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On knowledge games

J. M. LASRY, J.M. MOREL AND S. SOLIMINI

ABSTRACT. We give a formalization of the “knowledge games” which allows to study their de-
cidability and convergence as a problem of mathematics. Our approach is based on a metalemma
analogous to those of Von Neumann and Morgenstern at the beginning of Game Theory. We are
led to definitions which characterize the knowledge games as objects in standard set theory. We
then study rigorously the most classical knowledge games and, although we also prove that the
common knowledge in these games may be uncomputable, show their decidability in a simple way.

RESUMEN. Proponemos una formalizacién de los “juegos de saber” que permite el estudio ma-
tematico de su decidabilidad y convergencia. Nuestra construccion se basa en un metalema and-
logo a los que Von Neumann y Morgenstern desarrollaron para fundar la teoria de los juegos.
Los juegos de saber quedan definidos como objetos sencillos en el marco de la teoria de conjun-
tos. Estudiamos luego rigurosamente los juegos de saber mas clasicos y, aunque el “saber comun”
puede ser no calculable, demostramos la decidabilidad de estos juegos con técnicas elementales.
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1. INTRODUCTION

Our aim in these notes is to propose very simple decision procedures for
treating processes where several subjects exchange information in such a way
that reasoning about the knowledge of the other subjects is necessary for ar-
riving at a solution. Classical examples of such processes are given below. The
characteristics of these problems, (or “puzzles”, or “games”) is to require a
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very formal and strict reasoning, but which cannot easily be endowed in clas-
sical set theory because of the very specific hypothesis about the subjects: As
in game theory, one has to suppose that the subjects involved in the processes
are perfectly rational, that they all know the theory of the process or game if
such a theory exists. More precisely, the theory must be common knowledge
among the players. (One says that something is common knowledge among
the players if everyone knows it and if everyone knows that everyone knows
it, and so on).

All these features require a formalization, and in the litterature about the
subject, one can find at least three.directions. A first one (see for instance (ST),
(MDH), (GS)) is to reason informally but rigourously about those processes,
which we shall call “knowledge games”. However, as these games become less
intuitive, as in the case of the “sum game” described below, one feels the need
for a general formulation. This may lead to the logical approach, which has
been extensively and widely studied in recent years. The basic idea, often at-
tributed to Lewis, is to define modal operators of knowledge and to fix their
meaning by appropriated axiomatics. One obtains logical knowledge theories
for which consistency and completeness proofs can be given, as in classical
modal logic, by Kripke semantics. This has led to developments in temporal
logic for the description of discrete time temporal processes (MP, BKP), and
in epistemic logic for the analysis of games and distributed reasoning (H, P,
HM, FHYV, L, FH, CM,...) These modal systems are simple enough to allow
completely formal proofs in some particular games, as the “three wise men
puzzle” (AS). Now, as is well-known, to generate formal proofs in modal
systems is a NP-complete problem. That means (up to now) that logical for-
malization can help for verifying the correctness of some intuitive reasonings,
but gives no efficient way of constructing decision procedures in particular
problems. In fact, as some particular problem is treated, like byzantine agree-
ment, one needs some ad hoc models coming from graph theory for finding
mathematical impossibility proofs (FLM).

A new difficulty arises when the knowledge of the “players” has to contain
a significant part of mathematics, as in the case of the “sum games” described
below: ones wishes to have simple methods for dealing with these problems
as set theory problems. In other terms, one seeks for models for these prob-
lems which endow them into classical mathematics. This can be done in the
spirit of classical game theory: game theories always begin by metalemmas
about the theory, which allow a reduction to set theory. The first example of
such a metalemma is due to Von Neumann and Morgenstern in the study of
the two players game with zero sum: it asserts that if there exists a rational
theory for this game, and if this theory is common knowledge to both players,
then the game matrix must verify the relation:

min; max; a(i,j) = max; min, a(i,j).
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After giving a formal definition of knowledge games, we shall obtain in part
2 such a metalemma in the particular case of these games. This lemma asserts
that at each step of a knowledge game, the “solutions that player i cannot ex-
clude a priori” is a set which can easily be computed recursively from the in-
itial data. We deduce that every finite knowledge game is decidable and ob-
tain a necessary and sufficient condition in order that a game “converges”,
that is, finishes after a finite number of steps. Note that our formalization in
the concrete case of knowledge games is very close to those of Aumann(A)
and Tan and Werlang (TW). (These last authors have proposed a bayesian ap-
proach to Aumann‘s common knowledge notion). We do not need to know
the common knowledge at each step in order to compute each player‘s knowl-
edge. This is fortunate, since computing the solutions “not excluded in the com-
mon knowledge” requires an infinite recursion at each step. What can be fi-
nitely computed is a greater set, which is interpreted by Séré and Torlai (ST) as
follows: it is the set of all solutions not excluded by an extra player, an “ob-
server”, whose only information would be the negative answers of the players.
We shall see in a simple example that the set of solutions not excluded by the
observer can be much greater than the common knowledge. However,we prove
in our metalemma 1 that this set S,, extremely simple to compute at each
step k, is enough to determine the zero level knowledge of each player, that is
the set of the solutions which he cannot exclude.

In part 3, we apply the theory to the games described in the introduction.
We prove that the sum games are convergent if the number of players is
greater than or equal to the number of sums. We prove the general decidabi-
lity of these games and give a complete study of the case of two players and
three sums. We now give a brief description of the games which will be dis-
cussed here.

The disk game: n players 1,2,...,n are given a coloured disk which can be

white or black. Since the disk of each player is placed behind him, he cannot

~ see it, but he can observe the other ones disks. It has been announced to the

players that the number of black disks cannot exceed n-1. Then the players

are asked (one by one, circularly or all together repeatedly) wether they are

able to deduce the colour of their disk. The game finishes as some of the
players answers positively. (See Lasry (La)).

Dirty children puzzle. An equivalent version of the previous game is the
so called dirty children puzzle, whose description we take from Parikh [P]:
“Suppose there are n children, some of whom have a dirty forehead. Each
child can see everyone else's forehead, but not his own. A teacher makes the
announcement “one of you has a dirty forehead”. Then, as in the preceding
game, the children are asked repeatedly: “is your forehead dirty?” The ques-
tion is to know which ones of the childrens will be able to answer the question
and at which time.
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Cheating wifes puzzle. A variant of the preceding “games” is the cheating
wives puzzle (Gamow and Stern (GS)). Suppose there is a village, in which the
population is composed of # men and their respective wives. A very strict law
oblies every husband which can deduce his wife‘s infidelity to kill her in the
subsequent night. Now, the fact that any particular husband is cheated by his
wife is perfectly known to all the other husbands. However, no wife is mur-
dered until a missionary arrives to the village. Since he knows the many infi-
delities in the village, he thinks he has to speak against that. But wishing to
avoid any murder, he only says publicly that there are some unfaithful wife
in the village, fact which is perfectly known to all the assistants. However,
after some days, all the cheating wives are murdered.

Sum game: This game seems to be due to David Gale and John C. Con-
way (G). We found their description in Lasry (La). The # players 1,2.....n are
given n positive real numbers a,, a,,..., a,. Each of the players knows the num-
bers of the other ones, but ignores his own. Moreover, it is common knowl-
edge among the players that the sum a, + @, + ... + a, is equal to one of k
given numbers s, ,,...,5,. As in the preceding games, the players are asked in
a fixed circular order wether they are able to deduce their own number. The
game finishes as some of the players is able to answer “yes”.

2. GENERAL THEORY OF KNOWLEDGE GAMES

In the following, we shall distinguish two kinds of definitions and results:
those which correspond to intuitive views on the knowledges games and those
which belong to the formal theory of these games. The first ones we shall call
metadefinitions and metalemmas. They are essential in order to prove that
the formal theory is well adapted to its intuitive aims.

Metadefinition 1. 4 “knowledge game” G is given by G = (n, (1), E, S)
where n is an entire number, I, is a sequence of subsets of I ={1,2,...,n} such
that for any i in I, there exists infinitely many k such that i is in I,. E is a given
set and S a subset of E".

Of course, n represents the number of “players”, each i in I represents a
player, and I, is the set of the players who are asked at time k. E is the set of
the values which can be a priori attributed to each player (colours, numbers,
dirty forehead or not, etc...). S < E" is the set of all the attributions of values
to the players which are effectively allowed by the rules of the game. So the
generic knowledge game proceeds as follows.

At time t=0, a value g, belonging to E is given to each player i, with the
condition that a=(a,,a,,...,a,) must belong to S. Every player knows all the
other player’s values, but ignores his own. At time t=k(k=1,2, ...), all the
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players in I, are simultaneously asked wether they are able to deduce their
own value. The game stops as some player answers positively. Of course, the
rules of the game, that is essentially the description of G, are assumed to be
common knowledge among the players. Since each player is assumed to
answer before the other ones, his answer becomes also immediately com-
mon knowledge.

Metadefinition 2. 4 knowledge game G = (n, (1), , E, S) is convergent if
for every initial attribution of values a€ S, there exists a time k such that some
player of 1, is able to deduce his own value.

Notations

In what follows, we denote by a = (a,,a,,...,a,) the values effectively given
to the players at time ¢=1, and x represents the (for the players) unknown sol-
ution. This is just a commodity of notation: for instance, a player is able to
answer the question of whether he knows the solution if and only if “he knows
that x=a”. Similary, by “player i knows that x#b”, we mean that player i
knows that the solution is not b. To say that some proposition P is common
knowledge among the players at time =k, we shall write: CK, (P). Denote
E(y)={ze E"Vj#i, y,=z}. For instance player i can observe E(a), which
means that he knows that x,=g; for each j#i. If F c E, we denote similarly
by Ei(F) the set

E(F) =VUFE‘(J?)-

We define inductively the following sets, which will be crucial in the proofs
of decidability and convergence of the knowledge games.

S$,=S

Ti={yin S, Card S,NE(y)=1}={yin S, S,~E)={y}}
=71}

Sk+1 = k\ Tk'

We now state the main lemma of this work. Its proof is based on intuitive
evidence and it has to be considered as a “metalemma”: we mean that it might
be true in any rational theory of decision for the “knowledge games” defined
above. Moreover, since we use in it the informal notion of “possibilities which
cannot be excluded by a player”, its role in a formal theory would be of
course that of a simple name given to the set S. N Ei(a).

Metalemma 1. Assume that the game G with initial condition “a” has not
finished before t=k. Then for any i in I, S.~E(a) is exactly the set of the x in
E" for which i does not know that x # a. In other words, S,nE(a) is the set of
possibilities for the initial value that player i cannot exclude at time k (It also
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can be considered as the minimal set W, for which player i knows at time k
that a is in W,). Moreover, T, is the set of all initial values a for which the
game finishes at time k.

Proof. Obvious for k=1, because everything that player / knows is that
the solution x is in $=.S, and that x belongs to E¥(a). Thus no element of
SN E{(a) can be excluded at this time by player i. Assume the lemma proved
at time =k for every initial condition a, and therefore common knowledge
among the players. It is clear that a player i can deduce at time t = k what is
a if and only if the set of non excluded values for him is of cardinality 1. Now,
by the induction hypothesis, this i is equivalent to:

Card S.NEi(a)=1,

which is equivalent to a e T}. Therefore, the fact that the game G does not
stop at time k is equivalent to:

ag T,=\TL

i€l

Now the points x not excluded by player i at time k+ 1 are the points not
excluded at time k, minus those which are newly excluded, that is those con-
tained in 7,. Thus the points non excluded by player / at time k+ 1 in the play

“ .

with initial condition “a” are exactly:
Sk M Ei(a)\ Tk= (Sk\ Tk) N Ei(a) = Sk+l M Ei(a)-

Remark: Why S, is not the “common knowledge”. Since the precedmg
lemma is common knowledge among the players, the fact that x is in S, at
time k (if the game did not end before) must be common knowledge among
the playes. Denote by S, the minimal set such that CK,(x € S}). Then we can
assert that S, S,. Are both sets equal? The answer is generally negative and
one can give examples with finite games. Let us give one in the case of the
sum game with two players and two sums: assume that both sums are rational
numbers and that the numbers g, given to the players are irrational. Then at
the first step of the game each player deduces immediately that his own num-
ber is irrational, and therefore that the other player is in the same situation of
seeing an irrationial number. Thus the fact that a is made of irrationals is
clearly common knowledge among the players and therefore the common
knowledge at time k=1 is made of rational numbers. Now, this is not the case
for S,, which clearly contains intervals.

A consequence of Metalemma 1 is that we can now give a precise sense to
the notions of decidability and convergence of a knowledge game. (In the fol-
lowing definition we use the notion of algorithm in a formal way and accord-
ing (e.g.) to the theory of Alan Turing).
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Definition 3. 4 game G = (n, (1), E, S) is decidable if there is an explicit
algorithm determining for every a in S, every i in I and for every k such that
1, contains i, whether S, E(a) is of cardinality 1 and, if that occurs, giving this
unique element. G is convergent if it verifies one of the following equivalent
properties:

(@) S= Uka
(b) ﬂkSFQ

By metalemma 1, T, is the set of all initial values “a” for which the game
finishes at time k. Thus, intuitively, the game finishes for every initial datum
if and only if S=|J,T,. The formal definition 3 corresponds to a formal trans-
lation of the metadefinition 2. In the following we shall always use the term
“convergent” in the formal way.

Note that if the set E is finite and S can be given by the enumeration of
its elements, one can obviously make an algorithm for giving explicitely the
sets T, and S,. So we obtain a first generic result of decidability.

Theorem 1. Every finite knowledge game is decidable.

We now wish to obtain some clear and useful criteria of convergence for
the knowledge games. We begin with two simple necessary conditions:

We shall say that the game G’ is a subgame of the game G if $<S and
both games differ at most by the fact that S# 5. It is intuitively evident that
if G is convergent, so must every stronger game, and we shall prove it now:

Proposition 1. If G’ is a subgame of G, and if G is convergent, thensois G

Proof. We show by induction that S, S,: it is true if k=1. Assume it is
true at time k and let xe T,nS,. Thus Card (S,nE{(x))=1 for some i in I,
and Card (S, " E(x)) > 1. Since S’,c S,, this implies Card (S, E(x))=1. Thus
we obtain (T,nS;)c T, and therefore S’m=S;\T;<:S;\(TkmS;)=S;\ T, C
Sk\ Tk=Sk+l'

Assume that a knowledge game verifies the following property: there is no
initial condition a for which some player i is able to find his own value g,
after having seen the other a, That means that 7,=(, and since the structure
of S is common knowledge among the players, it is also common knowledge
that every player will answer “I don’t know” at the first time where he is
asked. Thus no progress (in knowledge, knowledge about knowledge and so on)
is made after each player has been asked, and it is intuitive that the game will
remain stable and nether end. In our formalism, the proof of this property is
trivial: if T,= &, one gets S,=S, and by induction S .=3S,. Thus the preceding
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remark reduces to the fact that if a game is convergent, one has T,#%. Ap-
plying this property and proposition 1 to every subgame G’ of G, we get the
necessary condition: :

Proposition 2. 4 game is convergent only if it verifies the following property:
(c) For every S #S’cS there exists icl and xe S’ such that
Card (S’nE(x))=1.

The condition (c) is in fact “almost sufficient” in order that a game is con-
vergent. As an example, let us consider the case where the game has some fi-
niteness property.

Theorem 2. Assume that S is finite (or more generally that for everyiinl
and y in S, Card(E(y)nS)<oo). Then the game G is convergent if and only if
property (c) is verified.

Proof. The necessary condition is proved in proposition 2. Conversely, as-
sume that the game verifies property (c). Assume by contradiction that the
game is not convergent. Then S'= (S, is nonempty. Then by (c) there exists
iin I and y in S such that Card (S’ E{(y))=1. The finite sets S.NE{(y) for-
ming a nonincreasing sequence, one still has Card (SiNE'(y))=1 for some k.
Thus y is in the first successive T, such that i belongs to 7, which is a
contradiction.

Remark. The last part of the proof shows that one can check (c) by con-
sidering only the case S'= (NS. This will be convenient in the applications.

3. APPLICATIONS TO PARTICULAR KNOWLEDGE GAMES

3.1. Decidability. We begin with some considerations about the decid-
ability of the knowledge games described in the introduction. By using The-
orem I, one sees immediately that these games, including the sum game if the
data are entire numbers, are decidable. Let us now briefly explain why the
general sum game is also decidable; being assumed of course that the initial
data, and the sums are computable numbers (to simplify, assume they are ra-
tional numbers). We prove by induction on k that if S, 1s computable, so is
S..1- More precisely, assume that S, is a finite union of simplexes, each being
defined e.g. by a finite set of explicit inequalities. Then S, 1s finite union of
simplexes obtained by:

1) Projecting all the simplexes of S, on the hyperplanes {x,=0} which is
achieved by removing the terms in x in the inequalities defining the simplexes.

2) Making all possible intersections between the projected simplexes. Each
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one of these projections is also a simplex and in order to intersect two sim-
plexes, it is enough to realise the union of their sets of inequalities.

3) S\T, is then the union of all possible intersections between the sim-
plexes of S, and the cylindric simplexes whose basis are the simplexes of
{x,=0} obtained in 2).

4) One obtains S,\7, as the intersection of the S\ 7}/ for i in I,. Deciding
which simplexes are empty can be achieved by some entire linear program-
ming algorithm.

3.2. Game convergence

We begin with a useful criterion for deciding wether a given game G is
convergent.

Proposition 3. Let G=(n, (I), E.S) be a knowledge game. Assume that
E is contained in R and that S is a compact subset of R", then a sufficient con-
dition in order to obtain property (c) for closed S* is that there do not exist x,
y in S with:

1) x=(XpXp.X,), V=1 Vpeor V), and x>y, for every i=12,..,n
2) fori=12,...n—1 one has x'=(X;... X, Vi, p--»Va) €S.

Proof. Let & #S’c S and assume S’ be closed: we shall construct x in S’
such that Card (S’nEi(x))= 1 for some i in I. Define recursively an element

y=(yl7y2""’yn) by:
yo=min {J (X, X Y) €S’ for some (X,,X; 5u.eXy 1)}

y._,=min {} (X, X;,....,¥ ,) € S’ for some (5 15 Xg5eeer X2}

y, =min {y1 Yy )ES)

Set X°=(,,Vp--oVa)- If E(x%) NS° contains no other element than x° we
have finished. If not, choose x,>y, such that X'=(x,}....,) €S" If now
F(x')nS’ contains no other element than X', we have again finished. If not
we can find X2= (X, Xy, V5., Vo) €S’ With x,>y,. We iterate this process. Now,
by assumption, it must end before arriving to define x», and therefore pro-
vides some x' such that Card (E"*'(x') n S)=1.

Remark. Of course the previous statement holds for an arbitrary space £
endowed whith an order relation which makes every closed set have a
minimum.
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Corollary 1. Every sum game for which the number m of given sums does
not exceeds the number n of players is convergent.

Remark. We have stated this result with informal terms corresponding to
the metadefinition 2, but we shall give it a rigorous sense by defining S for the
sum games and proving the convergence in the formal sense of definition 3.

Proof. Define S by: x=(x,,x,,...,x,) € S if and only if it verifies

n
x20,i=12,.,n; 3 x=s; forsome;in 1,2,..,m

i=

S is obviously compact and we can prove by induction that so are the S,.
Indeed, assume by induction that S, is compact. Then the functions defined
on S by x—Card (E' (x)n.S,) are clearly upper semi-continuous since two dis-
tinct elements in E(x).S, have a distance bigger or equal than Min,, Is,—s].
Thus the set of all x in S, such that Card (Ei(x)nS,)=1 is open in S. We ob-
tain that T, is open in S and therefore S, ,, is also compact. We now observe
that the finiteness assumption of Theorem 2 is easily checked and we prove
that the criterion (c) for the convergence of the game is verified. The remark
under Theorem 2 allows us to restrict ourselves to the case that $’=(),S, and
therefore in particular that S” is closed. Hence we are in a position to apply
proposition 3 and we can assume by contradiction that there exists a se-
quence x’,....x',....x" in S’ with

X'=(X peesXs iy 15e-o)V,) @nd x, <y, for i=1,2,....n

Denote by s(x) the sum of the coordinates of x. Then s(x°) <s(x!) ... <s(x"),
but these numbers must belong to {s,,5,,...,5,}, wWhich is impossible if m<n.

Remark. The preceding result can be generalized in the following way: In
the situation of Proposition 3, the game is convergent provided S has no sub-
set with more than » elements which is totally ordered by the product or-
dering in E*,

Analysis of the dirty children game and of the disk game. First notice that
these puzzles are equivalent to a knowledge game, where E= {O, 1} and the set
S is defined by the fact that its elements (x,,x,,...,x,) € E* verify the relation:

x,€{0,1,...n—1}

1

™ =

i

To see that, it is enough, for the disk game, to set x,=1 if the disk of i is
black and x;=0 otherwise. For the dirty children game, we set x,= O if the
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child is dirty and x,=1 otherwise. So both games are identical and equivalent
to a sum game with the special restriction on initial data that x,€{0, 1}. As a
consequence of proposition 1 we obtain immediately the convergence of the
disk and dirty children games. Now, the intuitive theory of these games ex-
plained in (La) provides not only this convergence, but aiso predicts which
players find out their colour, and at which time. If our approach is valid, it
must give the same result. '

Let us compute the sets T}, S,: we have seen that =S, can be defined as:
S={(X,, X X) € {0,100, + Xy + .o+ X, SH— 1],

To simplify the notations we shall assume that I, =1, but what follows can
be easily adapted to other cases. To evaluate T, it is enough to remark that
if X,+X,+ ...+X,<n—1, one obtains a new element of S, if one changes the
value of an arbitrary x. Conversely, if x,+X,+...+X,=n—1, there is some i
such that x,=0 and this coordinate cannot be changed in S, Thus
x=(X,Xy...,X,) is in T;. We obtain that:

T,={xe{0,1}"x,+x,+..+Xx,=n—1} and therefore:
S,={xe{0,1}x,+x,+...+x,<n—2}

Similary, one sees that T; is the set of all x in S, whose i—th coordinate
is zero and which verify x, +x,+ x,=n—2. Hence:

T,={xe{0,1}x,+X,+...+X,=n—2},
and by an obvious iteration:
S,={xe{0,1}x +x,+...+x,<n—kj,
T,={xe{0,1}x +x,+...+x,=n—k|.

Recall that the strategy of the player i is to compute its set of nonexcluded
values S,;=S,NEi(a), the game finishing as some of the players has a set of
nonexcluded values of cardinality 1. Assume player i sees n—r— 1 black disks.
Then Ei(a) contains exactly two elements, whose sums are n—r and n—r—1.
Since S, =S/\T,, one sees that S, =S, for every k <r, and S,, ' is of cardi-
nality 1. One concludes easily that if n—r— 1 black disks have been given, the
play finished at time r+ 1, as all white players conclude together that they are
white.

Analysis of the cheating wives puzzle. Set x,=1 if the husband i is not
cheated, x,=0 otherwise. Then the declaration of the missionary is equivalent
to the fact that:
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> xe{0,1, .. ,n—1}.
i=1

Thus the only difference whith the disk or dirty children game is that each
morning, as some husband has not killed the wife, this fact does not mean
that he cannot decide how is his wive‘s behaviour, but only that he is not sure
that she is unfaithful. Thus the cheating wifes puzzle does not a priori belongs
to the class of knowledge games defined in section 2. However, the analysis
of the previous game shows that only a cheated husband can end the game.
Therefore the fact that a wife is not killed is a posteriori equivalent to the in-
formation that her husband cannot decide whether she is unfaithful or not.

The fact that the disk game is always ended by some white player can be
expressed by the following fixed point property:

Proposition 4. Let f/E—E and define for each i in I the function f; E"—E"
by (f(x)=x, if j#i and (f(x)),=Ax) if j=i. Assume f; sends S into S. Then
player i can end the game only if fa) = a.

Indeed, one proves easily by induction that AS,)c S,. To apply the prop-
osition to the disk game, it is enough to set flblack)=white and fwhite)=
white.

3.3. Further analysis of the sum games

We have seen in 3.1 that the sum games (with computable data) are al-
ways decidable. In the well posed cases, namely when the number m of sums
is not greater that the number » of players, we know that the sum game is con-
vergent. If m > n, the situation is much more complex, the computation of the
T, being related in many aspects to ergodic theory. We shall begin with some
general convergence and divergence results:

Proposition 4. Let n>2, m>n and assume s, ,>(n/n—1)s,. Let, for sim-
plicity, I,=1 for every k. Then the sum game is convergent.

Proof. One shows by induction that {a,3.a,=s,}c T,_,,,. Indeed, if k=m,
oneclearly hasae T} if 3, a,>s,_,. Hence a¢ T, implies 3; 3, ,; a,<ns,_,, that
is Sa,<(n/m—1)s, <s,. Thus{a, Sa,=s,}c T,. The other steps are similar,
and we obtain that S, =¢.

Proposition 5. If m=n+ 1, one can find, s,, ..., s,,, such that the associated
game is convergent.

Proof. Takes,—s,= ... =s,—S5,_,=d>0. Then the hypercube S’={s,, 5, + d}
x {0, d}>-! is enclosed in S and therefore the necessary condition of conver-
gence (¢) in proposition 2 is not fulfilled.
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A complete analysis of the sum game in the case m=3, n=2

Proposition 6. Assume the number n of players is 2 and the number m of
sums is 3. Then the sum game associated with the sums s,<s,<s, converges if
and only if the following condition is verified:

(d) There exist p and q in Z such that p(s,—s,)+q(s;—s;)€]s, $;—s)

Proof. We proceed in several steps.

Step 1: Preliminary remarks. One sees easily that T,={(a, a,)) in (R*)
a,>s, or a,>5,}, that consequently S,=Sn[0,5,}}, T,={(a,, @), a,+a,=s, and
s,<a,<s,—5,}. Thus if 5,> s,—s,, T,=¢ and therefore S, =S, and the game
is not convergent. In this case, since property (d) is not verified, the proposi-
tion 6 is true. So we may assume that s, <s,—s,. A peculiarity of the game is
that for any a®°=(a%, a%) in S, \ T, there is exactly one element of S,, a~' such
that a-' =a¢ and one element a' such that a} =aj. Hence to any element a° of
s, one can associate a unique sequence (a¥),. such that K= Z ifae (S, and
K=[p,g)cZ if min (Ip,lgh=k is in T,_,. Moreover, one clearly has for any &,
a<'=a* or ay'=a4 and | @5 '—akl+ la'—ak | € {8,—$, 5,—5,}and a* +a%=s,
if and only if a4+ a¥%'=s, or s, We shall call the sequence (a*) “d-sequence
associated whith a°”. A d-sequence is infinite on both sides if and only if its
elements are in $'=,S,.

Step 2: If the game converges, property (d) is true. Indeed, if the game is
convergent, a°=(0,s,) is in some 7T}, and there exists a sequence a* of the pre-
ceding type with a°=(0,s,) and a'-?€ T,. Therefore one obtains

-2
kzl (@4—a")=ai’e Isy, 8,—5[

and since la — a5 €{0,s,—s,, 5,—s5,} for any k, we obtain:
p(s,— )+ q(s,—s,) €1s,, $;—s,[ for some p and ¢ in Z.

Step 3: If the game does not converge, (that is S’=(,S, =), then (0, s,) is
in S’. Indeed, we know that S’ is closed. Let a® verifying a°,=Min {a,, ac S’}
and consider its associated sequence (a,),.,. Since the sequence (g,) is infinite,
there are elements’in (a,) such that % +a4=s, Then a°, <5, and since s, <s,—S5,
we may choose a° (see the remarks of Step 1) such that %+ a%=s,, @ <a* and
a,<a% for any k in Z. Setting b*=(a% —a’, a’+aY), we obtain a new infinite
d-sequence in S,, associated with 4°=(0,s,).

Step 4: b= (0,s,) is in $"=(,S, only if there is no (p,q) in Z* such that
(s, —s)+4q(s;—s,) € Is,, 5,—5,[. Indeed, assume that the least relation is true
for some (p,q) in Z2. We shall use the following lemma:
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Lemma. Let r, s, t in R with r+t<s and assume that pr+ qt € [0,s] for some
(.q) in Z°. Then there exists a sequence (D,, q,),<i<; in Z? such that (p, q,)=
(0,0)lp) T 1pl, 1g) T4\, Ip,—p_)+1g,—g,_)=1 and pr+g2<[0, s].

The proof is straightforward by induction on Ipi + lgl. Apply this lemma to
r=s,—s,, t=5,—5,5=s, and set

b= (pk(sz - 51) + qk(SS - Sz)s S, _pk(sz - sl) + qk(s3 - sz))

b2k+ '= (pk+ l(s2 - sl) + L/ 1(53 - Sz)a $y— pk(sz - Sl) + qk(s3 - 52))-

The d-sequence (b,)y<< verifies 5= (0, s,) and »¥e T,. Thus &° is not in
S =Se
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