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Integrable solutions of a
functional-integral equation

JOZEF BANAS and ZYGMUNT KNAP

ABSTRACT. This paper contains a theorem on the existence of monotonic and
integrable solutions of a functional-integral equation. The proof of that theorem is
based on the technique associated with the notion of a measure of weak
noncompactness.

1. INTRODUCTION

Integral equations of various types play very significant role in many
branches of linear and nonlinear functional analysis and their applications.
For instance, the most frequently investigated integral equations are the
Fredholm linear equation or its nonlinear counterparts, the Hammerstein
and Urysohn integral equations (cf. [1, 7, 12, 21,22]). Apart from the above
mentioned there are also considered other types of integral equations, mostly
in connection with functional equations. Functional-integral equations of
such a type have been studied in several papers and monographs [3, 9, 12, 14,
15, 21] and create also the main subject of the present paper.

Roughly speaking, our considerations were initiated by the paper [3],
where the functional-integral equations of the convolution type were
investigated. Equations of this type and the equation(1) considered in the
sequel, appear often in many applications. For example, they can be applied
in solving many problems in physics, engineering and economics (cf. [9,21]
and references given there). Also a lot of problems considered in the theory
of partial differential equations lead us to functional-integral equations of the
type (1) [14, 17, 18].

It is worthwhile to mention that the results in the paper[3] have been
obtained with help of the complicated theory of monotone and accretive
operators while we use the fixed point theorem due to Emmanuele. This
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theorem allows us to prove more general existence result in rather simple
way.

2. NOTATION, DEFINITIONS AND AUXILIARY FACTS

This section is devoted to recall some auxiliary results which will be
needed further on.

Let L!(a,b) denote the space of Lebesgue integrable functions on the
interval [a, b], with the standard norm

b
llxll = [lx@ldr.
For simplicity, we shall consider the space L'=L! (0, 1).

Assume that f(z, x)=f: [0, 1]x R — R satisfies Carathéodory conditions,
i.e. it is measurable in ¢ for any x and continuous in x for almost all z. Then
to every function x (z) being measurable on the interval [0, 1] we may assign
the function (Fx)(t)=f(t, x (1)), t€[0, 1]. The operator F defined in such a
way is called the superposition operator. Notice that this operator is one of
the simplest and most important operator investigated in nonlinear functional
analysis (cfr. [1, 12, 21, 22]).

We have the following theorem due to Krasnosel’skiif1].

Theorem 1. The superposition operator F maps continuously the space
L! into itself if and only if |f(t, x)| <a(1)+b |x| for all t€[0, 1] and xR,
where a(t) is a function from L' and b is a nonnegative constant.

Now, let E denote an arbitrary Banach space and X be a nonempty and
bounded subset of E. Moreover, denote by K, the closed ball in E centered at
6 and with radius r.

Let us recall the notion of the measure of weak noncompactness defined
by De Blasi [6] in the following way

B(X)=inf [r>0: there exists a weakly compact subset Y of E such that
XCY+K,|

The function B (X) possesses several useful properties which may be found in
{6] (cf. also [5], where an axiomatic approach to the notion of a measure of
weak noncompactness is presented).
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The convenient and handy formula for the function 8(X) in the space L' was
given recently by Appell and De Pascale [2] (cf. also [5]):

B(X)=1lim {supx{sup[bflx(t)ldt: DCJ0,1], meas DSen],

€e—Ulxe

where the symbol meas D stands for Lebesgue measure of a set D.
Id

The applicability of the measure of weak noncompactness 8 was pointed
out by Emmanuele [8] who proved the following fixed point theorem.

Theorem 2. Let Q be a nonempty, closed, convex and bounded subset of
E and let T: Q — Q be a weakly continuous operator (i.e. mapping weakly
convergent sequences into itself) having the property that there is a constant
k[0, 1) such that

B(TX)=kB(X)

for any nonempty subset X of Q. Then T has at least one fixed point in the

set Q.

It is worthwhile to mention that weak continuity of an operator is rather
difficult to check in a concrete situation [7, 16]. For subsequent purposes we
describe now the example of a set in the space L! which allows us to overcome
the above mentioned difficulty.

For r>0 denote by Q, the subset of the ball K, in the space L! consisting
of all functions which are a.e. nondecreasing or nonincreasing on the interval

[0, 1]. Obviously the set Q, is nonempty, bounded, convex and closed in L.
In addition, we have the following.

Theorem 3. Any continuous operator S: Q, — L! is weakly continuous.

For the proof we refer to [4].

3. MAIN RESULT

We shall consider the following functional-integral equation

x(t)=g(t)+f(t, fk(t, s)x(cp(s))ds), t€[0,1] 60}
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For convenience the operator

(Hx) (1)= f(t, ! k(1 5)x(5) ds)

will be written as the product H= FK of the linear integral operator

1
(Kx)(t)= 6{ k(t,5)x(s)ds
and the superposition operator

(Fx))=f (L, x(1)).

Thus the equation (1) has the form

x=Ax=g+Hx(¢)=g+FKx(p). 2)

Now we formulate the assumptions under which the equation (1) will be
investigated. Namely, we assume the following:

() geL' and is a.e. nonincreasing and positive on the interval [0, 1],

@) f:[0,1]1x R — Ry =[0,+) satisfies Carathéodory conditions and
there exist a function a€ L! and a constant b=0 such that

ft, x)<a()+b|x|

for all #€[0, 1] and xe R. Moreover, f(t, x) is assumed to be non-increasing
on the set [0, 1] x R with respect to ¢ and nondecreasing with respect to x,

(iii) k:[0,1] x[0, 1] — R; is measurable with respect to both variables
and such that the integral operator K (defined above) maps L! into itself.

Let us recollect that the assumption (iif) implies [12] that the operator K

maps continuously the space L' into L!. From now on by ||K]|| we shall
denote the norm of the operator K.

Apart from this we assume.

(iv) for every p€[0, 1] and for all ¢, #,€[0, 1] the following condition
holds true :

P P
t1<t2-»fk(tl,s)dszb[k(tz,s)ds,
0
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(v) ¢:[0,1] —[0, 1] is increasing, absolutely continuous and there exists
a constant B>0 such that ¢°(¢)= B for almost all t€[0, 1],

vi) blKIl/B<]1.
Then we can prove the following theorem.

Theorem 4. Under the above assumptions the equation (1) has at least
one solution x€ L' which is a.e. nonincreasing on the interval [0, 1].

Proof. Take an arbitrary x L!. In virtue of the assumptions (i), (i), (iii)
and (v) it is easily seen that Axe L!, where A is the operator defined by 2).

Moreover, we get

L4x]| < llgll+1| FKx @Il < ligll+ [ [a(s)+b| [kes r)x«p(r))dr|] ds <
0 0

= ligll+llall+b 1Kl llx @l = gl + !Ia|I+(bI|K||/B)fI x@())l e’ (s)ds=
=llgll+Nall+ @I K]/ B) || xll.

The above estimate yields that the operator A maps the ball K, into itself,
where r=(ligll +|lall)/ (1-bl| K] BY).

Now let O, denote the subset of K, consisting of all functions being
positive and a.e. nonincreasing on [0, 1]. Obviously Q, is nonempty, bounded,
closed and convex (compare Section 2). Let us take an arbitrary function
x€ Q,. Then x(p) is a.e. nonincreasing and positive on the interval [0, 1]. Its
image Kx (@) is also of the same kind. This assertion can be derived from the
result due to Krzyz [13] if we take into account the assumption (iv) and the
part of assumption (iii) saying that k (s, s)=0 for (z, s)€[0, 1]>. Further, in
view of the assumptions (i7) and (v) we deduce that Ax is a.e. nonincreasing
and positive on the interval [0, 1]. Thus, keeping in mind that A: K, — K, we
conclude that A is a selfmapping of the set Q,.

Now, let us observe that the assumptions (iii) and (i) imply that A is
continuous on the set Q, (compare Theorem 1). In the light of Theorem 3 this
allows us to infer that A is weakly continuous on the set Q,.

In what follows take a nonempty set XC Q, and fixe>0. Further, let
DCJ0, 1] be such that meas D<e. Then, for an arbitrary x € X in view of our
assumptions we obtain

1[| (Ax)(1)|dt S!lg(t)ldt+[a(t)dt+bl[ [ka.5)x@(s)) ds| di=

=gl zrpy*+ ||a”L‘(D)+b“Kx(‘P)”Ll(D).
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Next, calling on the fact that the operator K maps the space L' (D) into itself
and is continuous, we get

!I (Ax)(t)ldtij'l'g||L'(D)+”a”L‘(D)+b”K”D”x@)“L'(D)a

where the symbol || K|| , stands for the norm of the operator
K: LY (D) — L'(D).

Consequently, we have

! | (Ax)@)|dt < l|gl| 1 py+ lall 12 o)+ (BN Kl o/ B) )[ x| Wt

Now, applying the theorem on integration by substitution for Lebesgue
integrals we can rewritten the last estimate in the following way

)[ | (%) )\ dt < ligll 1oy + lall 2oy + B KL o/ B [ |x(@)ldt.

@ (D)

Further, taking into account the obvious equality

lim [sup [)[g(t)dw!a(t)dt: DC[0, 1], meas DSe] }:0

e—0

and keeping in mind that the function ¢ is supposed to be absolutely
continuous we obtain

B(AX)=(blIKI||/B) B(X).

This inequality together with earlier indicated properties of the operator A
and the set O, enables us to apply Theorem 2. This completes the proof of our
theorem.

4. FINAL REMARKS AND COMMENTS

In this section we give a few comments concerning the assumptions of
Theorem 4.

At first let us notice that it is very difficult to find necessary and sufficient
conditions for the function k (7, s) guaranteeing that the linear operator K
generated by this function maps L! into L!. In some special cases this problem
has been solved by Tomaselli [20]; see also [19] and [10] for further
extensions of the result due to Tomaselli. Some other special cases are also
discussed in [21].
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It is worthwhile to mention the following sufficient condition guaranteeing
that K: L! — L! and is continuous [7]:

The function k: [0, 1]x[0, 1] — R is measurable and there exists a positive
constant M such that

1
ess sup flk(t, s)ds<=M,
te[0,1] 0

1
ess sup flk(t, s)|dt=M.
sef0,1] 0

The above also imply that the norm of the operator K is majorized by M, i.e.
| Kl <M.

Let us notice that the above condition seems to be not very convenient in
practise because it is rather difficult to verify if it holds in a concrete situation.

Secondly, let us observe that the assumption on the positiveness of the
functions involved (i.e. g, f and k) may be omitted if we assume the following
condition to be satisfied

1
(vii) fk(t, s)ds = const, for each 1€ [0, 1].
0

Indeed, the above assumption together with assumption (iv) imply that the
integral operator K transforms monotonic functions into monotonic ones
[13]. Thus in the proof of Theorem 4 we may consider instead of Q, the set
of all functions x € K, being a.e. nonincreasing on the interval [0, 1] (but not
necessarily positive). Obviously the reminder of the proof will be quite
analogous as previously.

On the other hand the condition (vii) seems to be too restrective.

Finally let us mention that up to now existence theorems for the equations
like to (1) have been proved under more restrective assumptions than those
made here. For example, it was assumed that F is the so-called «improvingy»
operator (cf. [12, 21, 22]). An assumption of such a kind has also been made
in the paper [3].
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