matrix case
(ri=1,i=1,2,..) in [8] (for d.s.m. see Kendal [15] and Isbel [11]). The
second direction of generalizations®is to consider any arbitrary finite sequence
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(i.e. ;=0 for i>n). In this case a characterization of ext &/(F) and S (<F)
was presented by Brualdi [4] (for d.s.m. see [17], [12], [3]). Note that the
characterization of extreme matrices is the same in the case of infinite
matrices (see Converse and Katz [6]) under the natural assumption that 3, r;

is finite (for d.s.m. see [16], [1], [7], [19]). The characterization of ext k% (P)
and ext %“(<F) in the general case is more complicated and it is presented in
Section 2 and Section 3 (for d.s.m. see [10]). In Section 4 we investigate the
dimension of the faces of the convex polytopes &’(F) and (<) (for d.s.m.
see [5], see also [9]).

Let P=(p;)€ ¥ (<F). We define a graph G(P) associated with P as
follows. Corresponding to row i (and column /) we have a node i. There is an
edge joining node m and node » if and only if p,,,=p,,>0. If a diagonal
entry p,,>>0, then the node n of the graph G (P) has a loop (an edge joing a
node to itself), cf. [4].

For example the matrix

P2 1300001
1040000
3405000
Pb= 10050078
0000690
0007900
b0 00800 Oy
has the graph: 6
9
7 G(F)
8

Fig. 1.
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We say that P=(p;)€ S(<F) is an elementary matrix if there are no
nonzero matrices P, and P, such that P= P,+ P, and supp P, supp P,=¢
(supp P={ j: there exists i such that p;; 0 } ). Each matrix can be represented
as a sum of some elementary matrices P, P= Ek: P,, with supp Py disjoint. In

that case we say that P is the direct sum of P;’s. Note that P is an elementary
matrix if and only if the graph G(P) is connected. The graph G(P)
Pe (<P, has kq (k, is finite or infinite) connected components if and only
if the matrix P can be decomposed into k, elementary matrices. For instance
the matrix P, is elementary.

If a connected graph G has two distinct cycles of odd length, then G has
also a cycle of even length (not necessarily an elementary cycle). If p,,>0 for
some n, then the graph G((p;)) has an odd cycle (of length one). In
particular, if P=(p;) is a simple matrix and p,,>0, Pmm >0, m#n, then the
graph G (P) has an even cycle.

In the case 3, r;=oo the extremality of P& S(F) depends not only on its
graph G (P). For example consider matrices P=(p;) and Q=(g;)), where

(

1 ...
— if ji-f] =1
5 i-jl
Py={1
5 J
\ 0  otherwise
1 ifi=j=1
gy={— if li-j =1
Yo it -

0 otherwise

Obviously G(P)=G(Q). It is easy to check that Q€ext &/(F) (where

4
=% .21 " ) and P¢ ext S(F) (where r;=1).
l —

The methods we use in this paper are similar to those from [10]. That is
why we simplify some parts of the proofs.

r;
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2. STOCHASTIC MATRICES

For Pe S”(<F) we say that the graph G (P) has an e-bitree if there exists
a family {4}, of disjoint non-empty subsets of N and a family {e,}, < K of
positive numbers and m, n€ KCWN such that

ms#n, k¢ AkCK
0<e=¢€,=€,=pun,
.0<€ispki5 i€ Ay,

S &=¢, kek

i€AL

(cf.[10]). Note that the sets 4, are connected with indexes of rows (and
columns) of the matrix p.=(p;)). In fact p;, =p,,>0 for all i€ 4, (see Fig. 2
for example of e-bitree). If in a graph G (P) there exists an e-bitree then there
exists also in G (P) an e-bitree H such that every node of H is joined with a
finite number of edges of H.

We say that the graph G (P) has an infinite e-path if there exists a sequence
of distinct natural numbers {i;},=, (i,51,, if m# n) such that

inf {py;,,  k=1,2,..}=e>0

1 1 1

Example. Letr=(2,2,1, 1,11, =, — — ..).
The matrix
, 0 11212

10 121)2

112 14174

12 1/41/4

12 1/41/4
12 1/41/4
1/4 1/81/8
1/4 1/81/8
pP= 1/4 1/8
1/4
1/4 O
1/4
1/4
1/4
18
18
118
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has the graph G (P) given by Fig. 2. The graph G (P) has e-bitree (e= 1). In
view of Theorem 1 P¢ ext ().

1/8

Fig. 2.

Theorem 1. Let P #(F). Then Pcext S/ (F) if and only if the following
conditions are satysfied:

(i) the graph G (P) has no even cycle,
(ii) the graph G (P) has no e-bitree,

(ili) each connected component of G (P) which has an odd cycle has no
e-path.

Proof. It is not difficult to check that, if G (P) has a cycle of even length
then P¢ ext (P).

Suppose that G (P) has e-bitree. We define a matrix

T=(t;)) inductively:

<a> tym=lmn=¢,

hi=lin= — €, ieAn

<b> ,
tmi:tim:—ei’ieAm

<c> tilztiilzei,iEAh!iIEAmUAn’
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<d> t '=ti,‘2=—Ei,iEAiz,izeAil,iIEAmUA",

i2l

The other entries #; are equal to 0. It is easy to verify that P+ Te &(F). Thus
if G(P) has an e-bitree then T¢ ext S#(F).

Suppose that there exists a connected component of G (P) which has an
odd cycle (i, i, ..., in.;, i) and has an infinite e-path (jy, j,, js, ...). We may and
do assume that i;=j; and min (p; i, Pijips---s piZH_IiI)Z% >0. We define
R=(r ij) by

r —; GN=Gunrin), k=1,2,...n—1),
—; (@ )= (2p15 1) s
€ )=l ins),  k=1,2,...n—1),
r,erj,:* 2 (@ )= (o B2kc+1) )
€ (l’j) = UZk’j2k+l)’ k: 1, 23 e ’
— € (D= 0rk1520) k=1,2,.. ,
\ 0 otherwise.

One can easily verify, that P+ Re #(P) i.e. P¢ ext #(F). Therefore we get
that Peext /(r) implies (i), (ii) and (iii).

Now assume that (i), (i) and (iii) are satysfied and P¢ ext 5“(F). Then

there exists T=(t;)#0 such that P+ Te S“(F). The graph G(|T]) is a
subgraph of G (P) and |¢;j| =p;;. T is symmetric and Zt,-,:O for all i. Let H

be a (non-empty) connected component of G (| T}). We have two posibilities:
(1) the graph H as no cycle,

(2) the graph H has exactly one odd cycle.

Indeed, if there are two distinct odd cycles in H then H has an even cycle.
Hence G (P) has also an even cycle, what is impossible because of (i).



Symmetric stochastic matrices with given row sums 49

Now suppose that F/ has no cycle. Take an arbitrary edge of H and the
corresponding to it entry, say f,,,70. We construct inductively the e-bitreee
in H. Put A,,={i#n: t,,;#0} and A,={i#m: t;,7%0}.

Since 3,t,,,=,1,;=0, the sets 4, and A, are non-empty. Put
i i
€= |tyn| =€m=¢,. We choose ¢, i€A,,U A, such that 3, =23, =€ and
i€Am  i€An
0< &= |timl, i€ Ay, and 0<e,< [1;,], i€ A, :

Now we put 4, ={i#m: 1;7#0}, k€A, and Ar={i#n 1;,#0}, k€A,
And so forth. The sets 4, are disjoint, because H has no cycle. Thus we get
an e-bitree in H, so also in G (P). This contradiction implies that (1) does not
hold.

Suppose that H has exactly one odd cycle, say (iy, i, ..., ban—1, 2n =11).
Then there exists k such that ¢; +¢; #0, say k=1. Put

1k i+l

B; ={i: t;; #0, i by, i iyy_1}
Bi={i#iy: t;,#0}, k€ B,

Bk—{l;éjl t111¢0} ke B j1° .]leBi|’

and so forth. The sets By are non-empty. If all Bk have exactly one element
then 0<[t;, ;| = 1| 4, j,| =14, 5| = ..., where {i}=B,{i}= B, {x}=B;,: ..., 1e.
H has an infinite e-path, so G (P) has an infinite e-path, what is 1mposs1ble in
view of (iii). It is also not difficult to see that if some of B, has more than one
element, H (so also G(P)) has an e-bitree, what contradicts with (ii).
Therefore also (2) does not hold.

The above presented contradictions prove that the conditions (i), (ii) and
(iii) imply Peext S7(F).

We say that a connected graph G is a simple odd cactus if G consists of
exactly one cycle of odd (and finite) length (cf. [4]). Using the same
argurrents as in [10] we obtain the following facts.

Corollary 1. Let 3, r; be finite, and let P€ &(F). Then P€ext S(p) ifand
only if the connecteé components of the graph G (P) are tree or simple odd

cacti.

We say that a matrix P€ S(F) is uniquely determined in S7(F) by its
graph if there is no matrix Q€ &(F), P Q, such that the graph G(Q) is a
subgraph of G (P).
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Proposition 1. The extreme points of °(F) are those matrices in 5(F)
which are uniquely determined in °(F) by their graphs.

Proposition 2. The set of all extreme points of & (F) coincides with the
set of all exposed points of S (F).

Note that Corollary ! can be also obtained as a consequence of two
results: of Theorem in [6, p. 174] and of Theorem 3.1 in [4].

3. SUBSTOCHASTIC MATRICES

We say that the i-th row sum of a matrix P=(p;) € S“(<F) is unattained
if 2 plj< r;.
j

Theorem 2. Let P€ (<F). Then Pcext (V) if and only if the
Sfollowing conditions are satysfied:

(i) the graph G (P) has no even cycle,

(ii) the graph has no e-bitree,

(iii) each connected component G, of the graph G (P) has at most one node
corresponding to row of P whose sum in P is unattained, and G,
satisfies at most one of the following conditions:

(@) G, has an infinite e-path,

(b) G, has an odd cycle,

(¢) G, has a node corresponding to the row of P whose sum in P is
unattained.

Proof. Obviously, if the graph G (P) has a cycle of even length then
P¢ ext S(<P). By the proof of Theorem 1, if G (P) has an e-bitree then also
P¢ ext “(<F). Suppose that in some connected component G, of G (P)
there are two nodes corresponding to rows whose sum in P is unattained, say
m, and m,. Then there exists a path (i, iy, ..., i) in G (P) such that iy =m, and
i,=my. We define R=(r;;) by

€ if (7, ) = (ik—1, 21
ri=rp=] —e if (7, 7) = (ks Bk +1)

0 otherwise,
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where 0<<e=min (p;,ip, Piyiys - Pi,_yip» Tiy— 2 Piyjp Tiy— 2 Pi,;)- We have
P+ Re Y(<F), so P¢ ext L (<F). ! !

Now suppose that two from three conditions (a), (b), and (c) are satisfied.
If (a) and (b) are satisfied then, by the proof of Theorem 1, P is not extreme.
Now assume that some connected component G, of G (P) satisfies (¢), i.e.
there exists a node m in G, such that 3, p,,;<<r;. Supposed that also (a) is

satisfied by G, Let {ji} kO:l be an infihite e-path in G, We may and do
assume that m=j,. We define R=(r;) by

€ if ()= (a1, J20)
k=1,2,...

Vi =1V = —€ lf(l’j)z(jZk’ j2k+l)

0 otherwise

where -€,=min (¢, 7,— 3, Pmj)>0. We get P+ Re S (<F), ie. P is not
extreme. J .

Suppose now that (b) (and (c)) holds. Let C=(i}, 1, ..., izp_1, 2n=10;) be a
cycle of odd length in G,. We find a path D=}, j,, ..., ji) joining the node m
with the odd cycle C. We may assume that D and C have exactly one common
node, say i;=j;. Then we have ji=m. We have P+ Re Y (<F), where

R:(rij),

[ € (i’j):(iZkf in+1), k=1,2,..,n
—€  (G)=0x-1, ), k=12,..,n
ru:’ji:{ 2¢  (GN=0u-1, Ja) ISkS[Tl]

—2  (LD=0n Ju+), 1Sk= [L—fl—

\ 0 otherwise

and ¢ >0 is sufficently small. Hence P is not extreme. From the above part of
the proof it follows that Peext S”(<F) implies the conditions (i), (ii) and

(iid).

Now let T=(t;;) be such that P+ T'e &“(<F) and suppose the conditions
(i), (ii) and (iii) are satisfied. We have |¢;| =p;; and the graph G (]| T]) also
satisfies the conditions (i) and (ii). We have 3, #;;= o for all i such that 3, p;=r;
Let H be a (non-empty) connected compojnent of G(|T]). For all riodes i of
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H, except at most one, we have 3, ¢;;=0. Moreover at most one of the
following conditions holds: o

(a;) H has an infinite e-path,

(b)) H has an odd cycle,

(c;) H has a node (at most one) corresponding to a row i such that 3 4;=0.
j

If the condition (c;) does not hold then using the arguments presented in
the proof of Theorem 1 we get a conntradiction. Thus H is a tree (has no
cycle) which has no infinite e-path, and for all nodes i of H, except i, (i,is a
node of H) we have Z 1;=0. Put A={i:t; =0}.

Note that i, € A4, because H has no cycle (even those of length one). Take
iI €A. Put

B, ={isiy: 1;;, #0},
Bk ={i;/—'i1:t,-k 750}, kEBil

B, ={i#iy1;,#0}, kEB,

i i2 € Bil

and so forth. The sets By are non-empty (because of 2 t;;=0) and disjoint (H
has no cycle).

If all B, have exactly one element then H has an infinite e-path (what is
impossible). If some of B, has more than one element then H has an e-bitree
(what is also impossible). ThlS contradiction proves that the conditions (i), (ii)
and (iii) imply P€ext F(<P).

The following corollary is a generalization of Theorem 3.3 in [4].

Corollary 2. Let 3, r; be finite, and let Pe S/(<F). Then PEext S (<F)

. ) j .
if and only if the connected components of the graph G (P) are trees with at
most one node corresponding to the row whose sum in P is unattained or
simple odd cacti all of whose nodes correspond to rows whose sum in P is
attained.

4. THE FACIAL STRUCTURE IN THE FINITE
DIMENSIONAL CASE :

As already pointed out, the vertices (extreme points) of &(F) and & (<F)
are described. Now we consider the dimension of the faces of the convex
polytopes S(F), (<P in the finite dimensional case. :
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For g€ Q (Q being a convex set) we define dimy g, the dimension of g in
Q, as the affine dimension of the face -

{g, € Q: there exists g,€ Q and 0<a =<1 such that g=a g, +(1 —a)q,}

generated by g in Q.

Theorem 3. Let P= (1,12, ..., ) (ri>0, i<n, n is finite) and let
P=(py e SZ(F) be nxn elementary matrix. Then.

8(P)—n+1  if the graph G (P) has no odd cycle
dimy(;)PZ
6(P)—n if the graph G (P) has an odd cycle (including
the length one)

where 6(P)= Z sign p;;

1Si<j<n

Proof. We define the functionals ¢, (T)=73, t;, T€ &(F). We have
j:l

dim o P=dim{ T€ X: ¢;(1)=0, 1,2, ...,n}, where X={T: T=(t;) is nxn
matrix, t;=1;;, t;=0 for all (i j) such that p;;= 0}. Thus dim¢ P is equal to
dim X = & (P) minus the number of linearly independent functionals in the set
{@1, P25 ..., 0} considered as the set of linear functionals on X.

Let o; be real scalars. Put ¢ =_2 a; ¢;. Suppose that {=0. Take a

subgraph H of G (P) such that H is a{lclonnected tree and all nodes of G(P)
belong to H. The graph H exists, because P is an elementary matrix. The tree
H has n—1 edges (ay, by), (a2, b3), ... (@1, bu_y) (a; and b; are nodes of G(P))
and n nodes iy, b, ...,i,, We have £(Q")=a,,+a,=0, where o™ =(q;),
9= amianj+ ani6mj'

Therefore we have n—1 equalities:

[ ag T o, =0

a,,t ay,=0

=0

n—1"

\ @4, , +a,
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Because H is a tree, the above equalities are independent. Hence, if we put
a; =« then all other a; are equal to a or —a. More precisely a;,=(—1)"a,
where L is the length of the path joining'i; and i;. Thus we get

dim lin {¢y, @y, ..., 0} =n—1.

Put
A={i: ;=a} and B={i: a;=—a}.
We have
£=a(i62A %—ie% @)

Suppose that there exists in G (P) an edge which joints some element of A
and some element of B. Let m€ A, k€ B, and let edge (m, k) belong to G (P)
®mi=0, 0" X). Then £(Q"%)=2a=0. Hence a=01ie. -

dim lin {¢; i< n}=n. Note that the existence of such m and k means that:
G (P) has an odd cycle (including of length one), whereas if there is no such
edge in G (P) we have

2 0=

i€A i€B

for all T€ X. Hence {¢;} are not linearly independent as a functional on X.
Thus

n if G (P) has an odd cycle,
dim lin{e;:i<n}=
n—1 if G(P) has no odd cycle.

ko '
Let P= 3 P be the decomposition into elementary matrices Py. Then
k=1

k .
dim o P= 20 dim P,. Hence we have the following fact.
k=1

Corollary 3. Let r=(r\,ry,...,1,) (r;>0, i<n) and let P=(p;;)e S (F) be
nXxn matrix: Then

dim g P=8(P)—n+k,,

where k< k, denotes the number of connected components of G (P) which
have no odd cycle.
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Theorem 4. Let F=(ry, 15, ...,1,) (r;>0, i<n) and let P=(p;;)€ &/ (<F) be
nxn elementary matrix. Then :

6 (P)—n+l1 if G(P) has no odd cycle and all row sums
in P are attained (P€ ¥(F)),
dim o< P=
6 (P)—ny otherwise

n .
where 8(P)= >, sign py, ny=card{i:3, p;=r}.
. =

1<i<j<n

Proof. We use facts from the proof of Theorem 3. We Llave
dim <5 P=dim{ T€ X: ¢; (T)=0, i€ A}, where A={i: 3, p;=r}
(card A =ny). j=1

We should consider only the case ny<n.
Because G (P)is connected and dim lin{¢;};_ =n— 1 any arbitrary proper
subset of {¢;};—; is linearly independent. Hence

norn—1 ifny=n
dim lin {p: i €A} =
ny - if ng<nm

This with Theorem 3 ends the proof.

“Corollary 4. Let F=(ry, rs,...,1,) and let P€ S (<F). Then
dimy~(5;)P:6(P)—n0+k2

where k, denotes the number of connected components H of the graph G (P)
such that 1° all nodes of H correspond to rows whose sum in P is attained,
and 2° H has no odd cycle.
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