On minimality and l^p-complemented subspaces of Orlicz function spaces

Francisco L. Hernández and Baltasar Rodriguez-Salinas

ABSTRACT. Several properties of the class of minimal Orlicz function spaces L^F are described. In particular, an explicitly defined class of non-trivial minimal functions is showed, which provides concrete examples of Orlicz spaces without complemented copies of P-spaces.

A classical topic in Banach spaces is the study of the existence of l^p -complemented subspaces. It is well-known that from the existence of l^p -subspaces in a Banach space E does not follow that E contains a *complemented* copy of some l^p -space (l). This happens even when we restrict ourselves to reflexive Banach lattices <math>E. The natural counter-examples for this are inside the class of minimal Orlicz sequence spaces studied by Lindenstrauss and Tzafriri ([L-T₁], [L-T₂], [L-T₃] pp. 164):

Theorem 1. Given $1 < \alpha \le \beta < \infty$ arbitrary. There exists a minimal Orlicz sequence space l^F with indices α and β which does not have any complemented subspace isomorphic to l^p for $p \ge 1$, in spite of the fact that l^F contains isomorphic copies of l^p for any $\alpha \le p \le \beta$.

Recall that an Orlicz function F is minimal at 0 ([L-T₁]) if for every function $G \in E_{E_1}$ it happens that $E_{G_1} = E_{E_1}$ where E_{E_1} is the compact set $E_{E_1} = \{ \overline{F(\lambda t)/F(\lambda)}: 0 < \lambda \le I \}$ in C[0,1]. The existence of minimal functions at 0 (different of the multiplicative ones $t^p \mid l) is proved by means of Zorn Lemma.$

The examples given in ([L-T₁], [L-T₂]) of minimal functions are not explicitly defined in terms of elementary functions. In fact, all minimal functions are obtained, up to equivalence, via the method of contructing Orlicz functions F_{ρ} associated to 0-1 valued sequences $\rho = (\rho(n))_{n=1}^{\infty}$. This method due also

Supported in part by CAICYT grant 0338-84. 1980 Mathematics Subject Classification (1985 revision): 46A45, 46E30. Editorial de la Universidad Complutense. Madrid, 1989.

to Lindenstrauss and Tzafriri ([L-T₂], [L-T₃] pp. 161), is a useful technique but rather sophisticated and uneasy to handle.

One of the goals of this lecture, which collects several results in [H-R.S₁] and [H-R.S₂], is to present a suitable class of minimal Orlicz spaces for which the minimal functions are *explicitly* defined. As far as we know these functions are the first examples of non-trivial minimal functions defined in a elementary form and without appealing to the above mentioned 0-1 valued sequence method.

We refer to ([L-T₃], [L-T₄]) for the definitions and terminology used on Orlicz and Banach spaces.

The class of minimal Orlicz function spaces $L^{F}(\mu)$ was introduced by V. Peirats and the first named author in [H-P₁], showing the existence of reflexive function spaces $L^{F}(\mu)$ without any complemented copy of l^{F} for any $p \neq 2$. (The Rademacher functions span a complemented subspace isomorphic to l^{F}).

Recall that a function F is minimal at ∞ ([H-P₁]) if $E_{F,1}^{\infty} = E_{G,1}^{\infty}$ for every function $G \in E_{F,1}^{\infty}$, where $E_{F,1}^{\infty}$ is the compact subset of the continuous function space $C[0,\infty)$ defined by

$$E_{F,1}^{\infty} = \left\{ \frac{F(\lambda t)}{F(\lambda)} : \lambda \geqslant I \right\}$$

This notion of minimality at ∞ is slightly stronger than the minimality at 0. Fixed a minimal function M at 0 it is always possible to find a minimal function F at ∞ in such a way that its restriction to the [0,1] interval coincides with the function M.

Minimal function spaces $L^{F}(\mu)$ have several interesting properties (see [H-P₂], [H-P₃], [P]). For instance, a minimal space $L^{F}(0,1)$ contains always a complemented copy of the sequence space l^{F} , and moreover the projection from $L^{F}(0,1)$ on l^{F} is contractive. Also it holds that the associated indices to F at 0 and at ∞ are the same, i.e. $\alpha_{F}^{\infty} = \alpha_{F}$ and $\beta_{F}^{\infty} = \beta_{F}$

The following result was proved in [H-P₁] for the cases of indices placed on the same side of 2. Afterwards in [H-R.S₁] this restriction was removed:

Theorem 2. Given $1 < \alpha \le \beta < \infty$ arbitrary. There exists a minimal Orlicz function space $L^{p}(0,1)$ with indices $\alpha_{p}^{\infty} = \alpha$ and $\beta_{p}^{\infty} = \beta$ which does not have any complemented subspace isomorphic to l^{p} for any $p \ne 2$.

The proof of this result makes bassically use of the fact that a minimal Orlicz function space $L^{r}(0,1)$ contains a complemented copy of l^{r} for $p \neq 2$ if and only if the minimal Orlicz sequence space l^{r} does the same.

We shall show here that inside the suitable class of explicit minimal functions there are concrete examples of Orlicz (function and sequence) spaces without complemented copies of l^p -spaces.

Before going further, we would like to offer the motivation for the appearance of this class of functions and some related questions:

W. Johnson, B. Maurey, G. Schechtman and L. Tzafriri in ([J-M-S-T] pp. 235) consider the function $F(t)=t^p \exp(f(\log t))$ for p>1 where f is defined by

$$f(x) = \sum_{k=1}^{\infty} (1 - \cos \frac{\pi x}{2^k}),$$

obtaining that the associated Orlicz function spaces $L^{F}(0,1)$ and $L^{F}(0,\infty)$ are isomorphic spaces. This gave a counterexample to a Mityagin's conjecture ([M]) saying that any Orlicz space (and more generally any symmetric space) with the above property has to be necessarily an L^{P} -space, $(1 \le p \le \infty)$. Before that, Nielsen in [N] had proved that the Mityagin conjecture is true for the restricted class of Orlicz functions with slowly variation at ∞ .

In ([N] pp. 256) it appears also the question whether the fact that two Orlicz function spaces $L^{G}(0,\infty)$ and $L^{F}(0,\infty)$ are isomorphic implies that the corresponding Orlicz sequence spaces l^{F} and l^{G} have to be also isomorphic (or even more, the same space). A counterexample to this is obtained by considering the above Johnson et al. function F and as G the function defined by

$$G(t) = \begin{cases} t^2 & \text{if } 0 \le t \le 1\\ 2F(t) - 1 & \text{if } t > 1 \end{cases}$$

Then, using ([J-M-S-T], pp. 216), we have that

$$L^{\mathsf{F}}(0,\infty) \approx L^{\mathsf{F}}(0,1) \approx L^{\mathsf{G}}(0,\infty),$$

but l^F and l^G are clearly not isomorphic.

When we restrict to minimal functions the above question has a positive answer:

Proposition 3. If $L^{F}(0,\infty)$ and $L^{G}(0,\infty)$ are isomorphic for F and G minimal functions then l^{F} and l^{G} are also isomorphic.

We present now the class of explicit minimal spaces. (In particular we get that the Johnson et al. function is minimal):

Theorem 4. Given p>1 and q arbitrary. If $F_{p,q}$ is the function $F_{p,q}(0)=0$ and

$$F_{n,n}(t) = t^p exp(qf(logt))$$
 if $t > 0$,

then $L^{F_{p,q}}(\mu)$ is a minimal Orlicz space.

Scketch of the Proof: First notice that for q=0 we get the *L*²-spaces, so the result is obvious.

Let us consider $F_{p,q} \equiv F$ for $q \neq 0$. If $G \in E_{F,1}^{\infty}$ and G is not equivalent to F, there exists a sequence $(s_n)_{p,\infty}$, such that

$$G(t) = \lim_{n \to \infty} \frac{F(e^{s_n}t)}{F(e^{s_n})} = t^p e^{q g(\log t)}$$

uniformly on the compact subsets of $[0,\infty)$ and where the function g is defined by

$$g(x) = \lim_{n \to \infty} [f(s_n + x) - f(s_n)]$$

$$= \lim_{n\to\infty} \sum_{k=1}^{\infty} \left(\cos\frac{\pi s_n}{2^k} - \cos\frac{\pi (x+s_n)}{2^k}\right).$$

Now for each $m \in \mathbb{N}$ we can take an scalar $0 \le s_n^{(m)} \le 2^{m+1}$ with $s_n \equiv s_n^{(m)}$ (mod. 2^{m+1}). So, there exists a subsequence converging to a $\sigma_m \in [0, 2^{m+1}]$. Thus, using the Cantor Diagonal method, we obtain a subsequence, denoted also by (s_n) , such that $s_n^{(m)} \to \sigma_m$ and $0 \le \sigma_m \le 2^{m+1}$ for each $m \in \mathbb{N}$.

Using the uniform convergence it can be deduced the following expression for the function g:

$$g(x) = \sum_{k=1}^{\infty} \left(\cos \frac{\pi \sigma_k}{2^k} - \cos \frac{\pi (x + \sigma_k)}{2^k}\right).$$

Now it rests to show that the function $F \in E_{G,1}^{\infty}$. By considering the sequence $(r_n) = (2^{n+1} - \sigma_n)$ and the uniform convergence, it is found out that

$$\lim_{n\to\infty} g[(r_n+x)-g(r_n)] = \sum_{k=1}^{\infty} (1-\cos\frac{\pi x}{2^k}) = f(x)$$

So

$$\lim_{n\to\infty}\frac{G(e^{\prime n}t)}{G(e^{\prime n})}=t^pe^{q\cdot f(\log t)}=F(t)$$

and $F \in E_{G,1}^{\infty}$. This implies that $E_{F,1}^{\infty} \subset E_{G,1}^{\infty} \subset E_{F,1}^{\infty}$, and F is minmal at ∞ .

A direct consequence is that the sequence spaces $l^{F_{p,q}}$ are also minimal spaces (As far as we know the first examples defined explicitly).

More properties of this class of minimal spaces are the following:

Proposition 5. Fixed p > 1. For any q it holds that:

- (a) The associated indices at 0 and at ∞ to the function $F_{p,q}$ are equal to p.
- (b) The spaces $L^{F_{p,q}}(0,1)$ and $L^{F_{p,q}}(0,\infty)$ are Riesz-isomorphic. (c) Two spaces $L^{F_{p,r}}$ and $L^{F_{p,q}}$ are isomorphic if and only if q=r.

The proof of (b) is analogous to ([J-M-S-T], pp. 236): The function $F_{p,q} \equiv F$ is such that there exists a constant K>0 and an increasing sequence (r_n) with

$$\sum \frac{1}{F(r_n)} = 1 \text{ and } K^{-1}F(t) \le \frac{F(r_n t)}{F(r_n)} \le KF(t)$$

for every $n \in \mathbb{N}$ and $0 \le t < \infty$. Now, let us consider a disjoint interval sequence (A_n) in (0,1) with measure $\mu(A_n) = \frac{1}{F(r_n)}$ and φ_n the increasing affine mapping from A_n onto [n,n+1). Then the operator $T:L^p(0,\infty)\to L^p(0,1)$ defined by

$$T(f) = \sum_{n=1}^{\infty} r_n \chi_{\mathbf{A}_n} f(\varphi_n)$$

is a Riesz-isomorphism.

The statement (c) is obtained using the uniqueness of the symmetric structure for reflexive Orlicz function spaces ([J-M-S-T]) and the fact that the function f(x) is not bounded at $\pm \infty$.

We pass now to study the embedding of lp as a complemented subspace into the spaces $L^{F_{p,q}}$. It is still unknown a characterization of when an Orlicz (sequence or function) space contains a complemented copy of b. However there exist some necessary or sufficient conditions (see [L-T₃], [K], [L], [H-P₃]).

The following definition is an extension to the function space case of the Lindenstrauss and Tzafriri's one given for the Orlicz sequence space setting:

Fixed $\sigma > 0$, the function t^p is called σ -strongly non-equivalent to $E_{E_1}^{\infty}$ if there exist two sequences of numbers (K_n) and integers (m_n) , so that for $n\to\infty$ $K_n\to\infty$ and $m_n=o(K_n^{\sigma})$; and m_n -points $t_i\in(0,1)$ such that for every $\lambda \in [max t_i^{-1}, \infty)$ there is at least one index i, $1 \le i \le m_n$ for which

$$\frac{F(\lambda t_i)}{F(\lambda)t_i^p} \notin \left[\frac{1}{K_n}, K_n \right]$$

For reflexive function spaces the above condition gives an useful criterion:

Theorem 6. Given a reflexive space $L^{F}(0,1)$ and $p \neq 2$. If t^{p} is σ -strongly non-equivalent to $E_{F,1}^{\infty}$ for some $\sigma < \frac{1}{\beta_{F}^{\infty}}$, then $L^{F}(0,1)$ does not contain a complemented copy of t^{p} .

The proof of this result has two different parts. The first step is to show using the thechiques developped in ([L-T₂], pp. 360) that under the hypothesis of the Theorem, no weighted Orlicz sequence space $l^{r}(w)$, with $\sum w_{n} < \infty$ (cf. [H-P₂]), contains a complemented subspace isomorphic to l^{r} .

The other fact needed is the following Lemma proved in $[H-R.S_1]$ by using the disjointification Kadec-Pelczynski method (cf. $[L-T_4]$ Proposition 1.c.8).

Proposition 7. Let $L^p(0,1)$ be a reflexive space. Then $L^p(0,1)$ contains a complemented copy of l^p for $p \neq 2$ if and only if l^p is isomorphic to a complemented subspace of a weighted Orlicz sequence space $l^p(w)$ with $\sum w_n < \infty$.

Let us apply these results to the above class of minimal spaces. In order to do it we need to consider an oscillation constant γ_f associated to the function

$$f(x) = \sum_{k=1}^{\infty} (1 - \cos \frac{\pi x}{2^k})$$
, defined as follows

$$\gamma_{j} = \frac{\lim_{n \to \infty} \frac{\gamma_{n}}{n}}{n}$$
,

where

$$\gamma_n = \inf_{s>0} \omega_n^s(s)$$

and

$$\omega_n(s) = \max_{0 \le x, y \le 2^n} [f(x+s) - f(y+s)].$$

It can be proved that γ_f satisfies $0 < \gamma_f \le 2$. The following result holds ([H-R.S₂]):

Theorem 8. Let 1 and q verifying that

$$\frac{p}{|q|} < \frac{\gamma_f}{2 \log 2}$$

Then the space $L^{F_{p,q}}$ does not contain any complemented copy of l^p .

As a consequence we easily obtain a result of Lindenstrauss and Tzafriri ([L-T₃], pp. 163) proved by using the method of 0-1 valued sequences:

Corollary 9. For any p > 1 there exists a minimal reflexive Orlicz sequence space l^F with indices $\alpha_F = \beta_F = p$ which does not have any complemented copy of l^F .

Proof. Fixed p > 1, we take q as

$$q = \frac{4 p \log 2}{\dot{\gamma}_{\ell}}$$

Then considering the function $F_{p,q} \equiv F$ we deduce, from Theorem 8, that L^F does not contain a complemented copy of l^p . Since L^F is a minimal space, we conclude that l^F does not contain a complemented copy of l^p , either.

A natural open question is to determine values $p \neq 2$ and q verifying that the Orlicz space $L^{F_{p,q}}$ contains a complemented subspace isomorphic to l^p .

Any positive result in this direction would imply automatically that Problem 4.b.8 in ([L-T₃] has a negative solution, i.e. the existence of minimal Orlicz sequence spaces which are not prime.

Finally another open question is whether for any minimal function F the associated Orlicz spaces $L^{F}(0,1)$ and $L^{F}(0,\infty)$ are isomorphic.

References

- [H-P₁] F.L. HERNÁNDEZ V. PEIRATS: Orlicz function spaces without complemented copies of l. Israel J. Math 56 (1986), 355-360.
- [H-P₂] F.L. HERNÁNDEZ, V. PEIRATS: Weighted sequence subspace of Orlicz function spaces isomorphic to b. Arch. Math 50 (1988), 270-280.
- [H-P₃] F.L. HERNÁNDEZ, V. PEIRATS: *Minimal Orlicz function spaces*. Proc. Int. conf. on Function Spaces (Poznán 1986). Teubner-Texte Zur Math. 103 (1988), 26-33.
- [H-R.S₁] F.L. HERNÁNDEZ, B. RODRIGUEZ-SALINAS: On *p*-complemented copies in Orlicz spaces. Israel J. Math 62 (1988), 37-55.
- [H-R.S₂] F.L. HERNÁNDEZ, B. RODRIGUEZ-SALINAS: On *p*-complemented copies in Orlicz spaces II. Israel J. Math. 68 (1989), 27-55.

- [J-M-S-T] W.B. JOHNSON, B. MAUREY, G. SCHECHTMANN and L. TZAFRIRI: Symmetric sructures in Banach spaces. Mem. Amer. math. Soc. N. 217 (1979).
 - [K] N. J. KALTON: Orlicz sequence spaces without local convexity. Math. Proc. Camb. Phil. Soc. 81 (1977), 253-277.
 - [L] K. LINDBERG: On subspaces of Orlicz sequence spaces. Studia Math. 45 (1973), 119-146.
 - [L-T₁] J. LINDENSTRAUSS, L. TZAFRIRI: On Orlicz sequence spaces II. Israel J. Math 11 (1972), 355-379.
 - [L-T₂] J. LINDENSTRAUSS, L. TZAFRIRI: On Orlicz sequence spaces III. Israel J. Math. 14 (1973), 368-389.
 - [L-T₃] J. LINDENSTRAUSS, L. TZAFRIRI: Classical Banach spaces I. Sequence spaces. Springer-Verlag (1979).
 - [L-T₄] J. LINDENSTRAUSS, L. TZAFRIRI: Classical Banach spaces II. Function spaces. Springer-Verlag (1979).
 - [M] B. MITYAGIN: The homotopy structure of the linear group of a Banach space. Russian Math. Surv. 25 (1970), 59-103.
 - [N] N.J. NIELSEN: On the Orlicz function spaces $L_{M}(0,\infty)$. Israel J. Math. 20 (1975), 237-259.
 - [P] V. PEIRATS: Espacios modulares de sucesiones vectoriales. Subespacios. Doctoral Thesis. Univ. Complutense Madrid. 1986.

Dpto. de Análisis Matemático Facultad de Matemáticas Universidad Complutense 28040-MADRID