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On convolution operator in Orlicz spaces

A. KAMINSKA and J.MUSIELAK

ABSTRACT. The Orlicz spaces defined on a locally compact abelian group are considered. The
main results consist in presenting sufficient and necessary conditions, expressed in terms of gen-
erated functions ¢, for embeddings L, *L *—»L E, mE ¢->E E, 'kE c-L and L, * L, c—»E

where L, are Orlicz spaces and E, are thelr subspaoes consrstmg of all order contmuous ele-
ments. Séme results of the paper ar’e an extension and generalization of those contained in [2],
[3], [8] and [10].

INTRODUCTION

The Young theorem ([2], [8]) including sufficient conditions for
Lr*Lees L7(1 < p,q,r <o) has been known for many years. In [8], O’Neil gene-
ralizes this result to Orlicz spaces stating sufficient condition for L, *L, < L, .
From the other hand there are known sufficient and necessary conamons for
the space L*(I <p<oo) to be a Banach algebra under convolution as multipli-
cation [10]. A generalization of this result for the Orlicz space is included in
[3]. Our main topic consists in finding necessary and sufficient conditions for
embeddings of L, *L into L and E, *E into E We investigate also the
other embeddmgs 11ke E *E‘p into L, L E 1nto L’ and L, *L into E, .
The Young theorem, the 'O’Neil’s results and the results concermng the Le-
besgue and Orlicz spaces as Banach algebras are obtained as corollaries of our
results. In particular we get the necessity of the Young theorem, which seems
to be not known so far. We also get the answer to the problem given by B.
Gramsch in [1].

The first part is devoted to general modular spaces. We give some equi-
valent conditions in order to a bilinear operator defined on a Cartesian prod-
uct of modular spaces X, xX act to another modular space X The results
of this part are applied to the second one, where the Orlicz spaces and con-
volution are investigated as modular spaces and the bilinear operator, respec-
tively. The important role is played by conditions (+) and (++) expresing some
connections between Young functions @, There are a few versions of those
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conditions depending on the kind of a group ¢ and the Haar measure y. In
Theorems 8 and 9 there are given sufficient conditions for L, *L 4—»L , E, *
E, ‘-»E and L, *L <—>E by means of the condition (+) and (++) For a d1s-
crete group it is pos1ble fo prove a converse statement (Theorem 10) without
any additional assumptions on the group G, whereas for a nondiscrete group
the full converse statement (Theorems 11,14) is obtained under the assump-
tion of the so called condition (*) on the group G. It is not difficult to check
that the groups like (R, +), (K, +),(T,-),(R\{0},.),(K\{0},.) satisfy condition (*)
(Remark 12). At the end there are a number of corollaries including among
others, the Young theorem with necessary and sufficient conditions for a large
class of locally compact abelian groups.

Let us now agree on some terminology. Let R, K, N stand for real, com-
plex and natural numbers respectively. Let X be a complex or real vector
space. Recall some notions connected with modular spaces [7]. A functional
p:X—[0,+00] is called a convex modular if it satisfies the conditions
(Dp(0)=0; [V,p(Ax)=0]=x=0, (2)p(e'x)=p(x) for all t € R (p(—x)=p(x) in the
real case), (3)p(ax+By) <op(x)+Pp(y) if a,p>0 and a+B=1. For any convex
modular define the space X,={xe X: l}fm pAx)=0}={xe X: p(Ax)<oo for

some A> 0} called a modular space and X’ —{xe X : p(Ax)< oo for all A>0} a
subspace of X, called the subspace of finite elements. The functional llxll,=
infle>0: p(x/s)< 1}, xe X, is a norm in X,. The subspace X/ considered with
the same norm is closed in X

1.1. Theorem. Let p(i=1,2,3) be modulars defined on X and y: X, XX, > X
be a bilinear operator. The following conditions are equivalent

(i) For every &> 0 there exists 8> 0 such that for all x € XP;’ ye sz ifp(x)<é
and p,( y) <8 then py(dy(x.y))<e.

(ii) There exists k>0 (i=1,2,3) such that for xe X S VE X, zf p(x)<k, and
p0) <k, then p(ky(xy) <k,

(iii) There exists k>0 such that if x € X"l’ ye sz and p(x)<1ande(y)<l
then p(ky(x,y))< 1.

(iv) There exists c> 0 such that |ly(x, y)||p3< cIIxIIPlII y||P2 forallxe X, ,yeX,.
W vy: XplxX pz—>)(‘,3 and vy is continuous.

Ify: Xx X, -X then the analogous conditions to the above in which the
spaces X are replaced by )(},’ (i=1,2) are equivalent.
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Proof. It is enough to give a proof only for v X,lxX, —X. The implica-
tions (i)— (ii) and (iv)—(v) are evident and (iii)— (iv) resulfs directly from the
definition of a norm in a modular space.

(if)~ (i) if py(x)< 1 and p,()< 1 then

p.(min(Lk)x)< k, and p(min(1,k)y)<k,. So
ps(k,min*(1,k)y(x,y))< max(1,k;). Then, by convexity of ¢,
py(ky(x,y)) < 1 under k= k,minX(1,k,)/ max(l,k,).

(v)— (i) Suppose 7y takes its values in X‘,3 and (i) is not satisfied. So there
exist £> 0 and sequences (x,)c X, , (v,)c X, such that p,(x,)< I/n, p,(y,)<1/n

and p,((I/n)y(x,¥,))>¢. Taking X,=(1/y/m)x, y,=(I/\/n)y, we have
p/(A%,) <pi(\/n%,)<1/n—0 and p,Ay,)—0, which implies that ||x,|l, ~0 and

17,ll,, 0. However, py(y(%,9))=p{(/n)y(x,y,)>¢. Thus Iz, 7)1, +0 and
Y is not continuous.

For some kinds of spaces X, modulars p, and operators y one can show
more.

1.2. Theorem. Let X be a vector lattice. Suppose p{x)) <plx)) if
bx,|<Ix,l. Moreover, let X, be complete and a bilinear operator y : X, xX, —» X be
positive, i.e. Y(x,9)=0 if x>0 and y> 0 and let y(x,y) <y(x,1y).

The following conditions are equivalent
1°vy: X, ><X‘,2—>X,,3 and v is continuous.
2.° 'y:Xplxszang.

3.° There exists k> 0 such that for x € X,,l, yeX, ifp.(x)<1andp(y)<1 then
py(ky(x.y) < 1.

The above conditions in which X,,i are replaced by X] for i=1,2, are equivalent,
too.

Proof. By the previous theorem only the implication 2.°~3.° needs a proof.
We shall show it in the case of X] i=1,2. For a contrary, let 3.° be not fulfi-
lled. So there exist sequences (x,)c X, v.cX; such that p(x,)<1, p()<1I
and p,((1/2"n)y(x,y.))> 1.

Ix,)
2

Iy,
p 2n

The elements z = , W=

iMs
iMs

belong to Xfpl, Xfpz, respectively,
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because of convexity of p, and the fact that X, are closed subspaces of X, .
However, '

P((1/kyv(z,w)) = p:((1/2%k)y(Ix,,1v4))
2 p((1/2%ky (%, y)) > 1,
by assumed properties of y. Thus y(z,w) ¢ ng, which ends the proof.

The results of this section will be applied in the next one to Orlicz spaces
and convolution as modular spaces and bilinear operator, respectively.

Let @ : [0, + 00]—=[0, + o] be convex, left-continuous not identical to zero
and infinity, ¢(0)=0 and ¢(+o00)= +oo. In the sequel this function will be
called a Young function. We say that a Young function is finite if it is finite on
[0, + o0). A generalized inverse function ¢! : [0, +c0]—[0, + 0] is defined as

o' =inf{x>0:@(x)>y}, where infos =co.
Let a,b be reserved for the following numbers
a=sup{x>0: ¢(x)=0},

b=sup{x>0: ¢(x)<oo}.

If a function @, is considered instead of ¢ then a,b, denote the numbers a,b
for the function o,

The connections between ¢ and ¢! are formulated in the following
simple lemma.

1. Lemma. For all x€[0,+co]
x< @~ (¢(x)) and ¢(o~'(x)) < x.
Moreover,
@(o~'(x))=x for x € [0,0(b)]

(9~ '(x))=(b) for x € (¢p(b), o]
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We say that two Young functions ¢,,¢, are equivalent for large arguments
(small arguments) [all arguments] if

I!Tn— ok < oo ( 71; 9ku) <oo) | I_n_1_ o k1) <oo]
U—oo @A) u-0 o u=0 oW
U—>00

for some k>0 and i,j=1,2.

In the sequel the expresions “large arguments”, “small arguments”, “all ar-
guments” will be always denoted by “lLa.”, “s.a.” and “a.a.”, respectively.

In the rest of the paper, G will be a locally compact abelian group, with
Haar measure p. Let o« the family of all p-measurable, complex valued func-
tions f defined on G. The Orlicz space L, is a modular space generated by the
modular I(f)={@(A?))du(?) defined ono#.The subspace of finite elements of
the space L, is denoted by E,. It is well known that, when ¢ is finite, E, consists
of those elements of L, which are order continuous ([61,[5)). Let us recall that
if ¢, and ¢, are equivalent for la. (s.a.)[a.a.] then L,,l =L,z when G is nondis-
crete and compact (G is nondiscrete and noncompact)[G is discrete]. If ¢, and
¢, are finite then equivalence of these functions implies also that E, =E,.

In further considerations the important role will be played by the fol-
lowing two conditions. Let ¢, i=1,2,3, be Young functions.

It is said that ¢, satisfy condition (+) for l.a.(s.a.)[a.a.] if there exist k>0,
8> 0 such that

kuv < 9,(1)935 (@) + ¢,(V)¢5 ' (9,(1))
when @,(#)=>38 and ¢,(v)>8 (9,(#) <8 and @,(v)<d)[uv=0l.

It is said that @, satisfy condition (++) for La. (s.a.)[a.a.] if for every a> 0
there exist k> 0, 8> 0 such that

auy < 0,15 (ko (v) + 9,95 (ke (1)

when ¢,(1)=38 and @,(v)>8 (¢,(#)<d and @,(v)<d)[u,v=>0].

The above conditions can be reformulated equivalently. Namely, we have
the following proposition. The proof will be omitted because it is analogous
to that of Lemma 2.4 in [8].
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2. Proposition.
- Condition (+) for La. (s.a.) [a.a.] is equivalent to the following one:
there exist 1,6 > 0 such that
07 ()95 ' (U) < lup;'(u)
ifuzd(u<d)[u=0).
- Condition (++) for lLa. (s.a.) [a.a.] is equivalent to the following one:
Jor every a> 0 there exist [,6>0 séch that
@7 ()5 (1) < aup; (lu)
ifu>du<d)u=0).

- Condition (+) is invariant under equivalence of the functions ¢, which
is shown in the next proposition.

3. Proposition. If ¢, satisfy condition (+) for La. (s.a.) [a.a.] and §, are
equivalent to ¢, for La. (s.a.) [a.a.], then §, satisfy condition (+) for lLa. (s.a.)
[a.a.] again.

Proof. For instance, we shall show that @, satisfy condition (+) for s.a. Since
§, are equivalent to ¢, there exist §, />0 such that @ (/u) <P(w) if §(uw)<3,
(i=1,2) and 9,(/,u) < ,(u) if @ (u)<8,. Put /=minl, and 8,=min 5§, Without
loss of generality suppose §,<8, where 8 is the constant from condition (+).
Then, by condition (+) we have

kPuy < @,(l)e5 (@) + 0:()0,(0,(714) < §,(1)9,” (") + B.(M0: (@)
if §,(v)<3, and §,(v)<3,

Since §,(/u) < ¢,(u) when @,(u) <3, s0 @;'(¥) < (1/)P;'(u) if u<3,. Indeed, putt-
ing v=0,(«) we have lu<§;'(®,(lu)) <§;'(v) for v< 3, But for §,>v=0,(u)>0,
u=0;(os(u))=0;'(v) and so ¢;'(v)<(I/D;'(v). If v=0,(u)=0 then the ine-
quality is also true because §,(/a,)<o ,(a,)=0 implies la,<a,, i.e.
9;(0)<(1/D%;'(0). Thus

kPuv<(1/D% ()83 @) +(1/D%,(V)%5 ' (B,(w))
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If §,(#) <9, and §,(v)<8, which means that §, satisfy ccondition (+) for s.a.

Now we shall discuss the case of a discrete group G in the connection with
the Orlicz space and its subspace of finite elements. Traditionally, in this case
the notations /, and h, are used instead of L, and E,. First let us note the fol-
lowing simple fact.

4. Lemma. For every Young function ¢ there exists a Young function ¢
finite and equivalent to ¢ for s.a.

As a corollary, it is seen that instead of /,, where ¢ can take infinite values,
one can always consider the isomorphic space /,, where § is finite. But there
are some problems with the subspace of finite elements. If ¢ is infinite for
some real numbers, then h,={0}, whereas A, is always different than {0} if @
is finite. Thus an equivalent function ¢ defines a different subspace of finite
elements than the function @. However, let us note that for any function ¢ there
exists the only subspace of finite elements defined by a function ¢ finite and
equivalent to ¢. This subspace 4, does not depend on the choice of the func-
tion §, belonging to the class of all Young functions finite and equivalent to ¢.

Taking into considerations the above remarks, in the sequel we shall al-
ways assume that ¢ is finite in the case of a discrete group.

The Lemmas 5,6 and 8 are some technical steps to prove Theorems 7 and 9.

5. Lemma. If g, are finite and satisfy condition (+) for s.a., then there exist
functions §, finite and equivalent to @, for s.a. satisfy condition (+) for a.a., if
o, satisfy condicion (+) for l.a., then there exist funtions , equivalent to o, for
La. and satisfying condition (+) for a.a.

Proof. Let first ¢, satisfy condition (+) for s.a. Put

(u,v) = 0,(U)05 (0,(V)) + ()05 (9,()) and h(w,v) if ¢, are replaced by §. Let
u, be such that ¢ (#,)=0 and put

o) = o) , uel0u]
i oi+(Wu+ou)—9;, (u) u;, ue (u;,00),

where @, is a right-hand derivative of @. We have o(u)=>d(u) and
¢;'(v) <@;'(v) for all 4,v>0. We shall show that §, satisfy condition (+) for a.a.
For u<u,, v<u, the inequality is immediate. Let u>u, and v=u,. Then we
can write §(u)=cu+d, for u>u, where ¢,>0 and d,<0. Hence we simply
obtain
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PO BN = Sy Oy GGy
3 3 3

where M is a constant dependent on c,d. Since ¢,c,/c,> 0, there exist ¢,> 0 and
u,> max(u,,u,) such that

0,(1)P; (9,(v)) = e,uv whereas u,v>u,. Moreover,

DB @0) BB @w) _ B
uy ~ w w

ou,

u;

for ue[u,u,] and v e [u,u,].Then for e=min (e, ) and u>u,, v=u, we
have A(u,v)>e uv.
Let now u>u, and v<u,. Then

Hu9)> @7 @)+ 0D min(c+dy, —Suy G s

However, by the assumption (+) we have
ku,v <805 (9,(v)) + ¢,(V)u, for v<u,. Hence
max (¢;'(9, (v)), @,(v))>e,v, where

e,= min((k/28)u,, ku,/2u)> 0. Therefore

h(u,v)> e,y min(c,u+d,

for u>u, and v<u,. Since ¢,(¥,)=8>0 and
¢;'(9,(#,))=u, >0 and the functions () and
®;7'(9,(w)) are linear for u>u, there exists a constant e¢,>0 such that

a d,
(6 ut [

. d.
min(c,u+d,, - c’ )=>eu for u>u,.
3

Hence A(u,v)> e,e;uv when u>u, and v>u,. So we proved the first part of the
lemma.

Now let ¢, satisfy condition (+) for La. It is not difficult to verify that the
functions



On convolution operator in Orlicz spaces 165

_ o) if p(u)>d
0=} (6/0r @M if o)<

satisfy condition (+) for a.a. Moreover, it is evident that they are equivalent
to @, for l.a. which finishes the proof of the lemma.

6. Lemma. If ¢, satisfy condition (+) for a.a. and I, (g)<1 and
I, ((ZA/k)f)< 1 (or I, (f V<1 andI ((27\,/k)g)<1 where k is the constant Sfrom
(+) then I, (A,f*g)<oo

Proof. Applying (+) we obtain
1, (Afg) <Jeoid 1/2fc0.( 2M/KADN@; (9lgz~'x)))dn
+1/2f50,(8(2~"x))@s5 (9,(2A/KADN)d(1)) din(x)
< 1/2fs0:Us0(2M/KADN0: (0,8t x)))dn()]dn(x)
+1/2f60:Us0,(g(t=X))o5 ' (@,(2A/KANN)dn(®) 1dn(x)

Since I, (2)./kf)< I and I, (g)< 1, by Jensen’s inequality
1, (Af:ng) <1, KNI, () Z1<co.

The next theorems give sufficient cconditions for embeddings of the spa-
ces L, «L,, E, «E, into L, E, .

7. Theorem. 1. Let G be nondiscrete and o, satisfy condition (+) for La. if
G is compact and (+) for a.a. if G is noncompact. Then L, *L c—»L If addi-
tionally ¢, is finite, then E, *E, - E,_ .

1. Let G be discrete and 0 satzsf"y condition (+) for s.a. Then h, *h <->h
and /, *l c-»l

Proof. By Theorem 1.2 it is enough to prove only inclusions. I. Let first
G be noncompact and 0 satisfy (+) for a.a. The proof of the inclusion

L. *L,cL, is an immediate consequence of the previous lemma. Really,
talongfeL, and geL from the unit balls we have I, (f)<1 and I, (g)<1 So
we can apply the lemma with A=k/2 and thus J, (k/2 fag) < oo, which means
that fage L

To prove the inclusion E, *E, cE take fe E,, ge E, . Let A=3p, where
B is arbitrary. Since the Haar méasuré pis regular and ’I (2\/k f)<oco and
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I, (Zl/k 8) < oo, there exist compact sets G,, G, such that I, (Zx/k jj(m )<Iand
I (Zk/k o, )< 1. We can write

1) 1, (Bfoe) < 1/31, (Moo 48+
1/31, (Mito * 8Xo-6)+ 1/31, (Mg, 8,
By the prev1ous lemma, the first two components of the above inequality are

finite, so it is enough to show that I, (kﬁ(a *ng)<0° Since the support of
ﬁ(G X, is contained in G,G,,

I, (Mo *8a) < galazws(xgﬁlmxﬁ;ny(z)llg‘(z -1x)du(f)du(x). There exists u#,>0 such
that

(8:2) I,(6Mkfxe)<1I and I, (gx;)< 1, where
G,={teG,:Ift=u) G,={teG,:Ig(t)>u,).
Denote G,=G,nxG;'. We have
Mo,-a RDllg(e=x)idu(r) < Mg Jg(e'x)\d(?)
= Ay, [Gznxcl—xlg(u)ldp(u) <Ay, fGolg(u)ldu(u) =M, <o,
since every function from Orlicz space is locally integrable. Analogously
Mo - RO 182 X)dyu(e) < Aaty g A ENAjL(e) = M, < oo
Thus,
I, (Mo *8Xe) <[o,6,0M,+ My + Mg o IRD 81 X) (D)) din(x) <
1/3(@43M) + O 3MMNG,G,+ 1/3( 6. 01 /2] nra
k6r/kif2)|lg(z- ' x)du(2)du(x).

Denoting by M, the first component of the above sum and applying condi-
tion (+) to the second one, we get

L, (Mis *8Xe )< M+
1/2{6, 6,94, e @(6M/KADNO; (@ig(t X))d(t)dp(x)
+1/2( 6,016, e, 08t M5 (@, (6A/KADN) () ().
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In virtue of (8.2) and Jensen’s inequality,
I, Mo *8Xs) <M+
1/2{5,6,(I6, s, 10(OA/KADN @ (180t~ X)) d(1))dn(x) +
1/2{5 (6, nve;108(~ X)N@,(6A/KANNA()d(X) <
M, +1I, (6M/kP, (8) < co.

If G is compact and ¢, satisfy, condition (+) for L.a., then by Lemma 5 there
exist functions @, satisfing (+) for a.a. and such that E =E;, L,=L;. So with-
out loss of generality one can assume that o, satisfy condltlon (+') for a.a. Thus,
the inclusions follow in the same way as above (we can put G,=G,G).

II. For this case, applying Lemma 5 again, we can also assume condition
(+) for a.a. In the inequality (8.1) we can see analogously as in I that the first
two components are finite. The third component is also finite since the sup-
port of ﬁ(Gl*ngz is finite. So it is the end of the proof.

8. Lemma. If ¢, satisfy condition (++) for s.a. then l,,lch(pJ and Isz h«';'

Proof. Using the equivalent form of condition (++) expressed in Proposi-
tion 2 we have @7 '(1)p; (1) < oue; '(ku) for u<8. But by concavity of ;! there
exists §,> 0 such that u/p;(u)< 1 for u<$8,. So ¢;'(u) < ag;'(ku) for sufficien-
tly small u. Putting v=¢;'(z) we obtain ¢ ,(//0v)< ke,(v) for small v, which
immediately implies that

im @o,(Au)

e <oo for all A> Q. But the last condition implies the inclusion
u—»O 1

I,y (19D.

9. Theorem.

I Let G be nondiscrete and @, satisfy condition (++) for La. if G is compact
and (++) for a.a. if G is noncompact. If 0, is finite, then L,l*L,;—»E,S.

II. Let G be discrete and ¢_satisfy condition (++) for s.a. Then [, *| < h, .
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Proof. 1. Suppose G is compact. Take fe L, geL such that I, (f) <1

and [, (g)< 1. Let A>0 be arbitrary and >0 be Trom condmon (++) chosen
for a=2). Put

G,={te G: o,(1))>3},
G,={te G: o (lg(t))=5}.
The convolution fg is the sum of functions ﬁ(a *&Xop A *8Xo, and ﬁ(m *g.

Applying (++) for lLa. and Jensen’s inequality, we get analogously as in the
proof of Theorem 7, that

I, (Mis,*&xs) <Jc9 (0/2 ) (O, (81 XYt (Od(D)d(X) <
Jo0:1/2 J0.(RDNKe, (D05 (ko (1g(t = Xt (D))d(2)
+1/2 [0~ )e; ()05 ' (ke (AL (D) (D)d(x)
<k, (), (8)<co.

So it is enough to show that e.g. I,}(Xﬁ(o\cl*g)<oo.
By local integrability of g, we have M=, g(¢)idu(t) < co.
Hence 1, (Miag *8) < 0.t (MG <co.

In the case of noncompact G the proof is similar and even simpler in the
sense that G,=G,=G.

II. If G is discrete and f,g, are the same as above, then there exist finite
sets G,,G,c G such that I, (ﬂ(m )<9d and I, (gX;;) <9, where 6> 0 is the con-
stant from condition (++) chosen for a= Z> 0. We have

Srg=Us *8La) + (Flo *8Xarc,) + Plors *8c,) + Blors *&a))-

The first component belongs to A, because its support is finite. Applying
(++) and Jensen’s inequality to the last one similarly as in I, we get

os(lfx“l gXG\Gl) <k <co.

To finish the proof note that
s, *&xorc YN < z | AD)ig(e'x)
for every x € G, where g(t-'.) 1,2 for all e G. Thus
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EG:I IRNg(t-) e 192 and so fXGngG\Gz € [’2.

But by Lemma 8, we have l"zCh’a’ SO fj(al*g Xe, € h,J.

Next theorems will be converse to the results obtained in Theorem 7.

10. Theorem. Let G be discrete. If h *hv2C103’ then G is finite or condi-
tion (+) for s.a. is satisfied.

Proof. Remember, in the sequence case we have assumed the functions @,
have been finite. For a contrary, suppose the group G is infinite and condi-
tion (+) for s.a. is not satisfied. There exist sequences (u,),(v,) such that
¢,(1,)—0 and @,(v,)-0 and

(10' 1) I/n unvn> (pl(un)(pl_l((pz(vn))+ (PZ(vn)(PJ_I ((pl(un))'

Without loss of generality assume o,(u,)= @,(v,).
We shall consider a few cases.

L. Let @,(,)=9Lv,) >0, Let i, be such that ¢,(iZ,)=,(v,). Since ¢,(4)/u is
nondecreasing, 1/n u,v >q>l(u,,)q>, I(@,(v,)), by (10.1). So we can assume about
u,v, that ¢ (u,)= <p,(v) and
(10.2) 1/n u,y,> ¢,(u,)0:'( 9xv,)).

We shall examine two types of the group G.

(a). Let G contain a cyclic subgroup of arbitrary large rank.
There exist natural numbers /, such that

(10.3) QL+ Do(u,)<1 and (2], + Ne,(u,)> 1.

Take a cyclic subgroup S such fhat rS>21,+1. Let
A,={teS:i=01..1, —1..,-1},
and

FO=ux, ), 8)=v.x, (®).
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By (10.3), it is evident that

(10.4) 172 <L (f)<1, 1/2<1,(g)< 1.
Moreover

(f*e)xX)=u,v,m(4,nA4,x).

If x€ A, then either A,nA4,x>{et,...t%) or A,nAx>{et,...,t7""). Therefore
wA,nA4x)=1+1for xe A,

Hence
(10.5) (£.*8.)x) = uv,(,+ I, ().

But by (10.3), we get the following estimation of /,

(10.6) L+1=1/30,(u,).
Thus in virtue of (10.2)
S ()9 = L uy, —— 1, (0> 0@, )
n n On n n'n (pl(u,,) n 3 2\7n. " .

Hence and by Lemma 1 and the fact that ¢,(b,)=o00 and by (10.4), we have
103(3/n f:l*gn)> ‘pZ(vn)uAn: qu(gn) > 1/2'

So we found sequences f, € h,l, g, eh, such that I, ()<, I,z(g,)s 1 and

1,3(3/71 f»g)>1/2. Applying Theorem 1.2 we can see that h,l*h,z 3 I,J.

(b). Let, contrary to (a), the rank of all cyclic subgroups of G be bounded. So

there exists a prime number k and infinite number of cyclic subgroups with

rank equal to k. Let S, be an infinite sequence of cyclic subgroups such that

rS,=k, S;nS,={e} for i=j. Let P,= @S, be a simple sum of S,,...,S,. The set
i=l

P, is a subgroup of G containing k" different elements. Put

1
9,(u,)

fO=ux, () and gO=v, (0.

1.=[log, ]and

It is clear that
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(10.7) 1/k<I,(f)<1, I/k<I,(g)<1.
Moreover,
(800> VP, X, (X) =10, Kz, ().
But by the definition of /, we have
(10.8) k"> 1/k,(u,).
Thus in virtue of (10.2), Lemma 1 and (10.7) we obtain
1, (k/n fiag)>1,(8)> 1/k

So applying Theorem 1.2 we get a contradiction.

II. Suppose ¢,(1,)>9,(v,)=0. Hence a,>0. We shall consider two cases.
Let first a,=0. There exists an infinite, countable subgroup G, of G . There
exists an element (c,) € ¢, such that (c,) ¢ l,s(G,). Put

c,ift=t, n=0,1,2,...
0ift¢ G,

V(t) = Xm(t),

where G,={e,t,t,,...,}. Since a,>0, h is isomorphic to ¢, So it is clear that
ueh veh and u*v= ¢I

u(®)=

Now let a,> 0. In this case we modify the proof of the part 1. Let C, denote
A, or P, and ¢, denote /, or k™ and ¢ be equal to 3 or k, respectively, when G
satisfies (a) or (b). Let f(=ux:(t) and gO=vx: (") Then min (1/2,
I/k)slvl(ﬁ,)s 1, I,,z(g,,)s 1 and

(1.*8.)x) = w,v, Xe,(X)s

1
co,(u,)
by (10.4),(10.7),(10.5),(10.6) and (10.8). Hence and by (10.1) we get
1,2 c/n £,%8.) 20205 (@:(v)Lc, (X)d(x)
=Jop:(2 as)ch(x)du(x) =@;(2a,)uC,~ 00, as n-»oo.

So by virtue of Theorem 1.2 and the fact that f, € h',l and g, € h‘,2 we get the
hypothesis.
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III. If @,(u,)=@,v,)=0 then a,> 0 for i=1,2. So A, (G) is 1somorph1c toc,
for i=1,2 and any infinite, countable subgroup G, of G. But it is possible to
construct elements ,v € ¢, such that (u*v)(e)=oco.

11. Theorem. For any noncompact abelian group G condition (+) for s.a.
is necessary for the inclusion L, *L cL,. If additionally ¢(i=1,2) are finite
then condition (+) for s.a. is necessary for the inclusion E, *E cL too.

Proof. By the well known results about the structure of an abelian group
either the group G contains a compact open subgroup G, or it contains an el-
ement z such that the set {z": ne Z} is an infinite, discrete subgroup of G,
where Z is the set of all integers. Let ¢, be finite and equivalent to ¢, for s.a.
(see Lemma 4).

In the first case G/G, is infinite and discrete. Suppose uG,=1. We shall
show that /, (G/G ) * 1, (G/G )cl, (G/G) For fel, (G/G ) and ge [, (G/G,) put
Ax)= j(xG) ‘and &x)= g(xG) where xG, belongs o G/G,. Then fel (G/G),
gel, (G/G) and clearly fe L, and geL By the assumption feg eL But
Fes(%)=/f*g(xG,) for all xeG, "because wG,=1. Therefore
Sfegel (G/G) L (G/G ). Thus by virtue of finiteness of ¢, and Theorem 10,
(0} satlsfy condmon (+) for s.a. But Proposition 3 implies that ¢, satisfy con-
dition (+) for s.a., too.

In the second case denote G,={z":neZ}. Analogously as above it is
enough to show that /, (G )*l, (G,)c [, (G,). Take arbitrary
a=(a)el, (G)= l(G)andb (b,,)el (b,) l(G} Then a*h=c=(c, ) where
c_ z a n—-k*

Let U,V be symmetric neighbourhoods of e such that
UnG,={e}and V’c U. Put f1)= gl ax.1), gt)= EI bxu(?). Clearly fe L, ,
ge va and so fege L,s. Moreover,

If*gl(x) > zl la) 1b,_JwW(Uxz-"U).

If xe Vz" then xz—"Vc:V2c U. Hence W(Uxz"nU)zuV.
Thus If I¥Mgl(x)y,(x1=lc,]uV. Therefore there exists A>0 such that
2 (p(luVlc N<I, ()Jj l#gl) <co, which shows that c=(c,) €/, (G) =1,(G)).

Thus the first part of ‘he theorem is proved. The proof of the second one is
similar and even simp!er because the functions ¢, are finite by the assumption.
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Now, le us introduce two conditions for a locally compact group.

We say that a group G satisfies condition (*) if for every sequence a,—co
there exist sequences (U),(V,) of measurable sets and constants x,k,,k,> 0 such
that

- k<apUxk,

- Vyitcel,

- wUs<xpb,

for every ie N.

It is said that a sequence (U, V) is a so called D”’-sequence ([2]) if U, V, are
measurable sets and there exists k>0 such that

- U>oU,>...U-e
- VWU,

- wU<xpb,

for every’ie N.

Note, in the above two conditions we may always suppose that V,c U.

12. Remark. The following groups satisfy condition (*) :
(R, +),(K,+),(T,),(R\{0},),(K\{0},-), where T is a subgroup of (K\{0},-) con-
sisting of all elements belonging to the unit sphere of K.

In [2] there are examples of groups addmiting a D”’-sequence. For instance
the groups containing an open subgroup of the form R*xT*xF, where a,b are
positive integers and F is a finite group, admit a D”’-sequence.

13. Proposition. Ifa group G contains an infinite, discrete and cyclic sub-
group and G admits a D’-sequence, then the condition (*) is satisfied.

Proof. Let (o), 0,1, be an arbitrary sequence tending to infinity and
7' : neZ} be a discrete subgroup of G. If W is neighbourhood of e such that
z"W} is a pairwise disjoint family of sets, then we may assume that U,c W,
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where (U, V) is a D”-sequence. We find a subsequence (U ) and natural num-
bers k such that 1/2 <a(2k +])uU < 1. Putting

P= U z"U,,Q_ Uz"V we have

n=—k, j

uP= (4k,+ Nuy, and Q,=(2k,+ I)u V,. Hence

1/4<apP,<2 and uP,< ZKpQ Moreover,

%

Q= U Uz"+'"V-'V U 2V,

n_—k} m-- 1_—2k

Zkl

CUZ‘UP

I_—2k

Thus the group G satisfies condition (*).
14. Theorem. Let a group G satisfy condition (*). Then condition (+) for
La. is necessary for the inclusion L,xL, c L.

If moreover @fi= 1,2) are finite, then the condition (+) for La. is necessary for
the inclusion E, *E, c L, , t0o0

Proof. Assume @(i=1,2) are finite (in another case condition (+) for La.
is always satisfied). Suppose condition (+) for La. is not sastified. Then there
exist sequences (u,),(v) such that ¢,(#,)— oo and @,(v)—oco and

(14.1) 1/i uy,;> @, (1)05(9,(v)) + 0 (v)os5 '(0,u)).

Analogously as in the proof of Theorem 10 one can put ¢,(1)=¢,(v). By the
assumed condition (*), one can find a sequence U, of measurable sets such that

(14.2) k. <o,(u)nUx<k,
where k,,k,> 0. Putting
A =uxy (), 8O=vxy (),
we have
f*ex)=uyp(xUnU).

We can assume that V,c U, where ¥, are sets from condition (¥). So, if xe V!
then xV,c U, and
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HxUNU)ZuxUnxV)=pV,
for xe V;'. Thus
S8 x) = uyuVy,-(x).
Then in virtue of (14.1) and (14.2), we get
x/k, 1/i (f*g)(X) = k/k, @,(u)95 (@)Y 2,74X) = 05 (@,(7)a ().
Therefore ‘
1, (x/k, 1/i f*¢)= 1/% ¢ [0, (@ (v)uU,

Now if b,=co then ‘

I(‘,}(lc/kl 1/i f»g) >k, /x for every ie N,
if b;< oo then 4¢;'(¢,(v))> 2b, for sufficiently large i and so

4k 1
KX, i

Iol(

ﬁ*g) 2 <Pa(2b3)l»l Vi=co.

Thus we have found sequences (f),(g) such that £, € E,l, g € E,z and I,I(f) <k,
I,,z(g,.)sk2 and I,J(k,f,.*g,.)z const. for some A,—0. Then, by Theorem 1. The
inclusions E,*E, cL, and L,*L, c L, are not fulfilled, which ends the proof
of the theorem.

The following three corollaries are immediate consequence of Theorems
1.1, 1.2, 2, 7, 10, 11 and 14.

‘15. Corollary. Let G be a discrete group. The following conditions are
equivalent

(1) 1,1*1,;—» 1,3

?2) k‘,l*l‘,zc-»h,,3

3) h‘»l*lq,zf-»l‘,3

4 hq,l*l,,zc»l'pJ

(5) ¢ satisfies condition (+) for s.a. or G is finite,
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(6) There exist 1,6> 0 such that
07 (o5 (W) <! u 95\ (w)
if u<3d, or G is finite,
) gl <l lgl,,

for some c>0 and all fel,, gel, .

16. Corollary. Let G be nondiscrete group and o(i=1,2,3) be finite. Con-
sider the conditions (1) to (4) and (7) as in Corollary 15, where |,, h, are re-
placed by L,, E, respectively. Moreover, let fe

(5)) ¢ satisfies condition (+) for La. if G is compact or for a.a. if G is
noncompact,

(6”) there exist 18>0 such that
07 (e (W) < lugs'(w)
ifu=8 and G is compact or if u >0 and G is noncompact.
We have relations: (1)<~(7) and
1) —— (3)

e
HS )
\ (2)/

Moreover, if a group G satisfies condition (*) then (4)—(5°), i.e. all the above
conditions are equivalent.

Sufficiency of the next corollary is known as Young theorem (see e.g. [2],

[8D).

17. Corollary. Let 1<p,qgr<oo.
L If G is discrete and infinite, then

¥

ifl/p+1/q=1/r+ 1.
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II. Let G be nondiscrete compact and 1/p+1/q<1/r+ 1 or respectively G
is noncompat and 1/p+1/q=1/r+ 1, then

Lr¥[ees [,

If additionally G satisfies condition (*), then the converse of the above is
also true.

18. Corollary.

I (th.2 in [3]) L, is a Banach algeb}a under convolution as multiplication
iff LsL, ie. limo o(u)/u>0 or G is compact.
Uu—

II ([10]) LX(I<p<oo) is a Banach algebra iff p=1 or G is compact.

Proof. 1. If we put ¢,=¢(i=1,2,3), then ¢, satisfy condition (+) for la.,
by convexity of ¢. Moreover, if L, is a Banach algebra and G is noncompact,
then applying Theorem 11 we get condition (+) for s.a. Thus o, satisfy (+) for
a.a., which means that lim ¢(u)/u> 0. The converse is immediate, by Theo-
rem 7. ve0

The point I of the above Corollary (see also [3]) is the answer to the
Gramsch’s problem from [1], in the case of convex function ®.
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