REVISTA MATEMATICA de la
Universidad Complutense de Madrid
Volumen 2, nimeros 2 y 3; 1989.

Self-reducibility structures and solutions of
NP problems t

JOSE L. BALCAZAR

ABSTRACT: Using polynomial time self-reducibility structures, we characterize cer-
tain “helping” notions, show how the characterization provides the main tool for the
proof of known relationships between decisional and functional NP-complete prob-
lems, and extend this relationships to the case of optimization NP-complete problems.

1. INTRODUCTION

A central aspect of Computational Complexity Theory consists of attempt-
ing to reach a better understanding of the mathematical phenomena that might
cause the widely observed fact that some important problems are algorithmi-
cally difficult. Since in many cases there is no mathematical proof of this hard-
ness, and evidence for that difficulty is based simply in the failure to design
feasible algorithms to solve these problems, one of the lines of research tries
to make apparent the underlying mathematical structures characterizing the
relationships either between the instances of a given problem or between the
degrees of unfeasibility of the problems themselves.

Among the structural notions that are defined among instances of a par-
ticular problem, thus providing an internal structure on the corresponding set,
a very important one is the concept of “self-reducible set”, which has been
used by several authors so far. Its naturalness is quite easy to argue, since a
self-reducible set is one for which a recursive program can be designed with-
out resorting to additional parameters. Of course, the correctness of the recur-
sive program relies on a well-founded set guaranteeing termination and allow-

+ These results were announced at Symposium on Theoretical Aspects of Computer Science,
Passau, 1987. This work was partially supported by CIRIT.

1980 Mathematics Subject Classification (1985 revision): 68Q15, 68Q05, 03D13.
ACM Classification: F.1.3
Editorial de la Universidad Complutense. Madrid. 1989.

176 José L. Balcazar

ing an inductive verification argument. From the point of view of the
amount of resources required to run the program, the depth of the recursion
plays a crucial role; thus, bounds will be imposed on the length of the descend-
ing chains in the well-founded set (see the definitions below). It is natural to
study the complexity-theoretic aspects of a concept so clearly related to basic
constructions of Computer Science.

To present this concept in an adequate way, I use oracle Turing machines,
in which oracle calls are identified to the calls to the recursive subroutine; this
is achieved by analyzing the behavior of the oracle Turing machine when the
oracle set is the accepted set itself, and requiring that the queries be smaller
than the input in the corresponding well-founded set to ensure termination.

Important contributions to Complexity Theory are based on the existence
of self-reducible complete sets for the most important complexity classes; see
[1] and the references there. Other contributions that are relevant to the pre-
sent paper appear in [8] and [9], where Schnorr uses two kinds of self-
reducibility to study the relationship between the decisional and functional
versions of NP-complete problems. More precisely, he determines the com-
plexity of the polynomial time Turing degree of the functional version of cer-
tain NP-complete problems, by showing that it coincides with the degree of
the decisional problem: both are interrelated by polynomial time Turing re-
ductions. A generalization of this result to all NP-complete sets appears in [3],
which I extend to the case of optimization problems. I relate the structural as-
pects of the proof to another concept recently appeared in the literature, by
showing how a technical notion present in the proof characterizes precisely a
class of sets introduced by Ko [5]: the “self-1-helpers”. Let us explain briefly
this notion.

Intuitively, a set A “1-helps” another set B if B is Turing reducible to 4 in
polynomial time, and moreover the machine does not “rely too much” on A.
If another oracle is used which tries to lead to incorrectly accepting an input,
the reduction procedure detects this fact and recovers from the error, ob-
taining always a correct answer; the price to be paid is a longer (e.g. exponent-
ial) running time. A set 4 “helps” a set B if such a situation holds, in which
no errors are made at all: neither accepting nor rejecting an input; in fact, this
“two sided” notion was studied first in [10], where helping was introduced. A
“self-1-helper” is a set that 1-helps itself. A recent work of Ko [5] relates these
forms of “helping’ to self-reducible sets. He asks for structural character-
izations of the classes studied. Here I show that the techniques used to
strengthen the results of Schnorr rely on a clear property which characterizes
exactly the “self-1-helpers” of [5]. In [3], this property is called “functional self-
reducibility”; for reasons that will become apparent in the text, I prefer to
name this property “having self-computable witnesses”.

Self-reducibility structures and solutions of NP problems 177

I present in the next section some definitons and preliminaries. Section 3
presents the definition of self-computable witnesses, the characterization, and
the use of the notion in the proof of [3]. Finally, in section 4 these results are
extended to the case of optimization problems, using again the same tech-
niques.

2. DEFINITIONS AND BASIC PROPERTIES

All the sets here consist of words over the alphabet I'={0,1}. I denote by
A the empty word. Complexity classes are defined in the usual way: among
them, P, NP, PSPACE, and the classes of the polynomial time hierarchy. For
definitions see [2] and [11]. PF is the class of all functions computable in poly-
nomial time. PF(A) is the relativization of PF to the oracle 4. SAT denotes
the well-known NP-complete problem of deciding the satisfiability of boolean
formulas, and QBF the PSPACE-complete problem of deciding the truth of
quantified boolean formulas. Departing from the usual convention, the NP-
complete sets here are meant to be complete under polynomial time Turing
reductions.

Among the several definitions of polynomial time self-reducibility pro-
posed in the literature, the most general one is proposed in [7]. The results
here do require such a general notion, which is invariant under polynomial
time isomorphism, and allows arbitrary partial orders for guaranteeing termi-
nation of self-reduction processes if decreasing chains are short enough.
Formally:

1. Definition. A set A is polynomial time self-reducible if and only if there is
a polynomial time deterministic oracle Turing machine such that A = L(M,4),
and on each input x every word queried to the oracle is smaller than x in a par-
tial order (depending on M, but not on x) satisfving:
— If x is smaller than y then | x |<p(y|) for some polynomial p.
— It is decidable in polynomial time whether x is smaller than y.
— Every decreasing chain is bounded in length by a polynomial of the
length of its maximum element.

I will omit the words “polynomial time”, which are to be assumed in every
use made of any of these definitions. It can be seen that this definition cap-
tures the essential properties of the self-reducible sets (mainly, the NP-com-
plete, co-NP-complete, and PSPACE-complete sets). See [1] and the refer-
ences there.

Some variants of the notion of self-reducibility are obtained by imposing
certain restrictions on the self-reducing machine. I define here the only one I
will use, the disjunctive self-reduciblity:

178 José L. Balcazar

2. Definition. The set A is disjunctively self-reducible, or d-self-reducible, if
it is self-reducible and the oracle machine M witnessing this fact accepts its in-
put whenever the oracle answers positively to any of the queries.

In [4], other forms of self-reducibility are presented (conjuntive, positive
truthtable...) and some of their properties are studied. The following property
is argued in this reference and also in [12], where d-self-reducibility is studied
in depth.

3. Proposition. If A is d-self-reducible then A c NP,

3. FUNCTIONAL NP-COMPLETE PROBLEMS

Sets in NP are usually interpreted as decision problems. Functional ver-
sions of these problems are interesting too, and can be defined for every set
in NP as follows. Consider any NP set 4. By the quantifier characterization of
NP, it follows that there is a set B in P and a polynomial p such that

xed=y (y| <p(x|) ({(xy) €B) *)

The word y is called a “witness” of the fact that x is in 4. Intuitively, each
such y is in a sense a “solution” of the problem A for input x, if the set B in
P is chosen appropriately. For example, consider for B sets like

{{x,y>| x encodes a boolean formula and y encodes a satisfying assignment
for it}

or
{{xy>|x encodes a graph and y encodes a hamiltonian circuit for it}

In this way the decisional problems SAT and Hamiltonian Circuit are de-
fined; then it is clear that a witness y encodes precisely the solution to the func-
tional problem of finding a satisfying assignment for a formula, if one exists,
or finding a hamiltonian circuit for a graph if one exists, respectively.

Consider the functional version of a generic NP set A defined as in (*),
which consist of, given input x, computing a solution y if such a solution exists;
i.e. compute a y such that (x,y > € B. Observe, first, that this is not necess-
arily a single valued partial function, and second, that this problem depends
on the set B in P from which A4 is defined by existential quantification, and
on the polynomial p. I also refer to this problem as “computing witnesses”. A
discussion on the particular cases in which the function is defined also out of
the set, or is single-valued, appears in [13].

Self-reducibility structures and solutions of NP problems 179

Fix a B in P and a polynomial p. Let 4 be the NP set for which (*) holds.
I define next the functional solutions for the set A. This notion of functional
solution corresponds to any partial function f such that the domain of fis 4,
| Ax)|<p (]| x|), and for every xe 4, {x, fix)> € B. Thus, both 4 and the set
of functional solutions are uniquely defined by B and p.

4. Definition. The set funct-sols(B,p) is the set
1 vx[ifdy (v | <p(x]) ({xy) €B)then
) is defined, | fx)| <p(| x), and {xfx)> € B}l

I want to compare sets in the following terms: given two decisional prob-
lems, I study the case in which one of them contains enough information not
only to decide the other, but even to construct a solution for it. The main re-
sult in this section is a characterization of the self-1-helping property studied
by Ko [5].

5. Definition. Given a set A in NP, say that C provides witnesses for A if and
only if there is a set B in P and a polynomial p such that (*) holds, and for
which funct-sols(B,p)~PF (C)+@. If A provides witnesses Sor itself then I say
that it has self-computable witnesses.

Thus, for a set having self-computable witnesses, the functional problem
can be reduced to the decision problem, in the sense that solutions can be com-
puted with an oracle for the set. To put it in another way, given the set 4 as
an “untrustworthy” oracle, and given an input x which is answered positively
by A, the oracle allows us to produce a polynomial time checkable proof that
his answer was correct. It should be observed that the notion of a set having
self-computable witnesses was already proposed, under the name of “func-
tional self-reducibility”, in an unpublished work by Borodin and Demers [3];
I consider more appropriate the naming convention used here. I prove below
one of the results of their article.

As part of his work in the study of the notion of “helping”, Ko has pro-
posed the following definitions.

6. Definition. A set C I-helps a set A if and only if there is an oracle ma-
chine M such that for every oracle X, L (M,X)=A, and such that with oracle
C, every word x accepted by M is accepted in polynomial time. A set A is a self-
I-helper if and only if A 1-helps itself.

The definition is from [5]; motivation and insights about this notion can
be found there. Let us just mention that the definition formalizes a situation
in which one has a machine that sooner or later will come up with a correct
answer, but has a certain degree of interaction with an external agent which
may “help” the machine so that it finishes quickly. Oracle machines M such

180 José L. Balcazar

that,for every oracle X,L(M, X) is always the same are called “robust oracle ma-
chines”. An equivalent formulation of 1-helping is as follows: M works always
in polynomial time, L(M,X)c A for every oracle X, and L(M,C)=A.

The announced characterization is as follows:

7. Theorem. A set C I-helps a set A if and only if C provides witnesses for
A. In particular, the self-1-helpers are precisely those sets having self-computa-
ble witnesses.

Proof. Assume that C I-helps the robust machine M which always accepts
A. Then A4 can be defined by existential quantification of the following poly-
nomial time relation:

B={{x,y> |y encodes a p(| x |) long computation of M accepting x }

where p is an appropriately selected polynomial. Each computation y corre-
sponds to a way of answering the oracle queries. Let us show that B fulfills (*):
assuming that a polynomially long computation y of M accepts x, then, since
M always accepts 4, xe€ A; conversely, if xe A then the computation cor-
responding to the oracle C finishes in time p(| X |) for the appropriate polyno-
mial p and accepts. Moreover, C allows one to construct witnesses for this
way of defining A by simply simulating the computation of M with oracle C.

To show the converse, let Be P defining 4 such that C provides wit-
nesses for it. Consider a machine M that, on input x, first assumes that its or-
acle is C and uses it to construct a polynomially long witness, by simulating
the machine which computes a solution; then it checks in polynomial time
that the witness obtained is indeed a solution, i.e. to check that the oracle was
correct. If no witness is found, or if the witness produced fails to be really a
solution, then M decides whether x is in 4 by performing an exhaustive search
for solutions, thus simulating an exponential time machine for 4. Such a ma-
chine always accepts 4, and is polynomial time bounded on inputs in A if the
right oracle, C, is available. []

The remaining of this section is devoted to formulating a known result in
terms of self-computable witnesses, as a previous step for the results to be pre-
sented in the next section. In [9] it is shown that for “self-transformable” prob-
lems (a weaker form of disjunctive self-reducibility) there is a functional sol-
ution that is “equally hard” to compute as the decisional form of the prob-
lem: i.e., “self-transformable” problems have self-computable witnesses. This
encompasses most of the known NP sets. In [3], this result is generalized so
that it includes all NP-complete sets, without the need of checking whether
they are self-transformable. Note that it is not known whether all the NP-com-
plete sets (even with respect to the stronger m-reducibility) are self-reducible.

Self-reducibility structures and solutions of NP problems 181

The proof is based on a prefix searching technique as in [13], using as a tech-
nical concept the following notion.

8. Definition. The set prefix-sols(B,p) is the set
{Kxzy|y(y|<p(x])){xy> €eBsuchthat zisa prefix of y }
The interest of this set lies in the following observation, which is stated in [12]:

9. Lemma. For every Be P and polynomial p, prefix-sols(B,p) is d-self-
reducible.

The proof is easy: y is a prefix of a solution if and only if either it is a sol-
ution, or ya is a prefix of a solution for some symbol a. In [12] it is also shown
that every d-self-reducible set is (disjunctively) Turing equivalent to a set of
the form prefix-sols(B,p), and a deep study of the structural properties of sets
of the form prefix-sols(B,p) is conducted.

I present next the following theorem, taken from 3]

10. Theorem. Let A be any NP-complete set, and let B in P and p such that
(*) holds. Then funct-sols(B,P) n PF(4) # O, and therefore A has self-compu-
table witnesses.

The interpretation of this result is that there is a functional solution of the
NP-complete set 4 which is “no much harder to compute ” than A itself, since
this functional solution is Turing reducible to A in polynomial time.

Proof. By proposition 3 and lemma 9, since A4 is NP-complete, prefix-sols(B,p)
is Turing reducible to 4, say via machine M. Then a functional solution f for
A can be computed by keeping a prefix of f{x) in a local variable, and ex-
tending it a bit at a time using the machine M and the oracle A4 to ensure that
the extension is always a prefix of a solution. |

This proof method will be applied again in the next section to optimization
versions of the NP-complete problems.

4. OPTIMIZATION NP-COMPLETE PROBLEMS

For optimization problems, instead of computing one among a set of sol-
utions, an optimal solution has to be selected. I consider only minimization
problems; it is straightforward to adapt all the results to maximization prob-
lems. The decisional statement of these NP-complete problems is: given an in-
put x, and an integer k, is there a solution with cost smaller than k?

182 José L. Balcazar

Of course, the practical interest is not to compute a solution below a given
cost, but finding the least expensive one. It is known that for some particular
cases, a polynomial time algorithm for the decisional problem provides a poly-
nomial time algorithm for the minimization problem (see, e.g., [6], pp.
185-188). I prove that for all such NP-complete sets, finding this solution is
again “no much harder than” (i.e. polynomial time Turing reducible to) de-
ciding whether a solution exists.

I define minimization NP problems in the most intuitive way, as a set of
pairs

{<xk>|3y(y|=p(x]){xy)> B with cost () <k}
where “cost” is a polynomial time computable function from I'* to I'*
measuring the cost of the solution y. The range of this function is usually in-
terpreted as an integer or a real number. To this set one can associate the set

of functions computing optimal solutions, which depends of B, the polyno-
mial p, and the cost function.

11. Definition. The set opt-sols(B,p,cost) is the set
{f'| fe funct-sols(B,p), and Vg € funct-sols(B,p), ¥ x, cost(f{x)) < cost(g(x))}.

In order to show that some optimal solution is computable in polynomial time
with the oracle set A4, I define two “prefix” sets:

12. Definition. The sets prefix-sols(B,p,cost) and prefix-opt(B,p, cost) are de-
fined as follows:

prefix-sols(B,p,cost)y={{ x,k,z>| 3y (|y|<p(x|)) <xy) €B
such that cost(y)<k and z is a prefix of y }

prefix-op(B,p,cost)={<{x,z)| Ay (y|<p(x)){xy)> €B such that z is a
prefix of y, and Yw (W <p(| x])) (x,w) € B, cost (y)<cost (W)}.

Again, the following result holds. Its proof is analogous to that of lemma 9:

13. Lemma. The set prefix-sols(B,p,cost) is d-self-reducible.

The next theorem formalizes the standard way to prove such a result for
particular problems. See [6].

14. Theorem. The set prefix-sols(B,p,cost) is Turing reducible in polynomial
time to the set prefix-sols(B,p,cost).

Self-reducibility structures and solutions of NP probléms 183

Proof. The reduction procedure goes as follows. First, one identifies the op-
timal cost k in polynomial time by searching for the maximum k such that
{ x,k,z) is in prefix-sols(B,p,cost). This can be done in polynomial time using
binary search, which requires a time logarithmic in the range of k, which in
turn is exponential in | x | since “cost” is computable in polynomial time. Once
the optimal value of k is known, use the fact that (x, z) is in prefix-opt (B,
p, cost) if and only if ¢ x, k, z) 1is in prefix-sols (B, p, cost). |

Now I state the main result about optimization problems.

15. Theorem. If A is a NP-complete minimization problem, defined by the
set B in P, polynomial p, and cost function “cost”, then
opt-sols(B,p,cost) PF (A) # .

Proof. A function in opt-sols giving optimal solutions can be obtained from
prefix-opt by extending bitwise a prefix. By theorem 14, oracle queries to pre-
fix-opt(B,p,cost) can be answered in polynomial time with an oracle for pre-
fix-sols(B,p,cost), which by lemma 13 and proposition 3 is in NP. Since 4 is
NP-complete, the reduction to 4 can be used for solving queries to prefix-
sols(B,p,cost). By the transitivity of the polynomial time Turing reducibility,
this allows one to construct an optimal solution in polynomial time with or-
acle A. []

References

[1] J.L. BALCAZAR: Self-Reducibility. Submitted for publication. To appear
in J. Comp. Sys. Sci.

[2] J.L. BALCAZAR, J. DiAz, J. GABARRO: Structural Complexity I. Springer-
Verlag, EATCS Monograph 11 (1988).

[3]1 A. BORODIN, A. DEMERS: Some comments on functional self-reducibility
and the NP hierarchy. Technical Report 76-284, Dept. Computer
Science, Cornell University (1976).

[4] KER-I KO : On self-reducibility and weak p-selectivity. J. Comp. Sys. Sci.
26, 2 (1983), 209-221.

[5] KER-I KO: On helping by robust oracle machines. Theor. Comp. Sci. 52
(1987), 15-36.

[6] K. MEHLHORN: Data structures and algorithms, vol. 2 “Graph algorithms
and NP-completeness”. EATCS Monographs, Springer-Verlag 1984.

[7] A. MEYER, M. PATERSON: With what frequency are apparently intrac-
table problems difficult?. M.I.T. Technical report TM-126 (1979).

[8] C.P. SCHNORR: Optimal algorithms for self-reducible problems. ICALP
1976, ed. S. Michaelson and R. Milner, Edinburgh Univ. Press, 322-337.

[9] C.P. SCHNORR: On self-transformable combinatorial problems. Sympo-
sium on Mathematische Optimierung, Oberwolfach 1979.

184 José L. Balcazar

[10] U. SCHONING: Robust algorithms: a different approach to oracles. Theor.
Comp. Sci. 40 (1985), 57-66.

[11] U. SCHONING: Complexity and structure. Springer-Verlag, Lecture Notes
in Computer Science 211 (1986).

[12] A. SELMAN: Natural self-reducible sets. SIAM J. Comp. 17,5 (1988),
989-996.

[13] L. VALIANT: The relative complexity of checking and evaluating. Inf.
Proc. Letters 5 (1976), 20-23.

Department of Software Recibido: § diciembre 1988
(Lenguajes y Sistemas Informaticos)

Universidad Politécnica de Catalufia

08028 Barcelona

