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Positive solutions of an elliptic equation
with strongly nonlinear lower order terms

FRANCOIS DE THELIN

ABSTRACT. In this paper we study the existence of positive solutions of the equation:
Apu+g(x,u)=0

in the case when the growth of g(x,.) is allowed to be of exponential type. -

INTRODUCTION

Let 1 < p < +oo and let Q be a bounded regular open set in R™. We look
for positive solutions, u € W¢* (Q), of the equation:

(E) A u+gxu=0 in Q

where F(Vu) = IVuP-2 Vu and A, u = div F(Vu).
We are specially interested by the case when the growth of g near
u = + oo is not of polynomial type, for example of exponential type.

In the case when Q is a starshaped domain and gix,u) = lul"-? u with
Y(N—p) > Np, it is well known [7,9,10,12,13] that (E) cannot have positive
solutions ¥ € W/* (Q).

On the other hand, in the case when p=2 and Q:A:{xe R¥p < Ix <
R}with 0 < p < R < + oo, recent papers have shown that (E) has positive
solutions:

— either for g(u) = O(u¥), k > —1, near u= + oo [3];
- or for R — p sufficiently small [2].

In this paper, proving that radially symmetric functions in W» (4) are in
L=(4), we can obtain positive solutions of (E) for any p € 11, +oof, any
R — p > 0, and any growth of g near u = 4 oo.
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In the limit case N = p, Wi» (Q) ¢ L~(Q) but [1] W, (Q) c L,, (Q), where
L, is the Orlicz space associated with the Young function:

M) = exp (1417 — 1)’_;T+ L _

*

Trudinger [15] has shown that for p = 2, any ¢ € 10,2[ and any ¢ > 0,
there are some A > 0 and u € W2 (Q) such that: '

u(x)
Au + Aw exp(lult) = 0 and [ j rexp(dtdx =c¢
Q0

In this paper we extend these results to p#2 and eliminate this A.

The particular case N = p, Q = B(0,R) is interesting because we can
prove that, for any growth of g near u = + oo, (E) can have positive radially
symmetric solutions if R is sufficiently large; we extend to the case p # 2 the
results of Hempel [4,5] and Nehari [6].

As a conclusion, consider the example:

gx8) =18l“exp({l*)withe >p - land g >0

(E) has positive solutions:

-for p> NorQ =4 (Theorem 1)
- forp = Nand ¢ < p* {Theorem 2)
—orp=N, Q= B0OR),R >R,

6 > max(p—1,1)and g > 1 (Theorem 3)

1. BOUNDED SOLUTIONS

Let X be a closed subspace of Wi (Q). g is asumed to be a Caratheodory
function satisfying the following conditions:

(HD) Vxe QV{eR gxt=>0
and Vx € Q, V{ > 0, g(x,{) > 0;

(H2) VK > 0,3M > Qsuch that forany { € R, {| < K, and for any
x €, gx0) < M;

(H3)  There exist some 6, > p — 1 and {, > O such that:
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vl =2 §, € —»%ﬁll is a non decreasing function
0+

where G(x,{) = Cg(x,s) a'S.
0

Remark: It is sufficient to suppose that g satisfies (H1) and (H2) on R,;
it can be easily extended to a function satisfying (H1) and (H2) on R.

Theorem 1:

Let g satisfy the conditions (H1), (H2), (H3) and suppose that:

() X c L=(Q).

(ii) There exist some £,>0, o,>p—1 and c>0 such that:

Vx € Q V{ € [0L] Gx0) < cla!

Then there is at least one positive solution ue Xn C'%(Q) of (E).

The condition (i) is satisfied for X = W} (Q) and any bounded open set
Q in R" in the case when p > N; the following proposition gives an other in-
teresting example.

Proposition 1:

Let 0 <p < R< +oo and Q be an annulus in R":

Q={xeR"p<lxl<R} Let X be the set of radially symmetric func-
tions in Wj» (Q). .

Then, there exist a positive constant C(N,p,p,R) such that:
Vue X, Vx € Q lux)! < CNpp.RI Vul,
Examples:
Let h : R, — R, be a positive non decreasing continuous function and
g(x.§) = §° h(&) where g > p — 1; for instance g(x.{) = {* exp(§{?), 0 >p~ 1,
g > 0; then g satisfies (H1), (H2), (H3) and (ii).

In the case when £2 is an annulus and ¢ > 1, we obtain positive solutions
of
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Au + u h(u) = 0 in Q
without any limiting condition as g(#) = O(u*) when ¥ - +o0o (GARAI-
ZAR [3]), neither R — p small (BANDLE - PELETIER [2]); besides we obtain
analogous results for p # 2 and ¢ > p — 1. On the other hand our conditions
are more restrictive than [2], [3] on the growth of g and on the limit of g(u)
when u - 0.

Proof of Proposition 1
Let u(x) =¢ (I x1); we have

: R
—o(x)=0(R)—0o( x )= 5 ©'(2) dt
I x|

By Holder‘s inequality we get:

R 1p
lu(x) | < ( j 0 |va-'dt)
x|

R e
S t(N- /-1 )

x|

R 1

5 | g(t) P -t df = ——5 Vu(y)Pdy
| x| " lixi<lyI<R

whence the result with:

1 (R 4 L
CN.pp.R)= L (j t ) i ”
N

N-1/ (-1

p

The proof of Theorem 1 needs the following lemmas.

Lemma 1:

For any ue X, let us consider:

Vu(x)rdx —
Q

G(x,u(x)) dx

Jw) = 1
p Q

Suppose that g satisfies (H1), (H2), (H3). Then any sequence (1) < X such
J(u)! < Kand J (u)— 0in X', is bounded in X.
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Proof:

For any ve X, we have:

JWw» = F(Vu). Vv — gl,u)v
Q Q
Q being a bounded set we set:
1
ludll = 0], = ( 5 vur ) »
Q

Suppose that a subsequence denoted by %, be such that lim [lu)l, = +oo;

we get: jdeo
G(.u)
__K 1 1Q ._Kk
llal2 p (7 llaa Iz
u, g(.,u)
-— _<1- L — < &
llogll - llae |2 lNoullg
5 G(.,u)
Q
whence 1im = 11)
e u, g(.,u)
Q

(H3) gives for any > §,: {g(.,0) = (o0,+ 1) G(.,{), whence:

1
G(,u) < C, + u; g(.,u)
5 Q J- 1 (0,0+1) Q J 7
G(..u)
Q
lim < oi—l < 1
Jm 4 u]. g("uj) 0 p

Q
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A contradiction, whence ||ul, is bounded. o

Lemma 2:

If the hypothesis of Theorem I are satisfied, J € C' (X) and satisfies the Pa-
lais - Smale condition.

Proof:

An easy conseqence of Lebesgue’s theorem shows that for u - u
lim g (.#) — (g Wll,. = 0, whence J € C/(X).

Suppose that | J(u) | < Kand J (u) - 0; by lemma 1, g(., u,) is bounded, and
the injection X c Lr belng compact, there exists a subsequence dénoted by w;
which converges to u in strong L*.

So, lim I,,,=0 where

n,m- +co

Im = j [F(Vu,) - F(Vu,)].V(u,—u,)
Q

=) - T W)~ u)+ | [8(u)—8( u ), —u,).

Q

On the other hand we have:

IIVu,.—VumHKc{In,m}—;—{HVunII,';HIVumII‘;} =
where a=min(p,2) (for example see [11]).
Whence u; converges to #.in X; the Palais-Smale condition is satisfied. u
Proof of Theorem 1:

We shall apply Pass-Mountain Lemma [8] to the function J defined in Lem-
ma 1. J satisfies Palais-Smale condition and J(0) = 0.

Let us show that, for [|ull, = r sufficiently small, we have J(x) > a > 0. By
(i) there is some ¢’ > O such that,

Vx € Q u(o)l < ¢l for llull, <—5o-

:

we obtain with (ii):

Gx,u(x)) < du(x)ler+t < o(c)ort |lull o+
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I > —— Il 11 = ¢l )

For || u [l,=r<min [~ c‘ 317] we get J(u) >—2%—= a>0.

Now, let us consider ©#, € X such that:
Vx € Q, ufx) > a, >0 and meas (Q) > 0.
For A sufficiently large, Ao, = {, and by (H3):

j G(.,Aug) = G(,Auy) = P A%o+!
Q

Q,

1

where p =—— G(x,5) u, (x) 1" dx > 0
C000+ 1 Q
'0
We then obtain
lim JAAu,) <lim [—— | u, lI12—P A%+!] = —
A~ +00 A—+00

and there is some v, € X, v, # 0, such that J(v,) = 0.

277

By the Pass-Mountain lemma, there exists some 4, € X, u, # 0, such that

J(,) = 0:

Vv e X FVu,).Vv —

Q

g(.u) v = 0.
Q

By TOLKSDORPF’s regularity results u, € C'Q) [14], and by VAZ-

QUEZ’s maximum principle [16], 4, > 0in Q. O

2. SOLUTIONS IN AN ORLICZ SPACE

Let us recall that a Young function M is an even convex function from R

to R,, such that:

lim-MQ_ _ 0 and lim ﬂ-g@— ~ too.

{0 C {~+o0

The conjugate M* of M is defined by:
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M* (©) = Sup [Cs — M(s)]
selR

The Orlicz space L,(Q) is the set of measurable functions # defined on R
such that there is some A > 0 with

M(%)< + oo,
Q

L,(Q) is a Banach space for the following norm:
MY
E
Q

Let E,(Q) be the closure of D(QQ) in L, ().

lull,= Inf | A>0: <1l

We say that M is superhomogeneous of degree (6 + 1) if there exists some
K > 0 such that [11] :

Ve € R, Vi € [0,1], M(hL) < h°+' M(KT).
Let Q be a bounded regular open set in R".
In the case when N = p, Wi»(Q) ¢ L=(Q), but W(Q) c E,, (Q) [1] where

. . 1 1
Ml (g) = eprCIP -1, 7-}- p* =1

So, we can get the following Theorem.
Theorem 2:

Let g satisfy the conditions (H1), (H2), (H3). Suppose that there exists a
Young function of exponential type M such that:

(i) The imbedding W» , E(Q) is compact;
(i1) M is superhomogeneous of degree 6, + 1 > p;
(iii) There are some ¢, > 0 and K, > 0 such that:

VxeQ, V{eR, z;g(x,c)sc,M(—I‘;(—) ;

(iv) VK > 0, lim gl _ 0, uniformly in x.

{—o0 M’_g__
<]
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Then there is at least one positive solution ue Wi(Q)n C' (Q) of (E).

Example:

Let p = N = 2; gx0) = ¢ exp({®) with 6 > 1,0 < ¢ < 2, and

M) = Ige— (% — 1) withg < r < 2.
r<2gives 1) [1]; C - A 1is superhomogeneous of degree r, whence

(ii); (iii) is easy and g < r gives (iv).

So, the equation:

Au +we’ =0 .

has at least one positive solution u € W}().

In a similar case TRUDINGER [15] proves that for any m> 0, there exist
G(.,u) = m and

Q

Au + A glxu) = 0.

A > 0and ¥ > 0 such that

Our method allows us to eliminate this A.
We obtain the same results for the equation:

Au+we' =0

wherep=N>2,0>p—1,O<q<;2—1—

J being defined in lemma 1, the proof of Theorem 2 needs the following
lemma.
Lemma 3:

If the hypothesis of Theorem 2 are satisfied, J € C' (W,'*(Q)) and satisfies
the Palais Smale condition.

Proof:

Let (1) be a bounded sequence in Wg*(€2).
By (i) there is some K > O such that:
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. U,
Vi, M| —
]] |-
Q.

Let ¢ > 0 be such that M"‘(——i—)meas(Q) < 1 and:

<1

M( 1§< ).

VxeQ VEeR,ig(x Q) < ; +

We obtain:

2 2 K

-

Q Q Q

Let u, converges to u in W{»(Q). For sufficiently small § and for
meas (4) < §, we have:

R
4 ¢

< i)mms(A)+%! M(EJ'I;—“)+%§ M(%) <e.
y y

1
—M*
|

M* [ g(.,uv)c—zg(.,u) ] is then an equi-summable sequence and
lim M [—J—g("“')cjg("“) ] -0
Q
By (ii) M* satisfies the “A,—condition” [11], so lim llg(.») — g(.w)ll,. =
0 ; whence J € C{(W}#(QQ)).

j= o0

Suppose now that V() < K, and J'(u) - 0. By lemma 1, [|5]| ,.» is boun-
ded and, by (i), , converges in E,, (2) ; by relation (1), g(.,u;) converges for

o(L,» E,). So the same proof than for lemma 2 shows that the Palais-Smale
condition is satisfied. O

Proof of Theorem 2;

Let us show that for ||ullyie=r sufficiently small we have J(u) > a > 0.
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By (iii) and (ii), we have

VxeQ, V{eR, Vhe[0,1], Gx0) < ¢ M(—I—E—)g hor+1 M(%%T

By (i)

Vu € W(Q), llully, < cllull |
wh

0

cKr |

Whence for {|ul| =T S—K—’ and h =
wo? cK

Gl < ¢ M(%

Q Q :
The same proof than for Theorem 1 gives ue Wi» (Q), u # 0, solution of

(E). The end of the proof is a consequence of the following lemma. 0.

K,
< ¢, b M(——u——)< ¢, hott = ¢ Jlull 1!
cr w, P
Q

A

Lemma 4:

If all the hypothesis of Theorem 2 are satisfied, u € C'* (Q).

Proof:

This proof is very similar to OTANT’s one [9] (see also [13]). By (iii) there
is some s > 1 such that ug(x,u) € L (Q).

Consider the following sequences:
g, = 2ps* = 2ps /(s—1)

Qi1 = 2(p+ qk)

0 = s*gq.

Multiplying (E) by lul* u, we obtain:

.
p ’ lV Uu p | =
p+qk Q

< llugCwll, Il use |l . < |l ull

u g(.,u) u™
Q

M being of exponential type, W'» () 1, L*** (Q) and there is some K such
that:
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1+qk 4
Viu P)

P+qy

;< K

Q
We then obtain:

O s 128"
lully™™" < e iy

KoL) Ny
p

This formal proof can be made rigorous by using some regularized equa-
tion [13].

Observing that p + g, < 4! 4ps* we get:
|u g™ e (@Ks¥pos gl o |
Let:
E =6 Logll ull
a = 4+
b = Log [c**" (2Ks*)*?+]
r.=b + (k—1) Log a.
We then obtain:

E. <r + 2E

Whence, following OTANI [9], we deduce:

T E,
llull, < lim exp < 400

k= 400 ek

So u € L=(Q2) and by TOLKSDORF’s results u € C'(Q). O

3. APARTICULAR CASE: QIS A BALL

In the particular case when Q is a ball and N = p, we can obtain radially
symmetric solutions of (E), for any growth of g near infinity.

For simplicity we suppose that g does not depend on x ; we assume the
following conditions:
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(H4) ge C(R),g>0andg0) =0;

(HS) gand g are non decreasing on R, ;

@6) lim £ _ ¢

(-0
Theorem 3:

Let N = p =2 and let g satisfy the conditions (H4), (H5), (H6). Then,
there exists R, such that, for R > R, the equation

(E) Au + gu) = 0inQ = BOR)
admits at least one positive radially symmetric solution u € Wj*(Q).
Example:

For any 6 > max(l,p—1) and any g > 1, g({) = | { I exp | { I* satisfies
(H4), (H5), (H6).

Theorem 3 is a consequence of the following proposition. Let us consider
the following system:

vix) = 1 w(x) F"-*w(x)

Dl wew = - - gt

where p* -2
p—1

Submitted to the conditions:

Iim v(x) = m

X~ +00

lim w(x) =0.

X= 400

(L.C)

Proposition 2:

Let p > 2 and let g satisfy the conditions (H4), (H5), (H6). Then, for any
m > 0, (S) + (L.C.) admits one and only one solution (v,w) ; there exists some
a = 8(m) € R such that:

wWa) =0 and v> 0 on Jo, +oo].
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Moreover 8 is continuous on R, and lim 6(m) = — co.
m-0

Proof:

Let us consider the following iterations;
Vo =0and forn e N:

+ oo e
W, (x) = —glv.()ldt
.

+ o0
Voo, (X) = m —j lw, (172w, (D) dr .
X

We have;:

w, (x) =ﬁ§l e > w,=0

vx) = m ——E8U__expl (p*_1)x] < m = v, ()
P(p*—1)

There is some M(m,p) such that:

Vx 2 M(m,p), v(x) > v,(x) and

2
o ogm
w, (x) = 7 glv() dt = —T e

X

By induction we can prove that for any ¢ € N, v,_ is a nondecreasing se-
quence, V, . is a noninncreasing sequence and v,, < v,,,, ; whence for any n
we have eitherv, < v _,orv,, K < v,

n+l? n+l

Suppose that n>2 and v,<v,,, ; we have w,<w,,, and v,,, <V

n+l°

p* < 2and w, > w, whence :

W i@F2 W, () — W, w() < @*=1) w@OF2 [w, () — w, (0]
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We then obtain:

p*-2

expl—(*=2x]  Sup I, ()
te[x,+o0]

OSV;HI (x)—vn+2 (-x) <

—w, ().

On the other hand, by (HS), we get:

0 < W () — wio) <—EE Sup Ty () — v
r te[x,+o0]

Therefore:

Sup v, (x) = v, < cx) Sup 1, (8) — vl
te[x,+o0] te[x, +oo]

And, for x > M, (m,p) = M(m,p), we have:

p*—1
p* 2

g()

ax)= exp[—-(p*—1)x] < 1

By Picard’s theorem we obtain a unique solution (v,w) of (S) + (L.C) for
x = M, (m,p). By classical differential equations theory this solution can be
continued for x < M, (m,p). Since v has increasing gradient, it has a last zero
at a point x = o = 6(m).

Let us set:
+ o0
H(x,m)= 5 Iw(z, m)P"-2w(t,m)dt — m
X

o0H
ox

(a,m) # 0 and by implicit functions theorem 0 is continuous.

For x € ]a, +o0], we have 0 < ¥(x) < m, whence:

+ 00 e’ e-*
w(x) <§ —p—,,—g(m)=7g(m)
X
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+ -1 ~(p*-1
m=[ oo v’(x)a’x<< g(m) ) er >
» p*-1

lim (p*—1) pre-m < lim (—é’i—L’" )""' =0

m—0 m-0\ ™'

whence lim 8 (m) = —co.[]
m-0

Proof of Theorem 3:

By proposition 2, there is some «, such that for any & = —p Log R < a,
(S)+ (L.C.) has one and only one solution such that v(a,m) = 0.
The change of variable x = —p Log r, Wx) = ¢(r) transforms (S) into the
equation:

L {1 r0) 2 1 () }4 7 gl = 0

which is the radial form of the equation (E), with boundary condition
oR) = 0.0

Remark: The deep study of the case p = 2 made by HEMPEL [5] and NE-
HARI [6] shows that there is no hope to find a solution of (E) for any R, if
the growth of g has no bound when «u —» + 0.
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