Analytic Functions on c.

RICHARD M. ARON and JOSIP GLOBEVNIK

ABSTRACT. Let F be a space of continuous complex valued functions on a subset of c_0 which contains the standard unit vector basis $\{e_n\}$. Let $R:F\to C^N$ be the restriction map, given by $R(f)=(f(e_1),...,f(e_n),...)$. We characterize the ranges R(F) for various "nice" spaces F. For example, if $F=P({}^{\alpha}c_n)$, then $R(F)=l_1$, and if $F=A^{\infty}(B(c_0))$, then $R(F)=l_{\infty}$,

Let c_0 be the Banach space of complex null sequences $\vec{x} = (x_n)$, with the normal sup-norm and usual basis vectors $\vec{e}_n = (0, ..., 0, 1, 0, ...)$, and let F be a space of continuous complex-valued functions on some subset of c_0 which contains the standard basis of c_0 . Let $R: F \to C^{\mathbb{N}}$ be the mapping which assigns to each function $f \in F$ the sequence $(f(e_1), ..., f(e_n), ...)$. Our attention in this article will be focussed on characterizing the range of R for various spaces F of interest. For example, if $F = C(c_0)$, the space of all continuous complex valued functions on c_0 , then a trivial application of the Tietze extension theorem shows that $R(F) = C^{\mathbb{N}}$. On the other hand, c_0 is weakly normal (Corson [6], see also Ferrera [9]). Since $\{0\} \cup \{e_n, n \in N\}$ is weakly compact, we see that R(F) = c, the space of convergent sequences, if we take F to be the subspace of $C(c_0)$ consisting of weakly continuous functions. Recently Jaramillo [11] has examined the relationship between reflexivity of the space F and the range of F, for certain spaces of real valued infinitely differentiable functions and polynomials on a Banach space F with unconditional basis $\{e_n: n \in N\}$.

We concentrate here on analogous spaces of *complex* valued functions on c_0 . After a review of relevant notation and definitions, we show in Section 1 that $R(F) = l_1$ when $F = P({}^nc_0)$, $n \in N$. As a consequence, we prove that if $F = \{f \in H_b(B_R(c_0)): f(0) = 0\}$, then $R(F) = l_1$. Taking n = 2 in the above result, we see that every 2-homogeneous polynomial P on c_0 satisfies $\sum_{j=1}^{\infty} |P(e_j)| < \infty$. This result is reminiscent of classical work of Littlewood [13], who proved that every continuous bilinear form A on $c_0 \times c_0$ satisfies $(A(e_p e_k))_{i,k=1}^{\infty} \in l_{4/3}$. Littlewood's work was extended by Davie [7], who showed

¹⁹⁸⁰ Mathematics Subject Classification (1985 revision): 46E15, 46G20 Editorial de la Universidad Complutense. Madrid 1989.

that every continuous *n*-linear form $A:c_0 \times ... \times c_0 \to C$ satisfies $(A(e_{a_1},...,e_{a_n})) \in l_{2n/n+1}$. In Section 2, we prove that $R(A^{\infty}(B(c_0))) = l_{\infty}$, and as a corollary of the proof of this result we show $R(A_{c}(B(c_0))) = l_1$.

Our notation for analytic functions is standard and follows, for example, Dineen [8] and Mujica [14]. For a Banach space E, $B_n(E)$ denotes the open R-ball centered at 0 in E with $B_n(E)$ abbreviated to B(E). $L(^nE)$ denotes the Banach space of continuous n-linear forms $A:E \times ... \times E \rightarrow C$, equipped with the norm $||A|| = \sup\{|A(x_1,...,x_n)| : x_j \in E, ||x_j|| \le 1, j = 1,...,n\}$. $P(^nE)$ denotes the Banach space of continuous n-homogeneous polynomials on E. Each such polynomial P is associated with a unique symmetric continuous n-linear form A, by P(x) = A(x,...,x), and ||P|| is defined to be $\sup_{||x|| \le 1} |P(x)|$. A function f from an open subset E of E to E is said to be holomorphic if E has a complex Fréchet derivative at each point of E. Equivalently, E is holomorphic if for all points E in Some neighborhood of E, where each E is no overges uniformly for all E in some neighborhood of E, where each E is E in some neighborhood of E in the standard and follows, for example, E is the space of E in the standard and E in some neighborhood of E in the standard and E in the standard and E in such that E is the standard and E in the standard and

 $H_b(B_R(E))$ is the space of all holomorphic functions on $B_R(E)$ which are bounded on $B_r(E)$ for every r < R. A useful characterization of $H_b(B_R(E))$ is that it consists of all holomorphic functions f on $B_R(E)$ such that $\limsup_{n\to\infty} \|P_n\|^{1/n} \le 1/R$, where $\{P_n:n\in N\}$ represents the Taylor polynomials of f at the origin. The spaces $A^\infty(B(E))$ and $A_v(B(E))$ have been studied by Cole and Gamelin [4,5], Globevnik [10] and others [1]. $A^\infty(B(E)) = \{f:B(E) \to C:f\}$ is holomorphic on B(E) and continuous and bounded on B(E). Unless E is finite dimensional, this space is always strictly larger than $A_v(B(E)) = \{f:B(E) \to C:f\}$ is holomorphic and uniformly continuous on B(E). Both of these spaces are natural infinite dimensional analogues of the disc algebra.

SECTION 1

We show here that for all $P \in P({}^n c_0)$ and all $n \in N$, $\sum_{j=1}^{\infty} |P(e_j)| \le ||P||$. This has already been done by K. John [12], in the case n=2. In [13], Littlewood showed that for every $A \in L({}^n c_0)$, $(A(e_j, e_k))_{j,k=1}^{\infty} \in I_{4/3}$, and that 4/3 is best possible; thus, Littlewood's 4/3 result notwithstanding, John's result is that every $A \in L({}^n c_0)$ has a trace. Our proof will make use of a generalization of the classical Rademacher functions, which seems to be well-known to probabilists (see, for example, Chatterji [3]).

Definition 1.1. Fix $n \in \mathbb{N}$, $n \ge 2$, and let $\alpha_1 = 1, \alpha_2, ..., \alpha_n$ denote the n^{th} roots of unity. Let s_j : $[0,1] \to C$ be the step function taking the value α_j on (j-1/n, j/n), for j=1,...,n. Assuming that s_{k-1} has been defined, define s_k in the following natural way. Fix any of the n^{k-1} sub-intervals I of [0,1] used in the definition of s_{k-1} . Divide I into n equal intervals $I_j,...,I_n$, and set $s_k(t) = \alpha_j$ if $t \in I_j$

(The endpoints of the intervals are irrelevant for this construction and we may, for example, define s_k to be 1 on each endpoint.)

Of course, when n=2, Definition 1.1 gives us the classical Rademacher functions. The following lemma lists the basic properties of the functions s_k . Its proof is similar to the usual, induction proof for the Rademacher functions, and is omitted.

Lemma 1.2. For each n = 2,3,..., the associated functions s_k satisfy the following properties:

- (a). $|s_k(t)| = 1$, for all $k \in N$ and all $t \in [0,1]$.
- (b). For any choice of $k_n,...,k_m$

$$\int_{0}^{1} s_{k_{1}}(t)...s_{k_{n}}(t)dt = \begin{cases} 1 & \text{if } k_{1} = ... = k_{n} \\ 0 & \text{otherwise} \end{cases}$$

We are grateful to Andrew Tonge for suggesting an improvement in the proof of the following result.

Theorem 1.3. Let $P \in P({}^{n}C_{0})$. Then $||(P(e_{i}))||_{L} \leq ||P||$.

Proof. Let $A \in L({}^nc_0)$ be the symmetric *n*-linear form associated to *P*. Fix any $m \in \mathbb{N}$. For each i = 1, ..., m, let $\lambda_i = |A(e_i, ..., e_i)| / A(e_i, ..., e_i)$, if $A(e_i, ..., e_i) \neq 0$, and 1 otherwise. Furthermore, let β_i denote any n^{th} root of λ_i . Thus, $\lambda_i A(e_i, ..., e_i) = |P(e_i)|$ for each i = 1, ..., m. Adding and applying Lemma 1.2 for the integer *n*, we get $\sum_{i=1}^m |P(e_i)| = \sum_{i=1}^m \lambda_i A(e_i, ..., e_i)$

$$= \sum_{i,j_{2},...,j_{n}=1}^{m} \int_{0}^{1} \lambda_{i} s_{i}(t) s_{j_{2}}(t) ... s_{j_{n}}(t) A(e_{i} e_{j_{2}},...,e_{j_{n}}) dt$$

$$= \int_{0}^{1} A(\sum_{i=1}^{m} \lambda_{i} s_{i}(t) e_{i},..., \sum_{j_{n}=1}^{m} s_{j_{n}}(t) e_{j_{n}}) dt$$

$$= \int_{0}^{1} A(\sum_{j_{1}=1}^{m} \beta_{j_{1}} s_{j_{1}}(t) e_{j_{1}},..., \sum_{j_{n}=1}^{m} \beta_{j_{n}} s_{j_{n}}(t) e_{j_{n}}) dt.$$

Since $\|\sum_{j=1}^{m} \beta_j s_j(t) e_j\| \le 1$ for all t, the last expression is clearly less than or equal to $\|P\|$. Since m was arbitrary, the proof is complete.

Rephrasing the above result in terms of the mapping R mentioned in the introduction, Theorem 1.3 implies that for any n, $R(P({}^nc_0)) \subset l_1$. In fact, R is onto l_1 , since any $\overrightarrow{\lambda} = (\lambda_1, ..., \lambda_p, ...) \in l_1$ equals R(P), where $P \in P({}^nc_0)$ is given by $P(x) = \sum_{i=1}^{\infty} \lambda_i \ x_i^n$

We conclude this section by proving that, up to a normalizing factor, $R(H_b(B_R(c_0))) = l_1$, for every R > 1. Since $H_b(B_R(c_0))$ "approaches" $A^{\infty}(B(c_0))$ as $R \downarrow 1$, it is tempting to guess that Corollary 1.4 below is also true for the latter space. We will see in the next section that this is completely false.

Corollary 1.4. Let R > 1 and let $f \in H_b(B_R(c_0))$, with f(0) = 0. Then $(f(e_n))_{n=1}^{\infty} \in l_1$.

Proof. By the characterization given earlier of $H_b(B_R(c_0))$, we see that if S is such that 1 < S < R, then $||P_m||^{1/m} < 1/S$, for all large m. Therefore,

$$\sum_{n=1}^{\infty} |f(e_n)| = \sum_{n=1}^{\infty} |\sum_{m=1}^{\infty} P_m(e_n)|$$

$$\leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |P_m(e_n)| \leq \sum_{m=1}^{\infty} ||P_m|| < \infty. \blacksquare$$

SECTION 2

The following fundamental lemma shows in effect that any sequence of 0's and 1's can be interpolated by a norm one function in $A^{\infty}(B(c_0))$.

Lemma 2.1. (i). Let $S \subset N$ be an arbitrary set. There exists a function $F \in A^{\infty}(B(c_0))$ with the following properties:

$$||F|| = \sup_{x \in B(c_0)} |F(x)| = 1,$$

$$F(e_n) = \begin{cases} 1 & \text{if } n \in S \\ 0 & \text{if } n \notin S \end{cases}$$

(ii). If S is finite, then a function $F \in A_v(B(c_0))$ can be found which satisfies the above conditions.

Proof. Let $\alpha \uparrow \infty$ so quickly that the following three conditions are satisfied:

- (i). The function $\Phi(x) \equiv \prod_{j \in S} (1 x_j)^{1/\alpha_j}$ converges for all $x \in B(c_0)$,
- (ii). Re $\Phi(x) \ge 0$, for all $x \in B(c_0)$,
- (iii). $\Phi(x) = 0$ for some $x \in B(c_0)$ if and only if Re $\Phi(x) = 0$.

Note that $\Phi \in A^{\infty}(B(c_0))$ and, if S is finite then in fact $\Phi \in A_{\upsilon}(B(c_0))$. Also,

$$\Phi(e_n) = \begin{cases} 0 & \text{for } n \in S \\ 1 & \text{for } n \notin S \end{cases}$$

Now, let $G(x) \equiv e^{-\Phi(x)}$. From the above, it is clear that $G \in A^{\infty}(B(c_0))$ for arbitrary S and that $G \in A_U(B(c_0))$ for finite S. In addition, $|G(x)| \le 1$ for all x and

$$G(e_n) = \begin{cases} 1 & \text{for } n \in S \\ 1/e & \text{for } n \notin S \end{cases}$$

Finally, let $T:\bar{\Delta}\to\bar{\Delta}$ be the Mobius transformation $T(z)=\frac{z-1/e}{1-z/e}$ (where Δ is the complex unit disc.) It is clear that $F\equiv T$ o G satisfies all the conditions of the lemma.

We come now to the analogue of Corollary 1.4, for the polydisc algebras $A^{\infty}(B(c_0))$ and $A_{c}(B(c_0))$. Note that here the situation is completely different from the situation in Section 1.

Theorem 2.2. (i). $R(A^{\infty}(B(c_0))) = l_{\infty}$. In fact, given $(\alpha_n) \in l_{\infty}$, there is $F \in A^{\infty}(B(c_0))$ such that $F(e_n) = \alpha_n$ for all $n \in N$ and such that $||F|| \le 4||(\alpha_n)||_l$. (ii). $R(A_{\upsilon}(B(c_0))) = c$. In fact, given $(\alpha_n) \in c$, there is $F \in A_{\upsilon}(B(c_0))$ such that $F(e_n) = \alpha_n$ for all $n \in N$ and such that $||F|| \le 8||(\alpha_n)||_{l_{\infty}}$.

- **Proof.** (i). Without loss of generality, $\|(\alpha_n)\| \le 1$. Let us first suppose that $\alpha_n \ge 0$ for all n. Write $\alpha_n = \sum_{j=1}^{\infty} 2^{-j}\alpha_n$, where each $\alpha_n = 0$ or 1. Let $S_j = \{n \in N: \alpha_n = 1\}$, and let F_j be the associated function obtained using Lemma 2.1. It is easy to see that $F \equiv \sum_{j=1}^{\infty} 2^{-j} F_j$ is the required function in this case, and that $\|F\| \le \|(\alpha_n)\|$. The case of general α_n 's is treated by writing $\alpha_n = p_n q_n + iu_n iv_n$.
- (ii). Suppose first that $(\alpha_n) \in c$ with $\|(\alpha_n)\| \le 1$, and write each $\alpha_n = l + \beta_n$ where $l = \lim_{n \to \infty} \alpha_n$. As above, if each β_n is expressed in binary series form, then each of the associated sets S_j is finite. As a result, each F_j is in $A_v(B(c_0))$ by Lemma 2.1 (ii), so that $F \in A_v(B(c_0))$. The required function is $G \equiv F + l$.

Finally, note that for any $F \in A_U(B(c_0))$, F(x) can be approximated uniformly for $x \in B(c_0)$ by $F_r(x) = F(rx)$ for r sufficiently close to 1. Next, F(rx) can be uniformly approximated on the unit ball of c_0 by a finite Taylor series, say $\sum_{k=0}^{M} P_k(x)$ (where P_0 is a constant). Next, it is well known (see, for example, [15]) that any k-homogeneous polynomial P_k on c_0 can be uniformly approximated on $B(c_0)$ by an k-homogeneous polynomial Q_k which is a finite sum of products of k continuous linear functionals on c_0 . Summarizing, we see that the original function F can be uniformly approximated on $B(c_0)$ by $\sum_{k=0}^{M} Q_k$. Now, since, $(e_n) \rightarrow 0$ weakly if follows that for each k = 1, ..., M, $Q_k(e_n) \rightarrow 0$ as $n \rightarrow \infty$. Hence $R(F) \in c$, and the proof is complete.

It would be interesting to determine the best possible estimates in Theorem 2.2. In [2], we note that in this situation, the best estimate must be strictly

larger than 1. To see this, suppose that there is $F \in A^{\infty}(B(c_0))$ such that ||F|| = 1 and such that $F(e_1) = 1$, $F(e_2) = -1$, and $F(e_1) = 0$ for all $j \ge 3$. Then the function $f_1(z) \equiv F(1,z,0,...)$ would be in the disc algebra $A(\Delta)$, and f_1 would attain its maximum at 0. Hence, f_1 would be a constant and, in particular, $1 = f_1(1) = F(1,1,0,...)$. Similarly, the function $f_2(z) \equiv F(z,1,0,...)$ would be constant, and so $-1 = f_2(1) = F(1,1,0,...)$, a contradiction. In [2], the authors find necessary and sufficient conditions on the sequence $(x_n) \subset c_0$ in order that the mapping $F \in A^{\infty}(B(c_0)) \to (F(x_n)) \in l_{\infty}$ be surjective and satisfy the following condition: For each $(\alpha_n) \in l_{\infty}$, there is $F \in A^{\infty}(B(c_0))$ such that $F(x_n) = \alpha_n$ for each $n \in N$ and $||F|| = \sup_{n} |\alpha_n|$.

References

- [1] R. M. ARON, B. COLE, and T. GAMELIN. The spectra of algebras of analytic functions associated with a Banach space, to appear.
- [2] R. M. ARON and J. GLOBENIK, Interpolation by analytic functions on c_0 , Math. Proc. Camb. Phil . Soc. 104(1988)295-302.
- [3] S. D. CHATTERJI, Continuous functions representable as sums of independent random variables, Z. Wahrsch., 13 (1969) 338-341.
- [4] B. COLE and T. GAMELIN, Representing measures and Hardy spaces for the infinite polydisc algebra, Proc. London Math. Soc (3) 53 (1986) 1, 112-142.
- [5] B. COLE and T. GAMELIN, Weak-star continuous homomorphisms and a decomposition of orthogonal measures, Ann. Inst. Fourier 35 (1985) 149-189.
- [6] H. H. CORSON, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15.
- [7] A. M. DAVIE, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973) 31-40.
- [8] S. DINEEN, Complex analysis in locally convex spaces, Mathematics Studies 83, North Holland, Amsterdam, 1981.
- [9] J. FERRERA, Spaces of weakly continuous functions, Pacific J. Math. 102(1982) 285-291.
- [10] J. GLOBEVNIK, Boundaries for polydisc algebras in infinite dimensions, Math. Proc. Camb. Phil. Soc. 85 (1979) 291-303.
- [11] J. A. JARAMILLO, Algebras de funciones continuas y diferenciables, PhD dissertation, Univ. Complutense de Madrid, 1988.
- [12] K. JOHN, On tensor product characterization of nuclear spaces, Math. Ann. 257(1981) 341-353.
- [13] J. LITTLEWOOD, On bounded bilinear forms in an infinite number of variables, Quart. Journ. of Math. (2) 2 (1930), 164-174.
- [14] J. MUJICA, Complex analysis in Banach spaces, Math. Studies 120, North Holland, Amsterdam, 1986.

[15] A. PELCZYNSKI, A theorem of Dunford-Pettis type for polynomial operators, Bull. Acad. Pol. Sc. XI, 6 (1963) 379-386.

Department of Mathematics Kent State University Kent, Ohio 44242 U.S.A. Institute of Mathematics University of Ljubljana 19 Jadranska 61000 Ljubljana Yugoslavia