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Analytic Functions on c,

RICHARD M. ARON and JOSIP GLOBEVNIK

ABSTRACT. Let F be a space of continuous complex valued functions on a subset of ¢, which
contains the standard unit vector basis {e,}. Let R:F—>C" be the restriction map, given by
R(f)=(f(e),....f (e,),...). We characterize the ranges R(F) for various “nice” spaces F. For
example, if F=P("c,), then R(F)=1, and if F=A"(B(c,)), then R(F)=1_,

Let ¢, be the Banach space of complex null sequences X =(x,), with the nor-
mal sup-norm and usual basis vectors é,=(0,..., 0,1,0,...), and let F be a space
of continuous complex-valued functions on some subset of ¢, which contains
the standard basis of ¢, Let R:F—C" be the mapping which assigns to each
function f € F the sequence (f(e,),....f(e,),...). Our attention in this article will
be focussed on characterizing the range of R for various spaces F of in-
terest. For example, if F=C(c,), the space of all continuous complex valued
functions on ¢,, then a trivial application of the Tietze extension theorem shows that
R(F) =C". On the other hand, ¢, is weakly normal (Corson [6], see also Fe-
rrera [9]). Since {0}U{e,n € N} is weakly compact, we see that R(F)= ¢, the
space of convergent sequences, if we take F to be the subspace of C(c,) con-
sisting of weakly continuous functions. Recently Jaramillo {11] has examined
the relationship between reflexivity of the space F and the range of R, for cer-
tain spaces of real valued infinitely differentiable functions and polynomials
on a Banach space E with unconditional basis { e, ; ne N}.

We concentrate here on analogous spaces of complex valued functions on
¢, After a review of relevant notation and definitions, we show in Section 1
that R(F)=/, when F=P("c;), ne N. As a consequence, we prove that if
F={f € H{(B{c,)): f(0)=0}, then R(F)=1,. Taking n=2 in the above result, we
see that every 2-homogeneous polynomial P on ¢, satisfies
>.2,|P(e)| <oo. This result is reminiscent of classical work of Littlewood [13],
who proved that every continuous bilinear form A on ¢,xc, satisfies
(A(e,e))z, € Ly Littlewood’s work was extended by Davie [7],who showed
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that every continuous n-linear form A:¢c,x... x ¢,—»C satisfies
(A(eal,.,.,.,eu ) € L,...- In Section 2, we prove that R(4=(B(c,)))=.,, and as a co-
rollary of the proof of this result we show R(4(B(c,)))=..

Our notation for analytic functions is standard and follows, for example,
Dineen [8] and Mujica [14]. For a Banach space E, B(E) denotes the open
R-ball centered at 0 in E with B(E) abbreviated to B(E). L("E) denotes the
Banach space of continuous n-linear forms A:E x ... x E~»C, equipped with the
norm |4l =sup{|4(x,,....x,)| :x; € E, lIx||<1, j= 1,...,n}. P("E ) denotes the Ba-
nach space of continuous n-homogeneous polynomials on E. Each such poly-
nomial P is associated with a unique symmetric continuous #-linear form 4,
by P(x)=A(x,...,x), and ||P|| is defined to be sup,,.|P(x). A function f from
an open subset U of E to C is said to be holomorphic if f has a complex Fré-
chet derivative at each point of U. Equivalently, f is holomorphic if for all
points a € U, the Taylor series f(x)=3>_ P (x—a), converges uniformly for all
X in some neighborhood of @, where each P, e P("E).

Hy(BYE)) is the space of all holomorphic functions on B,(E) which are
bounded on B(E) for every r < R. A useful characterization of H(B(E)) is that
it consists of all holomorphic functions f on B.(E) such that
limsup,__, |IP,|l”»<1/R, where { P,:n € N} represents the Taylor polynomials of
f at the origin. The spaces A~(B(E)) and A4,(B(E)) have been studied by Cole
and Gamelin [4,5], Globevnik [10] and others [1]. 4~(B(E))= {f:B(E)y~>Cf is
holomorphic on B(E) and continuous and bounded on B(E)}. Unless E is fi-
nite dimensional, this space is always strictly larger than A4/(B(E))=
{f:B(E) >Cf is holomorphic and uniformly continuous on B(E)}. Both of these
spaces are natural infinite dimensional analogues of the disc algebra.

SECTION 1

We show here that for all Pe P("c;)) and all ne N, 37_| P(¢)|<||P|l. This has
already been done by K. John [12], in the case n=2. In [13], Littlewood
showed that for every 4 € L("c,), (A(e, €))%, €, and that 4/3 is best possible;
thus, Littlewood’s 4/3 result notwithstanding, John’s result is that every
A € L(*¢,) has a trace. Our proof will make use of a generalization of the clas-
sical Rademacher functions, which seems to be well-known to probabilists
(see, for example, Chatterji [3]).

Definition 1.1. Fix ne N, n=2, and let a,=1, q,...,0, denote the n* roots
of unity. Let s,: [0,1]1 — C be the step function taking the value o, on (j-1/n,
j/n), for j=1,..., n. Assuming that s,_, has been defined, define s, in the follow-
ing natural way. Fix any of the n*-' sub-intervals I of [0,1] used in the defi-
nition of s,_,. Divide I into n equal intervals 1,,...1,, and set s(t)=o, if tel,
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(The endpoints of the intervals are irrelevant for this construction and we may,
for example, define s, to be 1 on each endpoint.)

Of course, when n=2, Definition 1.1 gives us the classical Rademacher
functions. The following lemma lists the basic properties of the functions s,.
Its proof is similar to the usual, induction proof for the Rademacher func-
tions, and is omitted.

Lemma 1.2. For each n=2,3,..., the associated functions s, satisfy the fol-
lowing properties:

@). |s()| = 1, for all ke N and all t < [0,1].
(b). For any choice of k,,....k,,

) 1 ifk=..=k,
[ 5., (0)...5, (et = :

0 0 otherwise

We are grateful to Andrew Tonge for suggesting an improvement in the
proof of the following result.

Theorem 1.3. Let Pe P('c,). Then [I(Pe)ll, <IIPll.

Proof. Let Ae L("c,) be the symmetric n-linear form associated to P. Fix
any meN. For each i=1,...m, let A, = |d(e,..., e)| /A(e,....e), if
A(e,..., ) #0, and 1 otherwise. Furthermore, let B, denote any n* root of A,
Thus, A A(e,....e)=|P(e)| for each i= 1,...,m. Adding and applying Lemma 1.2
for the integer n, we get 37_| Ple, )| =37, AA(e,....e)

1
f As(D)s, (0.5, (DA(e,e,,...6; )t
0
1
- E AT A5y 37 s, (e, )l
0

=[ A 8,00 2 378,306 )

0

Since [|37_ Bs(fell<1 for all ¢, the last expression is clearly less than or
equal to ||P||. Since m was arbitrary, the proof is complete.m

Rephrasing the above result in terms of the mapping R mentioned in the
introduction, Theorem 1.3 implies that for any n, R(P("¢c;))c/,. In fact, R is onto

l,, since any X’:(kl,...,kj,...)ell equals R(P), where Pe P("c;) is given by
P(X)=Z°?=17~j X
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We conclude this section by proving that, up to a normalizing factor,
R(H(B(c,))=1,, for every R>1. Since H,(Bg(c,)) “approaches” 4=(B(c,)) as
R |1,it is tempting to guess that Corollary 1.4 below is also true for the latter
space. We will see in the next section that this is completely false.

Corollary 1.4. Let R>1 and let f e H(Bg(c,), with f(0)=0. Then
(f(en))u:l:l € ll'

Proof. By the characterization given earlier of H,(Bg(c,)), we see that if S
is such that 1<S<R, then ||IP,||'=<1/S, for all large m. Therefore,

u:'=l| f(en)l = Ocr':=1| Zosn=le(en)|

<312 mt P.(e,) 52"?..=1 “P,,,”<00-.

SECTION 2

The following fundamental lemma shows in effect that any sequence of 0’s
and I’s can be interpolated by a norm one function in 4=(B(c,)).

‘Lemma 2.1. (i). Let ScN be an arbitrary set. There exists a function
F e A=(B(c,)) with the following properties:

| Fl|=sup |[F(x)| =1,

x€B(cy)

1 ifneS
Fle,)=
0ifngsS

(ii). If S is finite, then a function F € A(B(c,)) can be found which satisfies the
above conditions.

Proof. Let ajToo so quickly that the following three conditions are satisfied:

(i). The function ®(x)=I1,. (1 —x)"% converges for all x € B(c,),
(i1). Re ®(x)=0, for all x € B(c,),
(iii). ®(x)=0 for some x € B(c,) if and only if Re ®(x)=0.

Note that ® € A~(B(c,)) and, if S is finite then in fact ® € 4,(B(c,)). Also,

0 forneS
D(e,)=
1 forneg$
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Now, let G(x)=e-*». From the above, it is clear that G € A~(B(c,)) for ar-
bitrary S and that G € 4,(B(c,)) for finite S. In addition, | G(x)| <1 for all x and

1 forne S

Gle,)=
1/e for ng S

Finally, let 7:A—A be the Mobius transformation 7(z)=-=% (where A

1-z/e

is the complex unit disc.) It is clear that F=T o G satisfies all the conditions
of the lemma.m

We come now to the analogue of Corollary 1.4, for the polydisc algebras
A=(B(c,)) and 4,(B(c,). Note that here the situation is completely different
from the situation in Section 1.

Theorem 2.2. (i). R(A=(B(cy)))=1,. In fact, given (0 )el_, there is
Fe A~(B(c,)) such that Fe,) = a, for all ne N and such that ||F||<4l|(c,)], .

(i). R(ALB(c,)))=c. In fact, given (0,) € c, there is Fe A/B(c,) such that
Fle)=a, for all ne N and such that | Fl| <8li(a,)l, .

Proof. (i). Without loss of generality, [|(a )|l < 1. Let us first suppose that
®,20 for all n. Write 0,=2., 20, where each a, =0 or 1. Let §, ={ neN:
0, =1}, and let F, be the assoc1ated function obtairled using Lemma 2.1. It is
edsy to see that F >=_, 27 F; is the required function in this case, and that
LA <l(a)ll. The case of general a,’s is treated by writing a,=p,—q,+ iu,—iv,

(ii). Suppose first that (a,) e ¢ with |i(a,)l|<1, and write each a,=/+,
where /=Iim,__q,. As above, if each B, is expressed in binary series form, then
each of the associated sets S is finite. As a resuit, each F;is in 4,(B(c,)) by Lem-
ma 2.1 (ii), so that Fe A(B(c,)). The required function is G=F+1.

Finally, note that for any Fe A,(B(c,), F(x) can be approximated uni-
formly for x € B(c,) by F(x)=F(rx) for r sufficiently close to 1. Next, F{rx) can
be uniformly approximated on the unit ball of ¢, by a finite Taylor series, say

M_oPx) (where P, is a constant). Next, it is well known (see, for example,
[15]) that any k-homogeneous polynomial P, on ¢, can be uniformly approxi-
mated on B(c,) by an k-homogeneous polynomial Q, which is a finite sum of
products of k continuous linear functionals on ¢,, Summarizing, we see that
the original function F can be uniformly approximated on B(c,) by 3*_,0.
Now, since, (e,)—>0 weakly if follows that for each k=1,..,M, Q,e,) —0 as
n—oo. Hence R(F) € ¢, and the proof is complete. m

It would be interesting to determine the best possible estimates in The-
orem 2.2. In [2], we note that in this situation, the best estimate must be strictly
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larger than 1. To see this, suppose that there is F e A=(B(c,)) such that |F| =1
and such that F(e)=1, Fle, )= —1, and F(e)=0 for all j>3. Then the func-
tion f,(z)=F(1,z,0,...) would be in the disc algebra A(A), and f, would attain
its maximum at 0. Hence, f, would be a constant and, in particular,
1 =f,(1)=F(1,1,0,...). Similarly, the function f(z) = F(z,1,0,...) would be con-
stant, and so —1=f,(1)=F(1,1,0,...), a contradiction. In [2], the authors find
necessary and sufficient conditions on the sequence (x,)cc, in order that the
mapping F € A=(B(c,))->(F(x,)) € [ be surjective and satisfy the following con-
dition: For each (a,) €/, there is Fe A~(B(c,)) such that F(x,)=a, for each
neN and |Fl|=sup,ja,). \
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